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Abstract

Process mining is a well-established discipline with applications in many industry sec-

tors, including healthcare. To date, few publications have considered the context in

which processes execute. Little consideration has been given as to how contextual data

(exogenous data) can be practically included for process mining analysis, beyond includ-

ing case or event attributes in a typical event log. We show that the combination of

process data (endogenous) and exogenous data can generate insights not possible with

standard process mining techniques. Our contributions are a framework for process min-

ing with exogenous data and new analyses, where exogenous data and process behaviour

are linked to process outcomes. Our new analyses visualise exogenous data, highlighting

the trends and variations, to show where overlaps or distinctions exist between outcomes.

We applied our analyses in a healthcare setting and show that clinicians could extract

insights about differences in patients’ vital signs (exogenous data) relevant to clinical

outcomes. We present two evaluations, using a publicly available data set, MIMIC–III,

to demonstrate the applicability of our analysis. These evaluations show that process

mining can integrate large amounts of physiologic data and interventions, with resulting

discrimination and conversion to clinically interpretable information.
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1. Introduction

Process mining is a discipline that uses historical event data extracted from an or-

ganisation about a business process to better understand process behaviour (process

activities) and performance [1]. Process mining techniques may be grouped into three

high-level categories [1]; process discovery, conformance, and enhancement. Process dis-

covery techniques [2, 3] exploit historical data to recreate the structure of a process.

Process conformance techniques [4, 5] verify how process executions historically matched

with a pre-described understanding of a process. Process enhancement techniques [1, 6]

enrich the description of a process with an additional aspect to provide greater clar-

ity of decisions made. Typical process mining insights focus on presenting an objective

view of a process, identifying bottlenecks that slow down process execution, or otherwise

inefficient behaviour within process executions.

Process mining has been used in healthcare to study emergency departments of hos-

pitals [7, 8, 9], and the study of clinical conditions and diseases such as sepsis [10, 11,

12, 13, 14, 15], heart failure/chest pain [16, 8] and tuberculosis [17]. Applying process

mining to healthcare processes allows clinicians to explore years of historical data to

find opportunities to improve processes [18, 12, 19, 20, 21]. Such improvements can

contribute to positive clinical, and beneficial financial, outcomes. Thus, finding these

opportunities is critical [22, 23, 24]. While process mining offers a range of techniques to
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support healthcare experts and processes, the application of techniques is not without

challenges [25, 19, 26].

Challenges faced by process mining practitioners in the healthcare domain are out-

lined in [26] and focus largely around the process of decision making in healthcare. For

example, the variety of data sources that are needed to make a clinical decision, the

need for an interdisciplinary or institutional perspectives, the dependence on healthcare

professionals that have the knowledge to make complex decisions, and that process be-

haviour will evolve to reflect recent healthcare developments. In [19], the authors’ present

recommendations for future work to address these challenges, such as an interdisciplinary

team approach to the project and a multi-perspective techniques that provide ways to

include a holistic view and application of the data available within healthcare organisa-

tions. While calls for multi-perspective techniques are not new, little work has, so far,

been presented that handles these challenges.

In this paper, we propose a multi-perspective framework that allows a distinction

between process behaviour and rich data flows, thus providing the potential to address the

previously mentioned challenges. We adopted an interdisciplinary approach with expert

healthcare professionals, who provided context to the evaluation, thereby enriching the

process mining technique. To distinguish between different types of data sources, we

define the following terms; endogenous process data and exogenous data.

We define endogenous process data as data internal to a process, meaning data that

is directly produced by process activities, or that describes the moment of activity. Ex-

amples of endogenous data that describe a moment of a (healthcare) process include

the name of the procedure being performed, the nurse performing the procedure, and

the patient’s level of discomfort during the procedure. In contrast, we define exogenous
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data as data external to a process, meaning data that is not tied directly to a process’

activities, but which provides the context in which process instances execute. Examples

of exogenous data sources include availabilities of surgeons, ICU bed availability, and

patient vital sign measurements.

We present xPM, a framework for process mining with exogenous data. xPM pre-

scribes the steps for connecting contextual data relevant to the endogenous moments of a

process, and for conducting process discovery and enhancement. We also present a new

process mining technique that uses xPM to understand how contextual factors influence

process behaviour. Specifically, our analysis can visualise differences between changes in

exogenous data and process outcomes. Furthermore, instead of manually processing our

analysis, we propose an automatic ranking procedure to identify similar trends between

process outcomes.

To evaluate our approach for process mining, we quantitatively compare results pro-

duced by data-aware techniques using both endogenous and exogenous data. We also

evaluate if xPM can find trends within exogenous data that influences process behaviour.

To do so, we use our technique to model activities in ICU wards and associated occur-

rences of (hospital acquired) sepsis. We use the publicly available MIMIC-III [27]dataset

from the healthcare domain from which we extract both events relating to patient treat-

ment in ICU (endogenous data), and patient vital signs measurements (exogenous data).

Using xPM, process mining analysts can better capture the reality in which the

process executes by making multiple contextual data sources available to process mining

techniques.Furthermore, xPM affords opportunities for process participants to describe

decisions occurring within complex environments in terms of the context.

Our framework for process mining with exogenous data was initially presented in
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[28]. We extended our previous work by presenting a new technique for process mining

and an extension of the evaluation with our expert health professionals co-authors about

sepsis/infection.

This article is structured as follows. In Section 2, we present related work. In Section

3, we present the formalisation needed to understand our proposed approach. In Section

4, we present the proposed approach for process mining analysis with exogenous data. In

Section 5, we outline our evaluation designs and present results of applying our approach.

In Section 6, we summarise our findings and explore future work.

2. Related Work

In this section, we highlight the use of process mining within the healthcare domain,

categorisation of data for processes and multi-perspective process mining.

2.1. Process Mining and Healthcare

Mans et al. [25], provides an overview of 12 process mining applications within the

healthcare domain, and a list of questions frequently asked by medical professionals about

healthcare processes. All these questions related to learning how a process was executed

(control-flow perspective). In a later literature review [18], the authors identified 74

papers related to applications of process mining in healthcare. The authors noted that

most studies had focused on improving the control-flow perspective of processes, and

concluded that there was a need for better visualisations, and a reliance on experts to

apply techniques.

