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Abstract

Managing constrained healthcare resources is an important and inescapable

role of healthcare decision makers. Allocative decisions are based on down-

stream consequences of changes to care processes: judging whether the costs

involved are offset by the magnitude of the consequences, and therefore

whether the change represents value for money. Process mining techniques

can inform such decisions by quantitatively discovering, comparing and de-

tailing care processes using recorded data, however the scope of techniques

typically excludes anything ‘after-the-process’ i.e., their accumulated costs

and resulting consequences. Cost considerations are increasingly incorpo-

rated into process mining techniques, but the majority of healthcare costs for

service and overhead components are commonly apportioned and recorded at

the patient (trace) level , hiding event level detail. Within decision-analysis,

event-driven and individual-level simulation models are sometimes used to

forecast the expected downstream consequences of process changes, but are

expensive to manually operationalise. In this paper, we address both of

these gaps within and between process mining and decision analytics, by
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better linking them together. In particular, we introduce a new type of

process model containing trace data that can be used in individual-level or

cohort-level decision-analytical model building. Furthermore, we enhance

these models with process-based micro-costing estimations. The approach

was evaluated with health economics and decision modelling experts, with

discussion centred on how the outputs could be used, and how similar infor-

mation would otherwise be compiled.

Keywords: process mining, decision analytics, healthcare economics

1. Introduction

Within health systems funded through pooled and constrained resources

(e.g., insurance and/or tax revenues), policy and executive decision makers

are increasingly aware of whether their processes of care delivery achieve

patient health, experience, equity and fairness goals to the extent that they

warrant their allocation of funding. As such, the question at the heart of

all health service planning and project implementation is whether, to what

extent and under what conditions/assumptions, should a process exist or be

changed? This is the normative decision problem that all analysis techniques

including process mining techniques in the health domain seek to inform.

Process mining is a useful method for discovering and quantifying ex-

isting care processes, and provides a data-driven means of studying process

behaviour [1]. Discovered processes might also reasonably reflect how health

services would be expected to be delivered and perform in the future, un-

der a ‘status quo’ scenario with no changes in patient demand or resource

configuration. Visualisations and the ability to analyse information mined
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from event-log data enable the formation of hypotheses into potential causal

effects between process behaviour and the impact of potential interventions

to alter processes and affect outcomes of interest.

However, to establish whether and how processes warrant intervention,

additional statistical and forward-looking analyses outside of process mining

are often required. Recent work has looked to envelop inferential and pre-

dictive methods within process mining algorithms [2, 3], but process mining

methods can additionally help provide insight into hidden process informa-

tion and inform other decision-analytical methods for foresight generation.

Healthcare decision makers and stakeholders require foresight into the

accrued costs and consequences expected from observed or potential pro-

cesses.. It is on the basis of ‘expected outcomes’ and the price that decision

makers are willing to pay for them (i.e., their value for money), that health-

care services are planned and implemented.

The expected value of changes to processescan be evidenced through con-

formance analysis, but only where there exists a comparative reference pro-

cess with known and ‘acceptably priced’ effects. Guidelines and clinical prac-

tice protocols can provide reference processes that represent value, but often

do not exist at the local-level with the consideration of relevant resources

that are idiosyncratic to different decision maker contexts.

The other way for process mining analyses to inform value-based decision

making in health is through forward-looking (e.g., simulation) modelling.

These analyses/modelling fall outside the ‘discovery, conformance and en-

hancement’ capabilities of process mining, but are a crucial part of ‘closing

of the loop’ which ensures insights and methods have practical relevance.
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The discovery of simulation models is not a new area for process mining [4].

Recent work in process mining also explored improving the accuracy of sim-

ulation models in the event of multitasking and availability constraints [5].

However, while the health domain possesses a large amount of data, it is

characterised as flawed in its collection; uncertain in its definitions; it usu-

ally captures only proxy measures of desired information; and is sparsely

populated for important subgroups of data [6]. It is rare that the process

data exists to accurately predict endpoints that inform a value-proposition

- namely down-stream costs and patient outcomes. Individual level and dis-

crete event simulation decision-analytic models are difficult to operationalise

within tight project constraint, and may only provide little additional infor-

mation to decision makers [7].

Given the rarity of reference processes that are value-based, and the im-

practicability of individual-level simulations, further process mining capabil-

ities are needed to enhance and make use of flawed data to inform simple

forward-looking decision-analytic models that link processes to costs and out-

comes.

In this paper, we introduce process mining approaches to help inform

the structure and parameter estimation of forward-looking, decision-analytic

models that can be used for the management of healthcare resources. Specif-

ically, we detail:

1. The linkage and transformation of a routine administrative, clinical

and costing data set, from a set of ‘episode logs’ used in activity-based

funding, into event logs that describe patient-pathways.

2. The automation, visualisation and description of data within an event
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log, so that information can be easily abstracted into simple forward-

looking models, such as decision trees and Markov models.

3. The apportionment of case-level attributes on costs, for the purposes

of micro-costing at an event level.

To summarise, the key contributions of this paper are:

1. An example of an event log compiled from linked hospital data that is

routinely collected across Australia, with standardised nomenclatures,

for the purpose of activity-based funding.

2. A new approach that combines process modelling with economic deci-

sion tree modelling, to express processes with explicit trace attributes

(e.g., demographic data); as well as discovery techniques, model visu-

alisations and conformance checking techniques for such models.

3. Estimation of micro-cost information for activities of interest within

the event-log, from aggregate episode-level costs recorded as trace at-

tributes.

4. An approach to help inform real-world decisions for managing health-

care delivery based on ‘value for money’, by bringing the mining of

processes, and the consideration of costs and outcomes, closer together.

The approach is demonstrated using a case study of real-life data from an

Australian Local Health Network, and validated through quantitative tests

of estimation accuracy and qualitative interviews with healthcare decision-

modelling analysts who would use the mined information.

5



The remainder of this paper is organised as follows: Section 2 discusses

related work, Section 3 introduces the context of the case, Section 4 intro-

duces the technical process mining contributions, Section 5 evaluates and

discusses the approach and Section 6 concludes the paper.

2. Related Work

In this section, we discuss three areas of related work: economic eval-

uation in healthcare delivery, process mining in healthcare, and cost-based

process mining.

2.1. Economic evaluation in healthcare delivery

Normative economic evaluation, whether model-based or alongside clin-

ical trials, is a core component of health economics and has existed as an

applied science to inform healthcare decision making since the mid-1960s [8].

A major challenge in applying economic evaluation methods within health-

care, is that the systems for its delivery continuously and spontaneously

(i.e., dynamically) adapt and self-organise based on the complex interaction

of multiple stakeholders with overlapping responsibilities and competing in-

terests [9, 10]. In this context, there is some guidance on combining process

evaluation and outcomes evaluation [11], but relying most heavily on quali-

tative and subjective methods [12].

The success of any service intervention hinges on the sense amongst

managers of the system that they are able to ‘sell’ the plans to diverse

interest groups to facilitate ‘buy-in’ according to individual and collective

goals [13, 14]. Because of this, economic evaluation and the modelling in-

volved is itself a necessarily dynamic and iterative process, where a model

6



is only as useful as its use in stakeholder engagement [15]. This means con-

forming to the confines of the short timing, constrained resourcing, a lack

of expertise and a generally negative attitudes towards resource rationing in

the teams responsible for service developments [16].

As outlined by Brennan et al. [17], there are a number of different types

of model structures which can be employed, depending on a preference for

cohort level vs. individual level; with interactions or without interactions;

continuous state (deterministic) vs. discrete state (stochastic or individual);

and untimed vs. timed (either discrete or continuous). The resulting dif-

ferent modelling approaches include decision trees, Markov models, system

dynamics, individual event histories and discrete event simulations (DES).

Novel whole-of-hospital DES platforms [18, 19] illustrate the potential

for virtual piloting of potential new services with methods/model structure

that could be translated at a low-cost to other hospital settings. However,

as was the reported experience of Lord et al. [20] with their modelling of

full care pathways using DES for economic evaluation, development resources

and analysis time can be higher and take longer than anticipated and fail to

fit within decision maker and project constraints. There is also a relevant

‘value of information’ calculation to make, where a more complicated and

expensive approach generates similar outputs to relatively simpler processes,

any additional modelling expenses are unlikely to be efficient [7]. Trying to

forecast the efficiency of alternative modelling structures is a contemporary

topic of research and debate [21]. When selecting a structure, the determina-

tive principle should be that of a ‘requisite approach’ [22], whereby only as

much modelling is undertaken to sufficiently minimise decision uncertainty
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and nothing more. With this in mind, it makes sense to start with as simple

a model as possible, and add to it as necessary.

Regardless of the structure chosen, the measurement and valuation of re-

sources and their costs is an integral component of any economic modelling.

There are top-down and bottom-up costing methods, depending on whether

collected at a cost-centre or the individual patient level; and micro and gross

costing methods, depending on level of detail in different types of resources

utilised [23]. There is a great deal of variation in methodological and report-

ing quality in costing studies for economic evaluation [24]; however, the main

emphasis is on transparently reporting resource quantities and the source of

unit prices, so that any direction of bias can be interpreted by a reader [25].

When looking to inform decisions at a local level that are dependent on

idiosyncratic resource availabilities and organisational context, bottom-up

approaches are preferred [26]. Analytical and cost accounting is practised

within Australian hospitals according to the business rules and guidelines

within the Australian Hospital Patient Costing Standards [27] and increas-

ingly employ Patient-Level Costing Information Systems (PLICS). This cost-

ing data informs the prices paid or reimbursed for Diagnosis Related Groups

(DRGs) or other units of activity. While there is a breakdown for both

direct and indirect costs for ‘buckets’ of different types of resources (e.g.,

workforce, consumables, overheads), such data is commonly only available

at an episode or trace level rather than an event level. While the costs for

goods and services are easily accounted from the bottom-up, the majority of

healthcare costs associated with service and overhead components are often

apportioned through subjective and opaque methods. Further, the structure
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and definitions of data within PLICS are not necessarily aligned with the

‘states’, ‘events’, ‘actions’ or ‘decisions’ on which a decision-analytic model

might ideally be based.

2.2. Process Mining in Healthcare

Healthcare is a domain which has received substantial attention from

the process mining research community. Healthcare processes can be de-

scribed as “a series of activities aimed to diagnose, treat and prevent any

diseases in order to improve a patient’s health” [28]. Healthcare processes

are considered highly complex with significant variations over time [29] due to

the patient-centric nature of treatment pathways. Process mining has been

used to discover processes, analyse performance, and check conformance of

medical treatment processes and healthcare organisation processes [28]. An-

other application of process mining is to compare the behaviour of processes

between healthcare organisations. For instance, Partington et al. [30] de-

scribe approaches to performing comparative analysis using process mining

for cohorts of patients suffering chest pains in four Australian hospitals. In

Australia, several studies analysed the behaviour of healthcare processes in

pre-hospital, emergency and in-hospital using routinely collected hospital

datasets from South Australia and Queensland (e.g., [30, 31, 32]).

Attempts to apply process mining techniques in healthcare has high-

lighted several challenges and opportunities due to the unique characteristics

of these healthcare processes [33, 34, 28, 1]. Mans et al. [33] address three

issues affecting process mining in healthcare, namely data correlation from

multiple healthcare systems, typical questions of interest for healthcare stake-

holders, and identification of data quality issues. Two of these questions are
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of particular relevance to this work: how to identify (1) the most-followed

and exceptional paths and (2) key differences in care paths followed by dif-

ferent patient groups. In [34], the authors review 37 studies in which process

mining was applied to clinical pathways. The studies are classified according

to whether they attempt to (i) discover actual execution pathways of different

clinical pathways (process discovery), (ii) analyse variants of execution path-

ways, or (iii) evaluate and improve clinical pathways. The authors conclude

that at the time of writing, challenges remain such as improving process min-

ing algorithms so that they are efficient enough to deal with the unstructured

processes (clinical pathways) and are able to discover models from which a

good explanation of the variants can be obtained. Rojas et al., [28] also

conducted a literature review of 74 research articles on process mining in

healthcare and found that there is a lack of good visualisations of process

models for complex and less-structured healthcare processes. Recently, Mar-

tin et al. [1] recommended ten key actions for process mining researchers

based on the discussions of 18 experts; both researchers and healthcare prac-

titioners. This work incorporates several of these recommendations when

developing new analysis techniques: present the unique value proposistion

(RC-2), starting from real-world healthcare problems (RC-3), taking into

account healthcare specifics during technique development (RC-5), express-

ing the trustworthiness of output (RC-6), providing a holistic process view

(RC-7), and developing multi-perspective approaches (RC-8).

Process mining thus enables data-driven process improvements in health-

care. However, there still remains limited uptake of process mining in health-

care organisations [1]. In particular, the potential of process mining for health
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economic decision making remains unexplored.

2.3. Cost Considerations in Process Mining

Although the primary focus of data-driven process improvement tends to

be time-based, there are several works that explore how cost estimations and

predictions can be achieved using process mining techniques.

In [35], the authors proposed a generic framework to associate cost infor-

mation with event data by developing a cost model, annotating logs with cost

functions and then undertaking cost predictions using a transition system.

Low et al [36] then present a genetic algorithm with heuristics to generate

alternative process executions and compares these execution costs based on

a given cost model.

In [37], the authors propose process model-enhanced cost, and cost pre-

diction based on production volume and time prediction for manufacturing

processes. In [38, 39, 40], the authors extended the approach of [35] to process

model notations and proposed a context-aware cost-data analysis approach

using process mining. Their approach enables modelling of cost information

at process model and activity levels. In [39], the selection of a classification

algorithm to associate cost information based on context together with a case

study using the process of a maternity department is presented.

In addition to linking cost considerations with process mining, several

works present approaches to consider cost implementations during process

simulation, process execution and process monitoring.

In [41], the authors present a novel framework for cost-informed process

execution together with data requirements and technical challenges to sup-

port it. In [42], the authors describe a casual effect estimation technique to
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determine the intervention options that reduce the cycle time of a case while

maximising the total net gain. The total net gain is considered as the sum

of the differences between the benefit of each intervention and its cost.