In a subsequent systematic review [29], the authors performed descriptive analysis on

55 articles and characterised the current dimensions of process mining in the healthcare
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setting. The authors noted that there was a need for techniques to capture more details

about the context of a hospital intervention within their characterisation.

In [19], the authors present ten recommendations from process mining researchers and

healthcare experts to stimulate a more widespread use of process mining in healthcare. In

addition, the authors encouraged efforts that enhance the usability and understandability

of techniques. A key recommendation was the need for more multi-perspective studies.

In [20], the authors present a comprehensive literature review of 172 papers that

overlap both process mining and healthcare domains between 2010 and 2020. The au-

thors noted that the complexity of healthcare data and the heterogeneous nature of

treatment pathways, has meant techniques still require fine-tuning for specific medical

cases. Additionally, further work is needed to make process models more descriptive to

be successfully employed and understood by healthcare professionals.

These reviews highlight a high level of involvement between the process mining com-

munity and the healthcare domain. However, these studies show that little work exists

for multi-perspective techniques that incorporates diverse data sources alongside process

behaviour.

2.2. Data for Processes

Categorisation of data sources used to describe processes has been discussed in sev-

eral studies. The ‘onion skin’ model in [30] conceptualises the relationship between data

and process as the viewpoint is moved further away from a process. This conceptuali-

sation is then applied to process mining in [31], where data is categorised according to

the likelihood of cause and effect between variables with the process. However, these

frameworks are not seen as essential to process mining by recent reviewers of the field,
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and the contextual component remains an optional consideration during event data ex-

traction [32, 33, 34]. Our contribution is that we support separate entities for endogenous

and exogenous data sources, such that they can studied in combination.

The benefits of including a variety of data categories are discussed in [35] which (i)

motivates the use of data attributes for distinguishing between noise and conditional

process behaviour, (ii) considers if data attributes influence decision points by creating

an internal state as the process executes through boolean expressions and decision trees,

and (iii) studied how alignments [5] can be extended such that they balance both the

control flow perspective and the data perspective.

2.3. Multi-Perspective Process Mining

Our study extends the concepts presented in [35] and shows how exogenous data can

be incorporated in a process mining analysis (instead of the analysis being limited to

only the endogenous perspective of an event log).

Methodologies that encourage contextual data collection and log enrichment are few

in number. However, some recent studies have focused on the enrichment of an event

log with new types of data. In [36], the authors present a framework for intra- and

inter-trace predictive monitoring and introduce the notion of bi-dimensional coding to

deal with intra- and inter-trace dependencies. In [37], the authors present an approach

to compare process variants using the endogenous data available within an event log with

a differential perspective graph. In [38], the authors present an approach to characterise

endogenous data, into static, semi-dynamic, and dynamic attributes to identify attributes

of interest. In [39], the authors suggest that not all events within an event log are about

the control flow, and are instead, about the data flow of a process. They use the concept
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of context events to deal with the two types of events and show how distinguishing

between the two can lead to discovering less complex models. However, this approach

would incorporate exogenous context into the control flow perspective instead of clarifying

whether the context influences process execution.

The benefits of additional data attributes that can be seen in the recent evolution of

techniques that use such data, e.g., [40, 2]. In [40], the authors present a discovery algo-

rithm that uses data attributes to create a hierarchical model to improve the simplicity

of outcomes. Another approach, in [2], was to create a constraint operator for process

trees notation, whereby data semantics can be expressed. While these techniques can

create control flow sequences based on data attributes, no extensions have been proposed

to use exogenous sources outside what can be found in the events within an event log.

The previously mentioned studies often focused on the imperative representation of

models (strictly specifying how a process executes); however, a more flexible description

for process execution exists in techniques that are focused on declarative modelling [41].

One such example of a declarative modelling approach is DECLARE, which has developed

using a constraint-based system grounded in temporal logic [41].

Studies such as those in [42] and [43] use this approach, which incorporates multi-

ple process perspectives. In [42], the authors present a framework for multi-perspective

declarative process discovery, whereby different process perspectives (time, resource, or

data) could be used to generate a set of constraints. In [43], the authors present declara-

tive process discovery, focused on finding constraints based on correlated data attributes

within constraint instances, explicitly focusing on the control-flow and data perspective

of a process. While extensive work has been done with endogenous data within declar-

ative process mining, it is difficult to extend these studies to exogenous data without a
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representation available for exogenous data at the moment of process activities.

Similar work can be seen in the healthcare domain, where process mining has been

applied to understand many perspectives across a health process. In [44], the authors

proposed a comparison measurement for two models to compare clinical guidelines with

historical health records. Subsequently, analysis was performed to relate clinical out-

comes for stroke management with a computed distance between a mined process model

and the query process model. However, this analysis did not correlate clinical outcomes

with process activities or exogenous data, but instead with the computed distance.

In [16], the authors present a methodology for clustering patient treatment pathways

and provide descriptive analysis on the clustering outcomes, such as finding clusters with

low mortality rates. However, the clinical outcome was introduced in this study after the

clustering was completed, meaning that clinical outcomes are not correlated with process

activities. In [45], the authors studied readmission risk to ICU using time series data

which consisted of physiological data and medication trends, and processing time-series

data into frequent subgraphs. Then using a predictive model, subgraph membership

was related to readmission. However, while this study did connect exogenous data to a

clinical outcome, it does not consider the activities that occurred within the ICU stay

and so cannot be considered a process analysis.

The following works present in [46, 47, 48], highlight the importance of ICU activities

or procedures that occurred within the hospital stay. Each piece of work in this set,

has performed process mining efforts on a timeline of episodes to model personalised

treatment pathways to improve the efficiency of health services. In [49], the authors

argue that valuable analysis can come from performing these techniques on a population

of patients with similar health conditions.
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In summary, it is clear that while context has been recognised as influencing process

behaviour, only limited progress has been made in including contextual data (mostly as

case or event attributes) for process mining. Our review found no techniques capable of

exploiting exogenous data, as we define it, to discern its influence on process behaviour.

Furthermore, pre-processing exogenous data remains a mostly manual task that requires

domain knowledge or expertise. These limitations constitute a research gap which we

address in the remainder of this paper.

3. Theory

This section introduces events logs, exogenous data sets, Petri nets and the sub-

formalisation for process descriptions we use, xDPN. To formalise these concepts, we

adopt the notation from [50] and include them here for completeness.

Universes. UE is the universe of events, UD = {case, act, time, . . . } is the universe of

data variables, UV is the universe of values, and Umap is the universe of variable-value

mappings. UΓ is the universe of timestamps, UA is the universe of activities. Hence,

UA ∪ UΓ ⊂ UV [50] .

Event logs are a collection of events. An event e is an execution step of a process,

recorded through data variables. Formally, an event log is (E, π), where E ⊆ UE is a

set of events and π ∈ (UE → Umap) is a function that maps an event e to a variable-

value mapping. We use the shorthand eπ,A to denote the value of a data variable

A ∈ dom(π(e)) for event e, i.e. π(e)(A) = eπ,A [50].

We assume an event e to have at least the following data variables: {case, act, time},

such that case is the trace related to an event, act is the process activity related to

an event, and time denotes when an event occurred. We use the following shorthand
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to denote these data variables as needed, λ : UE → UA and λ(e) = π(e)(act), also

Γ : UE → UΓ and Γ(e) = π(e)(time), finally C : UE → UV and C(e) = π(e)(case).

Traces. An end-to-end execution of a process, or a trace (T ∈ T) is a sequence of

events derived from an event log (E, π), such that T = {⟨e1, . . . , en⟩ | e1, . . . , en ∈

E ∧ ∀1≤i<n C(ei) = C(ei+1) ∧ Γ(ei) ≤ Γ(ei+1)}. We extend π to also apply to traces,

where it denotes the set of all values present in the trace, i.e. Π : T → (UD ⇀ 2UV ), with

Π(T)(A) = {π(e)(A) | e ∈ T} or denoted using the shorthand of TΠ,A.

Exogenous Data. An exogenous measurement (exo–measurement) mt is a single

measurement m ∈ UV at timestamp t ∈ UΓ. For instance, 3718−01−202211:55:23 may rep-

resent the result of a nurse measuring the temperature of a particular patient at the

given timestamp. An exogenous series (exo–series) ⟨mt1
1 , . . .mtn

n ⟩A is a sequence of exo–

measurement, annotated with a variable-value mapping A. Furthermore, we denote the

universe of exo–series as Ues. For instance, ⟨3718−01−202211:55:23, 37.518−01−202212:13:58,

3818−01−202213:14:32⟩patient id:1034847 may represent the repeated measuring of body tem-

perature by a nurse for a particular patient. We use the following shorthand to denote

the ith element of an exo–series es, such that es(i) is the ith exo–measurement recorded

within an exo–series. Furthermore, to denote the value of a variable A for an exo–series es,

we use es#A
.

An exogenous panel (exo–panel or P) is a collection of exo–series (P ⊆ Ues). For

instance, {⟨3718−01−202211:55:23, 3818−01−202213:14:32⟩patient id:1034847, ⟨37.818−01−202215:47:39,

37.818−01−202220:15:41⟩patient id:1034882}. An exogenous description (exo–description or Uexo) is a

collection of exo–panels. Typically, an exo–panel would contain all related exo–measurements;

for instance: all blood pressure measurements for all patients. An exo–description then contains

several exo–panels; for instance: one for blood pressure, one for heart rate, and one for body
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temperature.

Labelled Petri Nets. A Petri net is a triple N = (P, T, F ), where P is a finite set of places,

T is a finite set of transitions such that P ∩T = ∅ and F ⊂ (P ×T )∪ (T ×P ) is a set of directed

arcs, called a flow relation [1]. A labelled Petri net is a quintuple, (P, T, F,Σ, λ), where (P, T, F )

is a Petri net, Σ ⊆ UA is a set of activity labels and λ is overloaded to apply to transitions

or an event labelling function λ : T → UA [1]. Places may hold tokens, which are produced

and consumed when transitions fire according to the flow relation. A transition is enabled if

each input place contains a token. The state of a Petri net is a marking, which records what

places have tokens and how many. An enabled transition l can fire, which updates the marking

according to the flow relation F and, if l is labelled by λ, denotes the execution of activity λ(l).

An initial marking denotes the initial state of a Petri net before the first transition is fired.

Elements of P ∪ T are called nodes. A node a is an input node of another node b if and only if

there is a directed arc from a to b. A node a is an output node of another b if and only if there

is a directed arc from b to a. For any a ∈ P ∪ T , •a = {b | (b, a) ∈ F} and a• = {b | (a, b) ∈ F}.

Petri Nets with Exogenous Data (xDPN). A precondition (ϕ) is a boolean expression

describing a subset of values for data variables (e.g. temperature is higher than 20°C). A

Petri Net with Exogenous Data (xDPN) is a sextuple (P, T, F,Σ, λ,Φ), where (P, T, F,Σ, λ) is

a labelled Petri net and Φ : T → ϕ associates transitions with preconditions. The state of an

xDPN is a marking and an assignment of endogenous and exogenous variables. A transition is

data enabled if the precondition attached to a transition is satisfied by the current assignment

of variables, or if there is no attached precondition. In an xDPN, a transition can fire if it is

enabled and data enabled. An xDPN is a sub-formalism of DPN (a complete formalisation of

DPN can be found in [51, 35, 52]): in contrast to xDPN, DPN distinguish between variable states

(e.g. read or written) and enforce that transitions in the model update variable assignments.

By dropping this last requirement in xDPN, exogenous data variables can be updated during

execution.
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Figure 1: The xPM framework.