3. Case Context

In this section, we discuss the context of the particular healthcare decision

analysis context that we consider in the remainder of this paper: we describe

particular analysis questions and the available data.

The overarching research question for the study is: How can we design

process mining methods that can learn or inform simple decision-analytic

model structures and parameters, from routinely collected health data?. Specif-

ically, we are interested in answering the following questions.

• How can we link the patient pathways with observed costs and other

outcomes attributes for a given population?

• How can we mine and visualise existing or in situ patient pathways to

describe a ‘status quo’ comparator, from which any potential new or

reconfigured service may be adapted and compared?

• How can we estimate the costs of specific events within existing pa-

tient pathways, from data recorded at an episode- or case-level and

information held within the process model?

• Are the mined outputs informative for model builders, given how they

would usually access similar information?
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First, we put together an event log from routinely collected data from a

Local Health Network, for a population of those who present to a hospital and

receive an initial diagnosis of chest pain (ICD10 code R07). These patients

are subsequently treated through the Emergency Department and may be

admitted and receive additional acute and sub-acute care. For the accuracy

experiments, we also used further diagnoses.

We subsequently experimented with developing new process mining meth-

ods to address the research questions. We evaluated the implementation and

interpretation of models using quantitative validation, and interviews with

economic decision analysts.

The data used for this study was limited to what is routinely collected

by hospital and health systems, to manage and report on process behaviour.

Routinely collected data means that it is the same data attributes avail-

able in every Australian hospital. As outlined in Figure 1, there were five

datasets linked together deterministically using anonymised patient identi-

fiers: Emergency Department Data Collection,

Admitted Patient Data Collection,

Ward Transaction Data, Patient Costing Data Collection

and Mortality Data Collection. The data spans patient journeys across

the Emergency Department and admitted care, whether they are emergency

or elective, and acute or sub/non-acute in nature. Because episodes of care

can reflect administrative changes, without a patient actually leaving the

hospital, these multiple ‘episodes of care’ were linked together into a single

journey where they were found to have events with adjoining date and time

stamps.
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Emergency Department 
Data Collection

episode_id
presentation_ID
URN_good
Gender
Age
Postcode
indigenous_status
source_of_referral
source_of_referral_d
arrival_mode
arrival_mode_d
arrival_mode_d_dt
presenting_problem
presenting_problem_d
Priority
priority_d
presentation_dt
seen_by_dt
admission_dt
admission_ID
eecu_dt
separation_dt
depart_stat
depart_stat_d
diag_code
diag_code_trunc
diag_code_trunc_d
urg_code_ch
urg_code_ch_d
mdb_code_ch
mdb_code_ch_d

Emergency Department 
Data Collection

episode_id
presentation_ID
URN_good
Gender
Age
Postcode
indigenous_status
source_of_referral
source_of_referral_d
arrival_mode
arrival_mode_d
arrival_mode_d_dt
presenting_problem
presenting_problem_d
Priority
priority_d
presentation_dt
seen_by_dt
admission_dt
admission_ID
eecu_dt
separation_dt
depart_stat
depart_stat_d
diag_code
diag_code_trunc
diag_code_trunc_d
urg_code_ch
urg_code_ch_d
mdb_code_ch
mdb_code_ch_d

Ward Transaction Data

episode_id
presentation_ID 
SERVICE_TYPE_CLASS
HOSPITAL
URN
IN
OUT
LOCATION
LOCATION_DESC
STREAM
UNIT
DIVISION
DESTINATN 

Ward Transaction Data

episode_id
presentation_ID 
SERVICE_TYPE_CLASS
HOSPITAL
URN
IN
OUT
LOCATION
LOCATION_DESC
STREAM
UNIT
DIVISION
DESTINATN 

Admitted Patient
Data Collection

episode_id
Urn
admission_dt
admission_ID
ward_on_admission_ch
ward_on_dischard_ch
external_cause_type_cd_ch
cond_onset_ext_cause_type
onset_diagnosis_2_cd_ch
onset_diagnosis_3_cd_ch
onset_diagnosis_4_cd_ch
onset_diagnosis_5_cd_ch
onset_diagnosis_6_cd_ch
onset_diagnosis_7_cd_ch
onset_diagnosis_8_cd_ch
onset_diagnosis_9_cd_ch
onset_diagnosis_10_cd_ch
onset_diagnosis_11_cd_ch
onset_diagnosis_12_cd_ch
onset_diagnosis_13_cd_ch
onset_diagnosis_14_cd_ch
onset_diagnosis_15_cd_ch
onset_diagnosis_16_cd_ch
onset_diagnosis_17_cd_ch
onset_diagnosis_18_cd_ch
onset_diagnosis_19_cd_ch
onset_diagnosis_20_cd_ch
onset_diagnosis_21_cd_ch
onset_diagnosis_22_cd_ch
onset_diagnosis_23_cd_ch
onset_diagnosis_24_cd_ch
onset_diagnosis_25_cd_ch
onset_diagnosis_26_cd_ch
onset_diagnosis_27_cd_ch
onset_diagnosis_28_cd_ch
onset_diagnosis_29_cd_ch
onset_diagnosis_30_cd_ch
indigenous_status_cd_ch
age_yrs_at_adm_int
gender_cd_ch
episode_of_care_type_cd_ch
pat_categ_intent
referral_source_type_cd_ch
separation_dt
clinic_cd_ch
nature_of_separation_cd_ch
pat_categ_actual
admission_status_actual
contract_hosp_cd_ch
diagnosis_1_cd_ch
diagnosis_2_cd_ch
diagnosis_3_cd_ch
diagnosis_4_cd_ch
diagnosis_5_cd_ch
diagnosis_6_cd_ch
diagnosis_7_cd_ch
diagnosis_8_cd_ch
diagnosis_9_cd_ch
diagnosis_10_cd_ch
diagnosis_11_cd_ch
diagnosis_12_cd_ch
diagnosis_13_cd_ch
diagnosis_14_cd_ch
diagnosis_15_cd_ch
diagnosis_16_cd_ch
diagnosis_17_cd_ch
diagnosis_18_cd_ch
diagnosis_19_cd_ch
diagnosis_20_cd_ch
diagnosis_21_cd_ch
diagnosis_22_cd_ch
diagnosis_23_cd_ch
diagnosis_24_cd_ch 
diagnosis_25_cd_ch
diagnosis_26_cd_ch