4. Method

In this section, we present our approach for using exogenous data in process mining. First,

we propose a framework for process mining with exogenous data. After that, we present a

process enhancement technique that utilises the framework to visualise trends in exogenous

data (exogenous behaviour) based on process outcomes. Finally, we present a procedure to rank

such visualisations and allows users to find where exogenous trends are similar between process

outcomes.

4.1. A Framework for Process Mining with Exogenous Data (xPM)

In this section, we introduce xPM, our framework for process mining with exogenous data

(see Figure 1). xPM takes as input an event log and an exo–description (Uexo). xPM applies

several determinations, quadruples of (P,L,S, T ), and creates as output an exogenous-annotated

log (xlog). In each determination, P ∈ Uexo is an exo–panel, L is a linking function which

connects a trace and an exo–panel to an exo–series, S is a slicing function which creates

sub-series (slice) of an exo–series for each event, and T is a transformation function, which

transforms a slice into one or more event attributes.
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xPM applies each determination to annotate events with transformed attributes, creating an

exogenous-annotated log (xlog). From the xlog, a discovery function D can discover an xDPN.

In the last step, an enhancement function E aligns an xlog with a process model to visualise

differences in process executions. After enhancement, we can trace back from the exogenous

variables to an exo–series for fine-grain analysis. In this paper, we illustrate xPM using time

series of continuous measurements. However, the xPM framework does not limit the type of

time series that can be used. In Section 4.1.1, we outline an exemplar scenario used to describe

xPM.

4.1.1. Exemplar Scenario

In this exemplar scenario, we are studying how ambulance triage occurs and what influences

if a patient is treated on-site, transported to a hospital or handed over to another ambulance.

In Table 1 we present a snippet of this event log (i.e. the endogenous data). Events have the

Table 1: Exemplar event log for ambulance triage.

C(ei) ei Γ(ei) λ(ei) eiπ,suburb eiπ,ambulance eiπ,incident

1 1 18-01-2022-02:25 request Runcorn 15

1 2 18-01-2022-02:30 assign A

1 3 18-01-2022-03:00 arrival

1 4 18-01-2022-04:00 pickup

1 5 18-01-2022-04:30 delivery Brisbane

2 6 18-01-2022-06:18 request Runcorn 17

2 7 18-01-2022-06:20 assign A

2 8 18-01-2022-06:40 arrival

2 9 18-01-2022-06:55 pickup

2 10 18-01-2022-07:10 hand-over B

2 11 18-01-2022-07:35 delivery Brisbane
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Table 2: Exemplar of a tublarised exo–description. All timestamps occur on 18-01-2022 in this example.

exo–panel exo–series id attributes exo-measurements

weather 1 {suburb: Runcorn } ⟨−503:00,−204:00, 305:00⟩

weather 2 {suburb: Brisbane} ⟨003:00, 204:00, 505:00⟩

heart rate 4 {ambulance: A, incident: 15} ⟨9503:15, 9703:20, 11003:25⟩

heart rate 6 {ambulance: B, incident: 17} ⟨10506:55, 11007:00, 11507:05⟩

heart rate 7 {ambulance: A, incident: 17} ⟨12007:15, 12207:20, 12507:25⟩

following variables; suburb is the destination of the ambulance, ambulance is the identifier for

an ambulance, and incident is the identifier for an ambulance request. After arriving onsite,

paramedics may observe the patient to determine if the patient needs to be transported and if

so, they may also consider traffic, weather or the nearest ambulance with a senior paramedic.

An analyst may want to understand how these factors influence how paramedics determine the

best way to transport a patient.

To consider exogenous data in this scenario, we will use an exo–description containing two

exo–panels: the temperature in each suburb and the heart rate of the patient. In Table 2

we present a snippet of exo–series from different exo–panels. Using xPM, we can relate these

exo–series with traces, to understand how paramedics observe these factors and how process

behaviour changes based on exogenous data.

4.1.2. L – Linking

Our framework starts by linking exo–panels to traces, as shown in Figure 2. The act of

linkage is described in a linking function (L), and if a link exists, finds an exo–series for the

trace. For example, a linking function could connect an ICU admission to the workload of an

attending nurse, to laboratory results, or to weather conditions surrounding the hospital.
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Figure 2: An illustration of linking. Given a trace and an exo–panel, the linking function returns a

linked exo–series for the given trace.

Formally, L takes a trace T ∈ T and an exo–panel P ∈ P, and finds an exo–series, i.e

L : (T × P) ⇀ Ues. To illustrate L, we revisit our exemplar scenario. In this scenario, we

have two exo–panels, temperature and heart rate. A suitable L for temperature is L1 ∈ L,

showing the suburb attribute from events (TΠ,suburb) is used to find a matching exo–series. A

suitable L for heart rate is L2 ∈ L, showing the ambulance and incident variables from events

(TΠ,incident, TΠ,ambulance) is used to find a matching exo–series.

L1(T,P) = es ⇐⇒ es ∈ P ∧ es#suburb ∈ TΠ,suburb

L2(T,P) = es ⇐⇒ es ∈ P ∧ es#incident ∈ TΠ,incident ∧ es#ambulance ∈ TΠ,ambulance

In case L finds two or more exo–series for a trace, L must merge these into a single exo–

series. Merging time series is not trivial and will require a thorough understanding of exogenous

data and domain knowledge. For example, we have two heart rate sensors monitoring a patient,

but they are not time-synchronised and need to be handled within the linking function to find

the truthful exo–series.

4.1.3. S – Slicing

A slicing function (S) associates a sub-series of an exo–series (slice) with each event in a

trace. After applying a slicing function, some events may be associated with an empty slice,

some are associated with the same slice, and others have their own slice (as seen in Figure 3).
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Figure 3: An illustration of slicing, where given trace1 and exo–series1, some events are associated with

the same slice (e4, e5), some have their own slice (e6, e7, e8), and others are associated with an empty

sequence (e1, e2, e3).

Examples of how a slicing function may create slices include selecting all exo–measurement before

a patient undergoes a procedure, all exo–measurement in the hour before a procedure, or all

exo–measurement between major interventions.

Formally, a slicing function S is applied to each event in a trace. It takes an event and an

exo–series, to return a sub-series of the exo–series, i.e. S : (UE × Ues) → Ues. Thus, creating a

slice of relevant exogenous data from an exo–series, for each event. Domain knowledge will often

inform the choice of slicing functions; thus, assisting the automatic selection of a slicing function

is an interesting area of further research. Such options for automating slicing could consider

the frequency of measurements, autocorrelation with a time lag, or investigating the amount of

variance within an exo–panel. Another approach could be to consider research around databases

or OLAP operations [53, 54] to automate or provide complete functions for slicing time series

data.

To illustrate S, we revisit our exemplar scenario. In this scenario, the two exo–panels

have different durations of relevance, for temperature longitude trends are crucial. Thus, a

suitable S for temperature is S1 ∈ S, where slices are created using a two-hour window of exo–

measurements (before and after each event). In contrast, for heart rate, short-term changes are
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significant. Therefore, a suitable S for heart rate is S2 ∈ S, where slices are created from a

15-minute window of exo–measurements before each event.

S1(e, es) =
〈
mt | mt ∈ es ∧ (Γ(e)− 1 hour) ≤ t ≤ (Γ(e) + 1 hour)

〉
S2(e, es) =

〈
mt | mt ∈ es ∧ (Γ(e)− 15 minutes) ≤ t ≤ Γ(e)

〉
4.1.4. T – Transformation

Figure 4: An illustration of transformation, where given e7 and a slice of an exo–series es1,3, the

transformation derives the velocity of a slice (es′1,3), models the derivation (es′′1,3), then extracts notable

features from the modelling as transformed attributes.

Next, we transform the slice for existing process mining techniques and future techniques, as

seen in Figure 4. The result of a transform1 for a slice, is a set of one or more event attributes.

This transformation is handled through a transformation function (T ), which takes an event and

an associated slice, to create event attributes (transformed attributes) for the notable features

of a slice. Formally, we denote a transformation function as, T : (UE × Ues) → 2UD×UV .

Examples of transformations may include whether an extreme measurement exists, the number

of peaks and lows, or whether the trend line of a slice was increasing or decreasing over time.

We have identified three forms that a T can take: (i) T can return a single attribute; such a

transformation might return the minimum, maximum or mean of a slice; (ii) T can return a set

1Where we refer to transformation, any aggregation beyond min, max and mean can be considered

as well.
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of attributes; e.g. coefficients of the nth Taylor polynomial of the slice; (iii) T can be recursive

to meet either case (i) or (ii). Such a transformation finds the nth derivative of a slice, then

applies any previously mentioned examples, to meet the form of either (ii) or (iii).

To illustrate T , we revisit our exemplar scenario. In this scenario, the interpolation is vastly

different between exo–panels and each requires a unique transformation function. A suitable

T for temperature is T1 ∈ T , showing a slice being transformed into an attribute that states

if extreme weather occurred. A suitable T for heart rate is T2 ∈ T , showing a slice being

transformed into many attributes, such as the velocity of a heart rate and if a projected heart

rate pattern will go outside guidelines.

abnormal(es) ≡ ∃mt∈es−10℃ ≥ mt ∨mt ≥ 40℃

T1(e, es) = {(‘extreme’, abnormal(es))}

velocity(es) =

〈(
mi+1 −mi

ti+1 − ti

)ti+1

∣∣∣∣∣mti
i = es(i) ∧m

ti+1

i+1 = es(i+ 1) ∧ 1 ≤ i < |es|

〉

avg(es) =
∑

mt∈es

m

|es|

dng(m) ≡ −5 ≥ m ∨m ≥ 5

T2(e, es) = {(‘velocity’, avg(velocity(es))), (‘danger’, dng(avg(velocity(es))))}

In this scenario, we have created two determinations for xPM to enact, (temperature,L1,S1, T1)

and (heart rate,L2, S2, T2). Access to exogenous data is facilitated after xPM has applied all

determinations to an event log, such that some events are annotated with (i) exogenous slices

and (ii) transformed attributes. We refer to such an event log as an exogenous-annotated log

(xlog).

4.1.5. D – Discovery

This step uses the newly created xlog to discover how process behaviour may vary based on

the available exogenous data. A discovery function (D) is applied to the xlog to achieve this

goal. Given the plenitude of process discovery techniques and process notations in literature,
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both the slices and transformed attributes can be used to investigate process behaviour using

existing techniques.

One example of process discovery techniques that could use transformed attributes is decision

mining, which finds insightful business rules for decision points. Examples of such techniques

are [55] and [56]. However, researchers should be careful about assumptions that these tech-

niques make about the nature of data variables. One assumption made is the constant data

placement within process executions, which suits endogenous data variables but may have unin-

tended consequences when considering exogenous data variables. Another approach for process

discovery techniques could be to use the lower-level information stored in the slices. Using the

trends stored within slices, techniques could extract unique process behaviour associated with

the changes within the slice. The description of process behaviour based on exogenous influences

will require new process notations and execution semantics but may lead to valuable insights.

4.1.6. E – Enhancement

In the final step of our framework, the enhancement step E , uses both endogenous and ex-

ogenous data in an xlog and a process model. The enhancement step uses this information to

visualise the process and the exogenous influences on the process. One approach for techniques

could be to investigate process activities linked to exogenous changes and use explainable ma-

chine learning techniques [57, 58, 59] to explain why variance occurs. Another approach could

be to use the exogenous data, find cohorts of traces with similar contextual settings, and then

visualise differences in process executions between cohorts. Furthermore, techniques describe

trends within slices on process models to show differences between process outcomes.

We note that process mining techniques in this step are likely to rely on process conformance

techniques that produce an alignment between a process model and an event log. An (optimal)

alignment is a mapping between observed process behaviour occurring in reality (traces/events)

and a process model such that the deviation between is minimised [5]. While data-aware align-
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ments exist (e.g. [4, 60]), [4] only considers the writing of variables by transitions and [60, 4]

correct the data written by transitions using Integer Linear Programming. However, exogenous

data should not be adjusted in conformance techniques as it occurs outside the internal process

execution. Further work is needed to generalise these techniques for usage outside business pro-

cesses, as assumptions introduced in these techniques about the nature of data variables may

have negative consequences when applied to exogenous data.