Admitted Patient
Data Collection

episode_id
Urn
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external_cause_type_cd_ch
cond_onset_ext_cause_type
onset_diagnosis_2_cd_ch
onset_diagnosis_3_cd_ch
onset_diagnosis_4_cd_ch
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onset_diagnosis_13_cd_ch
onset_diagnosis_14_cd_ch
onset_diagnosis_15_cd_ch
onset_diagnosis_16_cd_ch
onset_diagnosis_17_cd_ch
onset_diagnosis_18_cd_ch
onset_diagnosis_19_cd_ch
onset_diagnosis_20_cd_ch
onset_diagnosis_21_cd_ch
onset_diagnosis_22_cd_ch
onset_diagnosis_23_cd_ch
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diagnosis_8_cd_ch
diagnosis_9_cd_ch
diagnosis_10_cd_ch
diagnosis_11_cd_ch
diagnosis_12_cd_ch
diagnosis_13_cd_ch
diagnosis_14_cd_ch
diagnosis_15_cd_ch
diagnosis_16_cd_ch
diagnosis_17_cd_ch
diagnosis_18_cd_ch
diagnosis_19_cd_ch
diagnosis_20_cd_ch
diagnosis_21_cd_ch
diagnosis_22_cd_ch
diagnosis_23_cd_ch
diagnosis_24_cd_ch 
diagnosis_25_cd_ch
diagnosis_26_cd_ch

Patient Costing
Data Collection

episode_id
Patient_UR_No
Encounter_No
Prod_Type
DRG
LOS_Days
AdmitDateTime
SepDateTime
WIP
Revenue
TotalAmount
DirectCost
IndirectCost
Allied_Direct
Allied_Indirect
Critical_Direct
Critical_Indirect
Deprec
ED_Direct
ED_Indirect
Exclude_Direct
Exclude_Indirect
Hotel
Imag_Direct
Imag_Indirect
NonClinical
Oncosts
OR_Direct
OR_Indirect
Path_Direct
Path_Indirect
PayTax
Pharm_Direct 
Pharm_Indirect
Pros 
SPS_Direct
SPS_Indirect
WardMed_Direct
WardMed_Indirect
WardNurs_Direct
WardNurs_Indirect
WardSupplies_Direct
WardSupplies_Indirect
Pharm_PBS_Direct 
Pharm_PBS_Indirect
PatTravel_Direct
PatTravel_Indirect 

Patient Costing
Data Collection

episode_id
Patient_UR_No
Encounter_No
Prod_Type
DRG
LOS_Days
AdmitDateTime
SepDateTime
WIP
Revenue
TotalAmount
DirectCost
IndirectCost
Allied_Direct
Allied_Indirect
Critical_Direct
Critical_Indirect
Deprec
ED_Direct
ED_Indirect
Exclude_Direct
Exclude_Indirect
Hotel
Imag_Direct
Imag_Indirect
NonClinical
Oncosts
OR_Direct
OR_Indirect
Path_Direct
Path_Indirect
PayTax
Pharm_Direct 
Pharm_Indirect
Pros 
SPS_Direct
SPS_Indirect
WardMed_Direct
WardMed_Indirect
WardNurs_Direct
WardNurs_Indirect
WardSupplies_Direct
WardSupplies_Indirect
Pharm_PBS_Direct 
Pharm_PBS_Indirect
PatTravel_Direct
PatTravel_Indirect 

Mortality Data
Collection

episode_id
activity
start_date_2
slk581
dead_yn
dod
pod

Mortality Data
Collection

episode_id
activity
start_date_2
slk581
dead_yn
dod
pod

Figure 1: Entity Relationship Diagram of the linked data used within this study, and

commonly available within Australian Local Health Networks
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The data is transformed into an event log adhering to the XES stan-

dard using the FilterTree tool1 and rather standard conversion steps, in-

cluding a selection of to-be kept activities with pre-fix service type. The

cost is the sum of the event attributes allieddirect, wardmeddirect and

wardnursdirect, which are first lifted to the trace level. Empty and zero

costs were removed, such that the new cost-based tools ignore these traces; a

future study might focus on the sub-set of traces without attached costs. The

resulting event log has 16 149 traces, 34 025 events and describes 24 different

types of activities.

4. Process Mining for Decision Analytics

In this section, we introduce a new type of model that combines trace

attribute data with a process specification such that decision analytics that

are aware of processes can be performed. We first introduce pre-existing

concepts. Second, we introduce a new hybrid formalism for process models

and trace attribute data. Third, we describe how cumulative trace attributes

(e.g. costs) can be attributed to the execution of activities.

4.1. Preliminaries

An event denotes the execution of a process step (activity). A trace is

a sequence of events that bring a case through a process. A trace can be

annotated with attributes indicating properties of the trace. We denote the

set of all activities with Σ and the set of all traces with T. For instance,

〈triage,ED, discharge〉arrival:10−02−2022 11:45, diagnosis:R07 is a trace consisting of

1See http://leemans.ch/filtertree.
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3 events, annotated with 2 attributes2. A language is a possibly infinite set

of traces. Aprocess model expresses a language and an event log expresses a

stochastic language with a finite number of traces.

Tree-based decision models that represent care processes and patient prog-

noses are one of the simplest, but also most widely used implementations of

a decision-analytic model [43]. They consist of decision and chance nodes;

branches that reflect the divergent of pathways for cohorts of patients; and at

the termination of each branch, the cumulative resource inputs and associated

outcomes. Such models are inherently untimed, or rather, the represented

pathways occur over an instantaneous discrete period. Time is only char-

acterised within the model, where it may form a node from which separate

‘time related’ branches are defined (e.g., slow vs. fast). Time can otherwise

be included as one of the accumulated effects at the end of a branch e.g.,

total length of stay.

Branches typically follows natural disease progression or

diagnostic/treatment processes, but requires some level of abstraction by an

analyst to define the most relevant branches. Ideally, this definition should

be based on how a branch would be expected to have an effect on costs and

outcomes, but may sometimes also reflect the available data. In the same

way that process models can be ‘spaghetti-like’, so too can decision trees be

‘bushy’. This is particularly the case with processes that occur over a long

period of time.

2note that event and log attributes have been defined as well, however in this paper we

will not require these. Event attributes can be lifted to trace attributes if necessary.
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4.2. Process Models for Decision Analytics

In this section, we introduce a new hybrid of economic decision trees

and process models: process models for decision analytics (PMDA), mim-

icking existing economic decision tree models based on mined process be-

haviour [44]. We first introduce PMDAs formally, after which we discuss

how they can be discovered automatically from event logs, checked for con-

formance and visualised.

4.2.1. PMDAs

Intuitively, a PMDA is a prefix tree in which each node represents a set of

traces with trace attributes. Each node can either denote the set containing

the empty trace (τ), prepend traces of its children with an activity (α),

annotate traces of its children with a trace attribute (ρ), or combine the

languages of its children (×).

Definition 1 (PMDA syntax). Let Σ be an alphabet of activities such that

τ /∈ Σ, let a ∈ Σ be an activity, let t be a trace attribute and let v be a value.

Then, τ ∈ N is a PMDA, with τ /∈ Σ. Furthermore, let N1 . . . Nx ∈ N

be at least one PMDA node. Then, α(a,N1, . . . Nx) ∈ N is a PMDA;

ρ(t, v,N1, . . . Nx) ∈ N is a PMDA; and ×(N1, . . . Nx) ∈ N is a PMDA.

Next, we define the language of PMDAs recursively:
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Definition 2 (PMDA semantics).