4.2. Explorative Exogenous Series Analysis (EESA)

We refer to our enhancement technique for xPM as Explorative Exogenous Series Analy-

sis (EESA). This technique visualises changes in exogenous sources seen at a point within a

process model. This technique builds upon the xPM framework by visualising slices. Naively,

one could visualise the slices by using a line for each slice observed, as seen in Figure 5a. Identify-

ing trends or similarities at a glance may only be possible when the number of slices is relatively

low or when the variance between slices is low. Our technique overcomes this drawback and

presents the observed trends regardless of the number of slices used, as seen in Figure 5b. At

a glance, users can see the variance between slices and the median trend between slices in an

exogenous source between activities in a process model. However, in this paper, we focus our

contribution on using continuous measurements within slices.

In this section, we present the steps to handle slices and generate a visualisation. These steps

start with collecting slices to form observations, constructing a shared time axis, interpolation,

and visualisation. In section 4.2.1, we present a variation of these steps that allows for multiple

process outcomes to be considered when visualising slices. Finally, in section 4.3, we present an

automatic analysis procedure for ranking a collection of EESA visualisations.

EESA uses a collection of observations (O) as an input data source. Each observation

(e, s, A,X), is a quadruple of an event (e), a slice (s), the activity label of e (A = λ(e)) and

the exogenous data source (X). Each observation used as input to our technique must have the
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(a) Raw Slices (b) Overlapping EESA Visualisation

Figure 5: A comparison of visualisation techniques, one using the exogenous slices as-is (left), and

another showing the generalisation of trends seen in raw slices (right). The usage of colour in each

figure, is to highlight that a slice is associated with a particular process outcome.

same A and X, to ensure that all slices are comparable when visualised. Before visualisation,

each s is resampled across a shared time axis (on relative time from e) using linear interpolation

to ensure that a consistent view is presented. Finally, we interpolate slices for each point on

the shared time axis and plot the median value and one standard deviation on each side of the

median value.

EESA’s first step is to construct a shared time axis covering the longest timespan seen in

observations. To construct this time span, we consider all slices (s) in relative time difference

from their event (e), which ensures that at time 00:00:00, we always observe the event. Then

we find the oldest measurement recorded, across all slices (s) and the latest measurement. Using

these two extreme measurements, EESA constructs a timeline (TL ⊆ UΓ) for resampling. This

timeline has intervals (i ∈ TL) that are evenly spaced between these measurements, as seen

in Figure 6a. The number of intervals to consider for a given timeline is left to the analyst

to choose. Depending on the amount of variance within slices or frequency of measurements,

more or less distance between intervals may be preferred. However, for the following section, we

assume that 100 intervals exist within the timeline and automating this choice is left for future

work.

The second step of EESA uses i ∈ TL, to find interpolated values at i for all s in the given
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(a) How we construct a timeline using relative time

from the aligned event e in an observation and the

slice s. Measurements are noted as white circles.

(b) For a given point on the shared timeline (i),

we select the leftmost and rightmost data points in

slices (highlighted circles) and interpolate.

Figure 6: Construction of shared time axis (left) and interpolation of values for shared time axis (right)

observations. For a given i and s, we find the nearest earlier measurement and the nearest older

measurement in s. Then using linear interpolation, we find a value at i, as shown in Figure 6b.

If we cannot find a measurement for either of the points, we do not record a value from this s

at i. This step generates a mapping that returns all possible interpolated values at the given i.

The final step of EESA collects statistics needed for each i ∈ TL to create the visualisation.

The visualisation consists of a line and a shaded area, the median is plotted as a line, and one

standard deviation (-/+ from the median) is plotted as a shaded area. We chose the median as

it is less prone to outliers, shows an actual value rather than a summary value, and is a robust

measure of the central tendency [61]. These choices allow an EESA visualisation to show the

evolution of slices, and where variation in measurements would likely occur across slices, as seen

in Figure 7a.

4.2.1. Overlapping EESA

This section presents a variation of the EESA visualisation, where multiple trends can be

presented within a single visualisation on the same axis. Our variation, an overlapping EESA

visualisation, characterises each observation, allowing trends to be compared within graphs

rather than between graphs, where the shared time axis and measurement range could influence
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(a) How an EESA visualisation uses interpolated

values for a given i to plot the median trend (solid)

and one standard deviation (shaded).

(b) How an overlapping EESA visualisation uses

group identifiers (Gi) to create comparable trends.

Figure 7: Demonstrations of EESA visualisation process from slices (top) to generated outcome (bottom)

interpretation. This variation adds a discrimination process of observations, a recursive step

around the last step of the EESA procedure, whereby observations are extended to a quintuple,

referred to as a distinguished observation (DO).

A distinguished observation is DO = (e, s, A,X,G), where (e, s, A,X) is an observation, and

G is a set of group identifiers for the observation. If G is limited to a size of one, this signals

that DO cannot be used with replacement. However, when G is not limited to a size of one,

the group identifiers are less distinctive, and DO can be used with replacement across groups.

The identification of group identifiers can vary, as the process model, process behaviour, and

exogenous data could inform how to characterise an observation and the number of possible

groups. These group identifiers are then used to create subsets of the original collection of

interpolated values, whereby each subset generates a separate EESA visualisation on the same

graph.
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To find group identifiers for a O, a discrimination function is introduced before the visuali-

sation step in EESA. This function takes a process model, a partial process execution, and all

data associated with the execution and finds a set of group identifiers for a O, thus creating

a DO. Applying the discrimination function to each O, we create a collection of DO. Next,

we created subsets of DO, where all DO have a single group identifier in common. Then each

subset generates an EESA visualisation. Finally, all generated EESAs are overlapped in a single

visualisation, thus creating an overlapping EESA, as seen in Figures 5b & 7b.

4.3. Highlighting Points of Interest

This section presents an automatic macro-analysis to complement EESA visualisations that

provides micro-analysis of process executions. The analysis’ goal is to find where distinctions

exist between process outcomes across a process model using a collection of EESAs. To highlight

where the most/least amount of distinction exists, we rank all EESA visualisations and assign a

rank based on the amount of distinction seen. This analysis focuses on the following properties;

the shape of the trends should be considered (not just the magnitude of change), usability on

differing lengths of time series, and guarantees the amount of distinction. Our solution for

ranking uses a scaling function to make EESA visualisations cross-compatible and Dynamic

Time Warping (DTW) [62, 63] for ranking.

Our solution for ranking takes a collection of EESA as input, then for each EESA, computes

a measure of distinctiveness and assigns a rank. The lower the assigned rank, the higher measure

of distinctiveness between median trends observed in the visualisation. In our solution, we only

measure overlapping EESAs, and all other visualisations are given a pseudo rank, the highest

possible rank plus one (n + 1). For example, given the collection of EESAs in Figure 9, where

three EESAs are overlapping, our analysis would give each of these a numbered rank based on

their distinctiveness. Then, all remaining EESAs are given the highest possible rank, which is

3 + 1, as the last overlapping rank was three.
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Figure 8: Measurement of an overlapping EESA graph (left), where a dynamic time warping matrix is

computed between median trends (middle) then the summarisation of the path produces a measurement

(right).

Formally, given a process model and an xlog, we create a collection of EESA visualisations

from the transitions in the process model using the slices in an xlog. Using this collection,

we start our analysis by making two subsets, one for overlapping EESAs and another for non-

overlapping. For each overlapping EESA, our analysis extracts the median trend for each Gi,

scales each median trend and computes a summation of DTW between medians in a pairwise

manner. After each overlapping EESAs has been measured, we sort this subset such that the

first element is the one with the largest summation of DTW. Finally, ranks are assigned based

on this ordering for overlapping EESA (1, 2, 3, ..., n), while EESAs in the second subset are given

a pseudo rank (n+ 1).

Analysts may be interested in different ends of our ranking system, depending on the dis-

crimination function and the analysed process. For example, using our ranking system, analysts

could use the discrimination function to consider if slices agreed, or disagreed, with the associated

precondition. Then using our ranking, analysts could consider the relatively highly distinctive

graphs (near rank 1), the relatively least distinctive graphs (near rank n), or rank n+1 for

non-overlapping EESAs to understand how exogenous data could inform decision making.

We have used DTW to compute the total difference between trends for the following reasons.
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Figure 9: Example of ranking EESA visualisations, rank is denoted in red box, in top left. All non-

overlapping EESA are ranked at n+ 1 (4) while overlapping EESA are ranked based on distinctiveness

between outcomes (1-3).

Firstly, the method is elastic, meaning that the two trends under comparison do not need to

be equal in length. Second, the method compares the similarities between shape and time, so

differences will be noted when peaks and lows occur differently. Finally, the method computes a

mapping between trends through a matrix and finds the path with the least amount of resistance

that can be adapted for both numerical and discrete cases, as seen in Figure 8. Furthermore, we

have used min-max scaling on trends before computing DTW, as such exogenous sources with

different magnitudes/measurements will be comparable through our ranking.

5. Evaluation

In this section, we evaluate both of our contributions, xPM and EESA. In section 5.1,

we evaluate the model quality of models discovered by xPM. In section 5.2, we illustrate the

influences of exogenous data on clinical outcomes using EESA and our ranking procedure for

27



a real-world healthcare setting. In both our evaluations, we used a publicly available dataset,

MIMIC-III [27]. This dataset contains anonymised data about forty thousand patients who

stayed in critical care units at a large tertiary care hospital between 2001 and 2012.

We have implemented an MVP interface for our framework in Java2, which uses the Weka3

package for machine learning, JFreeChart4 for visualisation, and several ProM5 plug-ins libraries.

The interface was implemented as a plug-in to the ProM framework (an open-source project for

process mining).

5.1. Exogenous Influences on Model Quality

This section evaluates the influence of exogenous data on the quality of discovered xDPNs,

using two event logs from the MIMIC-III dataset. To evaluate this influence, we will investigate

the capacity to find preconditions using decision mining techniques and the effects on model

quality. Our initial proposition was that including exogenous data would increase the possibility

of finding data-driven rules, as more data attributes would be available to techniques. However,

the situational nature of the data will affect model quality due to a lack of consistency across

traces, as a single rule will be more unlikely to cover the whole event log.

5.1.1. Procedure

We evaluate model quality in three settings: only endogenous event attributes, only exoge-

nous event attributes (transformed attributes from xPM) and using both. First, we use (i) an

event log with endogenous data attributes (endo). Then, we use (ii) an event log with exogenous

attributes where endogenous attributes have been removed (exo). Finally, we use (iii) an event

log with both endogenous and exogenous attributes (endo+exo). We applied the outlined xPM

configuration below to produce exogenous attributes to compare with the endogenous case (i).

2https://github.com/AdamBanham/ExogenousData
3https://www.cs.waikato.ac.nz/ml/weka/
4https://www.jfree.org/jfreechart/
5https://www.promtools.org/doku.php
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Our instantiation of xPM is as follows:

L For each exogenous data set, a linking function was defined that links data sets to the

patient of the trace and that occurred during the admission.

S We included two slicing functions. Let ⟨e1 . . . en⟩ be a trace. Then, for event ei the first

slicing function (S1) finds sub-time series between events ei−1 and ei, while the second

slicing function (S2) finds the sub-time series between e1 and ei.

T We included four transformation functions: minimum, average, maximum and the cumu-

lative sum of a Fourier transform [64].

D To discover a control-flow model, we applied the Inductive Miner - infrequent [3] with

path filtering of 0.25. To discover an xDPN, we applied two Data Petri Net discovery

techniques: Mutually Exclusive Decision Tree (me) [65] and Overlapping Rules Decision

Tree (or) [56]. These techniques each take a parameter min instances (mi) that sets the

minimum level of observed decision point instances that support a clause in a precondition.