L(τ) = {〈 〉}

L(×(N1, . . . Nx)) = {σT |σT ∈ Ni}

L(α(a,N1, . . . Nx)) = {〈a, a1, . . . ay〉T | 〈a1 . . . ay〉T ∈ Ni}

L(ρ(t, v,N1, . . . Nx)) = {σT{t:v}|σT ∈ Ni}

Notice that × combines the languages of its children without adding any

behaviour, which is necessary if the root node of a PMDA should describe a

language in which some traces differ in their first activity and have completely

disjoint trace attributes or values.

As a consequence of the technicalities in this definition, trace variables

are overwritten by nodes higher in the tree structure. For instance, the

language of the PMDA ρ(c, 100, ρ(c, 200, τ)) is {{〈〉c:100}. Furthermore, the

trace attributes employ an open-world assumption: a PMDA expresses the

trace attributes a trace should have, but not necessarily all trace attributes

a trace should have.

For readability, we might omit unambiguous τ nodes in this paper. For

instance, α(a, α(b), ρ(c, 100)) is a shorthand for the PMDA α(a, α(b, τ),

ρ(c, 100, τ) and its language is {〈a, b〉, 〈a〉c:100}.

Thus, a PMDA expresses a finite language of traces, where traces can be

annotated with attributes. It is not possible to denote the empty language.

Obviously, when disregarding trace attributes and ρ nodes, a determinis-

tic lexicographically sorted PMDA consisting of τ and α nodes is language

unique [45], that is, there is only one such PMDA expressing that particular

language (up to sorting of child nodes).
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Notice that PMDAs differ from standard process modelling formalisms

such as Petri nets [46], BPMN [47] and process trees [45], as these formalisms

cannot express constraints on trace attributes. A recent related approach are

context-aware process trees [48], which allow for the expression of event-based

constraints in process trees. PMDAs have a different purpose: to align as

close as possible with current practice in economic modelling. Consequently,

the control-flow constructs of PMDAs are deliberately limited to sequence

and exclusive choice, which is a sub-set of context-aware process trees that

also support loops and concurrency. Furthermore, where context-aware pro-

cess trees support constraints on an activity or event basis (e.g. execution of

activities can tied to a particular resource or time), PMDAs express trace-

based constraints (e.g. a trace corresponds to a patient of a certain age).

4.2.2. PMDA discovery

To automatically convert a log into a PMDA, one simply builds up a

prefix tree of the behaviour in the event log using τ and α nodes.

To filter noise and to reduce the number of nodes for readability purposes,

existing filter strategies could be adapted. For instance, adapting [49], a

PMDA is constructed while keeping track of how often each node is visited,

that is, the number of traces that visit the node. All traces are removed

that traverse an arbitrarily chosen node that is visited by the least number

of traces, and a new PMDA is constructed. This process is repeated until

removing another node would drop the total number of supported traces

below a certain user-selectable threshold.

Interactively, a user can indicate where ρ nodes should be added to dis-

tinguish between groups of traces explicitly. These nodes increase the total
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number of nodes in the tree, but allow for explicit modelling of groups of

traces. The resulting tree could be further adjusted to adhere to recommen-

dations from e.g. medical decision analysis [44], such as balancedness and

symmetry.

4.2.3. PMDA conformance checking

In this section, we describe how conformance of a trace 〈a1, . . . ax〉T with

respect to a PMDA can be determined on two levels: on the trace level (i.e.

a boolean answer indicating whether the trace fits the PMDA), or on the

event level (i.e. a fraction answer indicating how much of the trace fits the

PMDA).

On the trace level, we consider the nodes of the PMDA to be consumers of

either events (α) or trace attributes (ρ). To support the overwriting semantics

of trace attributes, we introduce a special value ⊥, which indicates that a

trace attribute has been overwritten by a higher-up node. Then, whether a

trace σ adheres to a PMDA E (denoted by σ |= E) can be computed by a

recursive function:

τ |= 〈〉T ≡ true

τ |= 〈a1, . . . ay〉T ≡ false

×(N1, . . . Nx) |= σT ≡ ∃1≤i≤xNi |= σT

α(a,N1, . . . Nx) |= 〈a1, . . . ay〉T ≡ a = a1 ∧ ∃1≤i≤yNi |= 〈a2 . . . ay〉T

ρ(t, v,N1, . . . Nx) |= σT ≡ (T (t) = v ∨ T (t) = ⊥) ∧ ∃1≤i≤xNi |= σT{t:⊥}

This function is linear in the size of the PMDA, and linear in the size of the

trace, however exponential in the non-determinism of the PMDA.
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On the event level, the question to what degree a trace σT fits a PMDA

E is an optimisation problem, analogous to alignments [50]. To solve this, a

trace σ′T
′ ∈ L(E) must be found, such that σT can be transformed into σ′T

′

using a minimal budget of the following edit operations:

σT σ′T
′

cost

synchronous move a a 0

log move a - 1

model move - a 1

attribute equal T (v) = t T ′(v) = t 0

attribute from log T (v) = t T ′(v) undefined 0

attribute from model T (v) undefined T ′(v) = t 1

attribute revalue T (v) = t T ′(v) 6= t 1

For instance, to transform the log trace 〈p, q〉c:100,d:50 into the PMDA trace

〈q, p〉b:100,d:70, we would need the following edit operations:

log σT p q - - c : 100 d : 50

model σ′T
′

- q p b : 100 - d : 70

operation lm sm mm afm afl ar

cost 1 0 1 1 0 1

Using such a trace σ′T
′
, the conformance of σ to E is then the fraction of

synchronous moves and attribute equal operations over the total number of

edit operations (except attribute from log). In our example, the event-level

conformance would thus be 1
5
.

Furthermore, the edit operations provide detailed information on confor-

mance deviations, that could be utilised to study detailed deviations and
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τ
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Figure 2: Example PMDA (partial).

their effects on trace attributes.

We conjecture the complexity of the event-level conformance problem to

be exponential, like alignments are exponential, thus not adding theoretical

complexity.

4.2.4. PMDA enhancement

For real-life event logs, unfiltered PMDAs may be too large to be vi-

sualised in their entirety. Visualisations of PMDA can utilise the inherent

tree structure. For instance, the BPIC12 log could be visualised as shown in

Figure 2, in which some of the nodes have been replaced by . . . to reduce the

size of the tree. Another approach, used in our implementation described in

Section 5.1, is to use interaction: initially, only the root node of the PMDA

is shown, and the user can expand nodes to explore the behaviour in the

PMDA.

4.3. Apportionment of cumulative trace attributes

In some cases, it might be known that the execution of events contribute

to a cumulative trace attribute, but in the data only the cumulative trace

attribute is present. For instance, a total cost or total service time might be

known per trace, while it is desirable to know how each activity contributes

to the cost or service times.
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Figure 3: A Petri net.

In this section, we introduce a technique that estimates how activities

contribute to cumulative trace attributes. We first provide two examples

of such attribute models, and second describe how the parameters of these

attribute models can be estimated. Notice that this method is designed for

PMDAS, but can be applied, and has been implemented (see Section 5), for

other process model formalisms as well.

4.3.1. Attribute model: cost

Our first example attribute model describes the cost of executing a trace

in terms of the execution of activities and the time this takes. We assume

an alphabet of activities Σ to be given (which are typically the labels of the

transitions in a process model; alternatively, the transitions themselves can

be used). Let n denote the number of activities in Σ.

Each such activity ai ∈ Σ yields two parameters: one indicating the set-

up cost pis of executing ai and one indicating the cost per time unit (ms) piu

of executing ai.

We denote the observations from the log L as follows: given a trace t ∈ L,

let oi,ts denote the number of times that activity ai was executed in t, and

let oi,tu denote the total time that all executions of the activity ai took in t
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together. For instance, for this time the sojourn time can be used, which is

the time between an event (of activity ai) and the preceding sequential event

(of any activity) [51].

Estimating the parameters of a cost model can then be translated to a

system of linear equalities, using a per-trace error variable εt. The objective

is then to find assignments for these parameters that minimise the sum of

absolute values over the εt of all traces (1). Additionally, we require that all

parameters are positive (3):

Minimise
∑
t∈L

|εt| (1)

such that ∀t∈L
∑

1≤i≤n

(oi,ts p
i
s) +

∑
1≤i≤n

(oi,tu p
i
u) + εt = otc (2)

∀1≤i≤np
i
s ≥ 0 ∧ piu ≥ 0 (3)

4.3.2. Attribute model: performance & deviations

Given a process model, the attribute model introduced in the previous

section can be extended to include conformance and performance informa-

tion.

Using alignments [50], traces are adjusted to fit a model using synchronous

moves, log moves and model moves (see Section 4.2.3). Intuitively, these

moves correspond to deviations, and might incur additional costs. For in-

stance, a model move means that an activity of the model is skipped, which

might incur a direct or indirect cost. Similarly, a log move means that an

activity was executed once more than the model prescribed, and this might

incur a cost that is different from executing the activity in accordance with

the model.
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Thus, this attribute model has parameters for each transition for set-up

costs of synchronous moves, for each activity for the cost of log moves, and

for each transition for the cost of model moves. Additionally, the cost of

service time per time unit (ms) of synchronous moves are parameters.

For instance, consider the Petri net of Figure 3 and the first trace 〈a, e, g,

h, f, h, g, i〉total:cost:1 000. An optimal alignment is 〈 a−
e
e
g
g
h
h
f
f
−
g
h
h
g
g
i
i
〉. This yields

the following observations of the parameters for this trace (service time pa-

rameters have been excluded from this example for brevity):

sync move transition e 1 sync move transition f 1

sync move transition g 2 sync move transition h 2

sync move transition i 1 model move transition e 0

model move transition f 0 model move transition g 1

model move transition h 0 model move transition i 0

log move activity a 1 log move activity e 0

log move activity f 0 log move activity g 0

log move activity h 0 log move activity i 0

total cost 1 000

4.3.3. Solving

Both example models were expressed as a system of linear equalities,

with an objective to minimise the sum of absolute errors per trace, that is,

the sum of |εt| for all traces t. This objective function is not linear, due to

the absolute value. In this section, we transform this objective function to

a linear function, such that it can be solved using linear programming in

polynomial time by standard tools.

To this end, we add another variable (σi) for each trace ti, which denotes

the cumulative sum of absolute errors for all traces “before” ti according to

some arbitrary order of traces in the log L. For the “first” trace t1, as we will

be minimising all σis, we can require that |ε1| ≤ σ1. This can be translated

to the equivalent ε1 ≤ σ1 ∧ −ε1 ≤ σ1 (5)(6). For any non-first trace ti, the

requirement for σi depend on the “previous” trace ti−1: |εi|+ σi−1 = σi; this
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can be translated to linear inequalities (7)(8). As an objective function, we

can then simply minimise σ1 (4):

Minimise σ1 (4)

Such that (2) and (3)

and ε1 − σ1 ≤ 0 (5)

−ε1 − σ1 ≤ 0 (6)

∀non-first traces iεi − σi + σi−1 ≤ 0 (7)

∀non-first traces i − εi − σi + σi−1 ≤ 0 (8)

This is a linear programming problem with l ∗2+n variables and l ∗3+n

constraints, which can be solved in polynomial time by standard tools.

5. Evaluation

In this section, we show the feasibility of the approach using two imple-

mentations, the accuracy of the discovered cost models, and its applicability

using semi-structured interviews with domain experts who work in financial

and economic modelling within hospitals.

5.1. Implementation

The techniques introduced in Section 4 have been implemented in two

contexts: as a new PMDA-based application and as part of the Visual

Miner [51, 52].

5.1.1. PMDA View

The new PMDA View software leverages the structure and hierarchy of

PMDAs to mimic economic decision tree models. As shown in Figure 4, on
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Figure 4: PMDA View: select a PMDA node on the left and see all its trace attributes

summarised on the right.

the left there is an automatically discovered unfiltered PMDA. The user can

expand each node and dig deeper into the behaviour of the log as required.

Each node of the PMDA represents a collection of traces, thus, when the

user selects a node on the left, the right side of the PMDA View shows a

summary of the trace attributes present in that collection.

Additionally, the trace attribute model described in Section 4.3.1 has

been integrated: a cost model on the activities is computed automatically

(for the entire log), and the modelled cost is shown (for the selected PMDA

node) as well as the actual cost (for the selected PMDA node).

The PMDA View software allows for a quick starter in decision-analytic

modelling: given a PMDA, the distributions and other summative infor-

mation on trace attributes can be quickly inspected and compared between

sub-groups of traces. PMDA View and its source code is available from

https://svn.win.tue.nl/repos/ProM/Packages/SanderLeemans.
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5.1.2. Visual Miner

The Visual Miner is an open-source plug-in of the ProM framework [53],

which provides an end-user friendly tool to analyse event logs using several

process mining techniques, which are applied in sequence without any re-

quired user intervention: first, a process model (either a process tree or a

Directly Follows Model [49]) is discovered from the log. Second, the model

is aligned with the log [50]. Third, the model is annotated with performance

or conformance information, after which users can inspect data attributes or

drill down into the process in the log by means of filters.

The Visual Miner has been extended with several variants of the trace

attribute model described in Section 4.3.2. That is, without necessary in-

teraction of users, the Visual Miner will construct a trace attribute model

(where a user can choose one of three options, including conformance and

performance), estimate its parameters, and visualise the results in tabular

form (Figure 5a) or on the shown model (Figure 5b).

5.2. Cost Accuracy

In this section, we evaluate the accuracy of the cost prediction on syn-

thetic data and our case context.

5.2.1. Synthetic Data

For the synthetic data experiment, we first construct a set of 10 process

models, consisting of activities, organised using sequential, exclusive choice,

loop and concurrent relations. For each activity, we create a distribution

using a randomly generated parameter and a distribution type of {constant,

normal, triangular, gamma, log-normal (σ = 0.5) and Weibull (k = 5)}.
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(a) Model in tabular form. Generic info and the mod-

els’ parameters are shown.

(b) Parameters visualised. The numbers indicate the

set-up cost of each activity.

Figure 5: Attribute models in the Visual Miner.

Then, we generate a training log with 1 000 traces, where every event incurs

a cost, randomly drawn from the created distribution. The traces are anno-

tated with the sum of the event-based costs. For each of these logs, we obtain

a cost model as described in Section 4.3. To measure the predictive quality,

we generate a test log of 1 000 traces – with a different random seed as the

training log. Next, we let the discovered cost model predict the cost of each

trace in the training log; we report on the median cost in log and model (Fig-

ure 6a), and average absolute error made (Figure 6b). The entire procedure

is repeated 10 times to nullify random effects; the experiment code is avail-

able at https://svn.win.tue.nl/repos/prom/Packages/SanderLeemans/

Trunk/src/svn48healthcare/.

The results shown in Figure 6 indicate that the constant and normal dis-

tributions pose little challenge for our method, whereas using the log-normal
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distribution involves a roughly 20% median error (indicated by the dotted

line); the gamma distribution, the Weibull distribution (with k = 5) and the

triangular distributions again pose fewer challenges. In practice, an addi-

tive cost distribution must be non-negative [54], however the results of our

method are perfectly interpretable with negative costs as well: the cost can

be attributed to a activity executions; and some activities may make traces

cheaper overall. The gamma and log-normal distributions are commonly used

to represent stochastic variability in healthcare costing data. Both of these

distributions can be highly positively skewed, reflective of what is commonly

found in costing data [54]. Some control-flow constructs are challenging for

our cost approximation approach. For instance, if two activities always occur

together, then there is no evidence available on their individual contribution

to cost. Furthermore, other similar model structures and dependencies may

pose similar challenges.

5.2.2. Real-Life Data Sets from our Context

Next, we evaluate the accuracy of the cost estimations. We do this on

five logs of our case context with the most-occurring diagnoses: R07 - pain

in throat and chest; R55 - syncope and collapse; R10 - abdominal and pelvic

pain; L03 - cellulitis and acute lymphangitis; and I50 - heart failure.

All logs are summarised in Table 1. Note that the logs of our case context

do not have uniform distributions: most of the traces are short, but extreme

cases of over 50 events also occur. Diagnoses may have different levels of

granularity, due to their reliance on bio-chemical or psycho-social indicators.

For instance, the base-line clinical condition and sub-processes for cohorts

such as R07 are more homogeneous than R55. To this end, we assess the
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(b) Log cost vs. median absolute error.

Figure 6: Synthetic experimental data with constant, normal, triangular, gamma, log-

normal and Weibull (k = 5) distributions.

accuracy of cost models using a 5-fold cross validation: the data is trace-

wise split into 2 buckets, and on each bucket a cost model is learned that is

validated on the other bucket. To avoid randomised effects, the procedure is

repeated 50 times, for a total of 500 combinations of training and test log.

For each such training log, a cost model was obtained as described in

Section 4.3; the accuracy was measured on the corresponding test log as (i)

the median cost according to the test log, (ii) the median cost according to

the discovered cost model, and (iii) the median absolute error in cost per

trace of the model vs. the log.

Figure 7 shows the results; each dot denotes a single cost model. Figure 7a

shows that, on average, the cost estimations can get close: R07, R55 and R10

can provide pretty accurate cost modelling, while for L03 there is a tendency

to under-estimate the costs. The median absolute error per-trace, divided by
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Table 1: Log characteristics.

Diagnosis traces events activities

R07 976 1 648 19

R55 935 1 735 20

R10 799 1 488 17

L03 363 853 17

I50 368 922 15

the median log cost, shown in Figure 7b, hovers around 0.13, as indicated

by the dotted line in Figure 7b. This means that per dollar cost in the

log, the modelled cost is inaccurate by approximately 13 cents. The relative

differences with respect to this line furthermore allow for interesting insights

into the differences in costing between these diagnoses. As observed with

R55 (blue) in Figure 7, the absolute differences are relatively higher than

those of R07 and L03, perhaps due to the greater cohort heterogeneity and

variability in terms of e.g. specific tests, treatments or consultations, and

their total duration.

All computations were performed once, so time measures can only indicate

generic trends. The measures were taken on a 10-year old laptop running an

up-to-date Ubuntu installation. Still, the maximum time for discovery of a

cost model in this experiment was 601ms.

5.3. Interview feedback from healthcare decision-modellers

In order to test and explore the face-validity and usability of the approach

and mined results, we conducted semi-structured interviews with those who
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Figure 7: Accuracy of apportionment. Colours indicate logs: R07, R55, R10, L03, I50.

would most likely utilise the information for decision analysis.

Four individual interviews were conducted online during the month of

February 2022 with domain experts experienced in financial and decision-

analytic modelling. Interview participants were industry consultants, health-

care managers and/or academic researchers with experience in conducting

analyses within hospitals, of their services. Participants were recruited using

a purposive, maximum variation sampling approach [55], which also included

peer-referral to gain different perspectives. Those identified as potential par-

ticipants were approach via email and provided with participation informa-

tion and consent forms seeking written, informed consent prior to any data

collection.

The interviewees were shown an introduction to the approach and a

demonstration of PMDA View, interleaved with questions grouped around

three topics: (i) How the outputs could be used, given the context of decision-
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analyses; (ii) how similar information presented within the PMDA would

otherwise be compiled by a decision-modeller; and (iii) thoughts on poten-

tial improvements to the methods and graphical presentation/interface. The

audio files were transcribed verbatim, and the transcripts thematically anal-

ysed. Key feedback from interview participants is summarised below.

5.3.1. How the outputs could be used

Firstly, “a lot of our research is clinician driven”[ID2], rather than sys-

temmatically driven by the LHN or broader system, by using performance

data. In this context, the emphasis of healthcare modellers is on “... getting

the clinicians to be able to articulate what a relevant comparator or compara-

tors [to a proposed new intervention], would be”[ID1]. This was clearly a way

that the PMDA View was seen as potentially useful.

All of the participants were quick to reflect on their roles and that the ex-

isting models used for decision analysis are “pretty unsophisticated”[ID1] and

sometimes “back of the envelope kind of stuff”[ID2], and that that when it

comes to using software “... there’s a preference for Excel because it’s trans-

parent”[ID1]. One participant noted “... transparency is king and if I can see

what’s going on and and see the logic of that”[ID1], and that because they

require to “take the decision makers on those journeys with you”[ID1], that

their experience is that they are “... finding that we lose our audience”[ID1]

when employing more complicated methods. This feedback lent some face-

validity to some of our earlier thinking and the premise to the developed

PMDA methods. Some direct feedback was that “I like the transparency of

that, so you can sense check [the service model] quite easily”[ID1].

The overarching feedback was that the presented PMDA and cost esti-
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mates would be great for exploring potential relationships and understand-

ing particular measures. It was noted that it could be particularly helpful

to engage clinicians to articulate what would be a relevant ‘existing care’

comparator. Too often clinical and executive stakeholders moved on from

understanding their usual care too quickly, because they’re trying to push “a

shiny new thing” that they want.

In addition to setting up for decision-analytic modelling, one participant

also raised the before-mentioned idea of conformance to ‘value-based refer-

ence process’. They noted that “... in some instances there are going to be

clinical guidelines that dictate what should be happening, and so I spend a

lot of work in the implementation space and see big differences between what

does happen and we ought to be happening. But you can use this to kind

of go alright, let’s look at that ... see where you need to put more effort in

adherence”[ID1].

5.3.2. How information would otherwise be compiled

Feedback focused on how routine data is often inaccessible. Information

on processes and costs metrics are usually translated from other settings

or studies; elicited from stakeholders; and synthesised from subjective and

anecdotal evidence. Patient pathways may be inferred from data, but not in

an automated way, which is readily visualised in PMDA View. This being

data-driven using a local source, provides an objective account of existing care

pathways, and the statistics for process, cost and outcome metrics associated

with these pathways.

Participants described how they usually map out existing care processes

and patient pathways, and then “... it’s a bit of an audit against known data
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systems”[ID1], pointing out that healthcare information systems are “... not

designed to have information easily extacted out of them”[ID1], and that “...

the information is unidirectional for central reporting and [LHNs] don’t get

that information back in house to be able to inform decision making”[ID1].

Further, that “... we’d have to do a lot of work to kind of get those like those

are those model inputs from our from our administrative data sets ... it’s

a really painful process of getting that information”[ID2]. One participant

also outlined how “... we obtain [input estimates] from annual reports and

published figures”[ID2], rather than local data sources.

It was noted, particularly by [ID3] that not all of the relevant and nec-

essary information is captured within routinely-collected data. There may

be a number of infrequent but impactful and meaningful events that are not

observable. So while being data-driven helps to rise above anecdotal evi-

dence, there may be other types of evidence which are still required to form

a position on the expected relationship between patient pathways (i.e., pro-

cesses) and their effects at both individual and aggregate-levels, and which

should determine the structure of a decision-tree model. Sometimes the wish

of service-planners or decision-makers is to change components of care that

are not observable in routine data or the existing process.

5.3.3. Improvements to methods and presentation

The idea of having this information readily available, and as part of a

globally accessible tool was very appealing to all of the interview participants.

While the detail on descriptive statistics on previous process behaviour, and

the ability to interrogate the tree is important for an analyst, the feedback

was that the flow-diagram visualisations are helpful and should be retained.
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Likewise, the distributions are particularly helpful for quantities such as costs,

which can be bi-modal.

The general concern was expressed that linear modelling for the cost

estimates may be inaccurate, because there are many non-process attributes

such as patient disposition and severity of illness, that may be influential.

Further, the risk was raised that a data-derived model might miss or

mis-classify important information, and lead to an observational bias and

misunderstanding of the causal logic. Participants reflected on how decision-

analyses usually start with a programme-logic or conceptual model and the

elicitation of unobserved or poorly-evidenced quantities, which is probably

still necessary, but which these process mining outputs could helpfully inform,

stating that “... this is going to get you so far, and then we’re going to need

to do a bit more of a deep dive into unpacking some of those boxes, in the

traditional sense”[ID1].

5.4. Discussion

The feedback gleaned from the stakeholder interviews has outlined how

the PMDA approach may be used by decision analysts working within

health, and supports the micro-costing apportionment of trace-level costs to

specific events within patient pathways that are represented within routinely

collected data. However, the relevance of different discovery, conformance

and enhancement methods are in part defined by their contribution towards

how value is created within and between organisations [56].

The process mining approach presented within this study uses as an input

the routinely-collected administrative, clinical and costing data from episode

logs used in activity-based funding and transforms the data into an event
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log that depicts patient pathways. The presented approach enables the au-

tomation, visualisation and description of data within an event log, so that

information can be easily abstracted into simple forward-looking models, such

as tree-based decision analytic models and Markov models. Furthermore, it

would be interesting to extend the PMDA approach to include more data

available, such as demographic data or diagnoses made. It is possible that ap-

portionment could be applied to other types of quantities of Patient Reported

Outcome and Experience Measures (PROMs and PREMs, respectively) that

are accrued along a patient journey. However, significantly greater consider-

ation of confounding and omitted variables bias would be required as these

types of outcomes are driven by structural and exogenous factors beyond an

observed process within a hospital.

Decision analytics within healthcare is an important end-use focus for

process mining, which could help ‘close the loop’ between applied process

mining research and the practice of making decisions about the organisation

and the delivery of care. We have illustrated an approach that may read-

ily be taken up by analysts who inform decisions using economic evidence.

Whilst there have been efforts previously to link process mining and event-

driven simulation modelling methods, the approach presented here represents

a first-foray into situating process mining outputs as inputs for decision tree

and other simple ‘forward looking’ decision-analytic approaches. With this

applied use case in mind, the lessons learnt can inform future development

of further techniques.

The cost apportionment is only as good as the process or PMDA model,

and more heterogeneity within cohorts will require more granular event logs
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that not only track patient movements, as presented in this study, but also

the incidence of a range of diagnostic tests, treatments and consultations.

While the take-up and quality of electronic records has improved within

healthcare, they are often disjointed, and sometimes legacy systems that do

not capture timestamps or other features to assist with an integrated process

and outcomes perspective of patient pathways [57].

6. Conclusion

This paper presents a suite of process mining techniques that could in-

form the structure and parameter estimation of decision-analytic models in

healthcare. In particular, we have introduced a new hybrid model, process

models for decision analytics (PMDA), that express processes and emitted

trace attributes. While simple, PMDAs enable the study of trace attribute

data in combination with processes. We have shown how PMDAs can be dis-

covered from event logs automatically, how their conformance can be assessed

and how they can be enhanced with summative supplementary data of event

logs. Furthermore, we have shown how cumulative event data attributes

(such as cost) can be apportioned to events if only summative trace-level

data is available. The PMDA formalism has been implemented in a new

tool (PMDA View) that performs the discovery and enhancement steps; the

apportionment approach has been implemented as part of the Visual Miner

and is part of PMDA View.

Not all changes result in improvements, and not all improvements are

worthwhile. To inform the allocation of resources when designing services,

outcomes and their opportunity costs (i.e., whether a greater scale of forgone
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outcomes may have been achieved through a different option using the same

resources) must be included within the efficiency gains equation. While we

have focused on apportioning trace attributes for costs to events within a

process model, the main aim is not to “solve this for the minimal cost so-

lution”, as put by one interview participant. Future work could adapt the

presented methods to take account of triple [58] or quadruple aims [59] of

healthcare to similarly look at apportioning other cumulative numerical trace

attributes, such as patient reported outcomes and experience, and potentially

even workforce experience and other metrics related to patient pathways.

There will likely always be a need for interpretation of process and out-

comes information mined from activity data, which can be quantified through

structured elicitation exercises. Elicitation is the method by which opinions

are quantified, so as to minimise cognitive biases and enable statistical anal-

yses [60]. Elicitation informed by process mining outputs will be particularly

relevant in the case of building upon mined models to explore expected causal

effects of changes to patient pathways. Where there are no ledgers of specific

unit costs against which to validate the accuracy of cost models, quantitative

elicitation exercises could also be used.

From a techniques development perspective, it would be interesting to ex-

pand process discovery of PMDAs using machine learning techniques. For

instance, GINI-like measures could be leveraged to decide which trace at-

tributes lowers variability of the process “enough” and an ρ should be intro-

duced. Furthermore, precision measures could be defined for PMDAs.
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