We repeated the experiment for mi ∈ {0.05, 0.15, 0.25}.

E was not part of this experiment.

In total, 6 xDPNs were discovered for each variation of the source event log.

We assess the quality of the discovered xDPNs using fitness, precision and determinism.

For fitness, we use balanced multi-perspective conformance checking [60]. For precision, we

use multi-perspective precision [35]. For determinism, we propose the following measure, which

expresses the decision points in the model that are deterministic. That is, the fraction of places

in the model, with two or more outgoing arcs (decision points) to transition/s, that have an
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associated precondition (i.e. Φ(t) ̸=⊥). Formally, let N = (P, T, F ) be a Petri net.

decision points or dp(P, F ) = {p | p ∈ P ∧ |p•| ≥ 2} (1)

weight or w(p,F ) =
|{t | t ∈ p• ∧ Φ(t) ̸=⊥}|

|p•| (2)

Determinism or D(P ,F ) =


∑

{p∈dp(P,F )} w(p,F)

|dp(P,F )| if |dp(P, F )| > 0

1 otherwise

(3)

A value of 1 for determinism implies that all transitions that are involved in choices in the

model have preconditions, while a value of 0 indicates that no transition that is involved in a

choice has a precondition.

5.1.2. Data

We created two event logs from the MIMIC-III dataset: a log of patient movements (move-

ments log) and a log of procedures for respiratory failures (procedures log). The extraction

scripts for these two event logs can be found in a public repository6. The movements log cap-

tures the movements of patients between ICU wards, and contains 24 271 traces, 290 462 events,

65 activities and 6 endogenous attributes. The procedures log describes the procedures that a pa-

tient received, and contains 65 traces, 610 events, 34 event classes and 4 endogenous attributes.

Both logs use a exo–description including exo–panels for respiratory rate, heart rate, oxygen

saturation, and arterial blood pressure measurements. The movements log linked to 25 684 680

exo–measurements; the procedures log linked to 590 285 exo–measurements.

5.1.3. Results

Table 3 shows the results. The best results for each log appear in boldface. When consid-

ering the movements log, using exogenous data only (exo) does not introduce preconditions in

most cases, and henceforth the fitness and precision values are high. In cases where determinism

6https://github.com/adambanham/icpm2021
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is greater than zero, fitness is very low but precision is competitive. We conclude that for this

log, the exogenous data by itself does not suffice. For exo+endo, typically more preconditions

are discovered, which lowers fitness and precision (at most 0.11 lower than endo). This decrease

in quality is to be expected, as adding more preconditions means that multi-perspective mea-

sures will consider more data attributes from the event log, thus increasing the state space on

which precision is based.

Table 3: Breakdown of measured model quality for discovered xDPNs across two event logs and three

variants. The best measurement for an event log is highlighted in bold. In both event logs, including

exogenous data lead to a higher determinism.

Movements log Procedures log

Variant Discovery mi fitness precision determinism fitness precision determinism

endogenous me 0.25 0.586 0.644 0.048 0.739 0.395 0.119

0.15 0.573 0.656 0.108 0.739 0.392 0.119

0.05 0.573 0.644 0.140 0.761 0.418 0.167

or 0.25 0.586 0.657 0.048 0.785 0.393 0.131

0.15 0.583 0.656 0.108 0.785 0.393 0.131

0.05 0.587 0.647 0.140 0.761 0.419 0.167

endogenous me 0.25 0.575 0.591 0.079 0.692 0.409 0.155

and 0.15 0.518 0.537 0.156 0.705 0.411 0.155

exogenous 0.05 0.465 0.533 0.283 0.717 0.459 0.238

or 0.25 0.586 0.649 0.048 0.731 0.445 0.214

0.15 0.536 0.559 0.156 0.739 0.430 0.179

0.05 0.465 0.550 0.259 0.717 0.463 0.238

exogenous me 0.25 0.654 0.640 0.000 0.722 0.413 0.143

0.15 0.654 0.623 0.000 0.697 0.436 0.143

0.05 0.173 0.567 0.222 0.709 0.420 0.214

or 0.25 0.654 0.628 0.000 0.701 0.512 0.274

0.15 0.654 0.639 0.000 0.697 0.425 0.143

0.05 0.099 0.582 0.198 0.709 0.424 0.214
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When considering the procedures log, surprisingly, larger values of the parameter mi did

not always decrease the number of preconditions found as is to be expected as mi is a support

threshold. We suspect that the rather small size of the procedures log and the nature of the

overlapping rules (or) algorithm is at play here, which after building a first precondition, does

not have enough observations left for a second precondition to meet the mi threshold. For this

log, using the exogenous data increased the determinism and hence the number of preconditions

found (exo+endo and exo vs. endo). Consequently, for endo and endo+exo, fitness goes up with

mi for me and goes down for or, but in the exogenous variant these patterns are not observed.

If we consider exo and endo+exo vs. endo, then fitness consistently decreases, precision con-

sistently increases, and determinism consistently increases. We suspect that the preconditions

cover a larger fraction of the increased state space than for the movements log, which has a

greater variety of process execution.

Based on these results, we conclude that the inclusion of exogenous data can lead to greater

determinism, a decrease in fitness, and a possible increase in precision. A caveat to this outcome

is that the same exogenous data may have more or less impact on different processes. In some

cases, exogenous data may tell analysts nothing, while in other domains, exogenous data may

be the only relevant part. Furthermore, we did not investigate if the discovered preconditions

provide greater insights with exogenous data; we only investigated if using additional data is

beneficial to the quality of discovered process models, in a single domain.

5.2. Exogenous Influences on Process Outcomes

In this section, we demonstrate how xPM and EESA visualisations can be used to understand

how changes in exogenous data influence process outcomes. In contrast to typical process

outcomes from business processes (e.g., a loan application is either accepted or rejected), clinical

outcomes in healthcare processes can change throughout a patient’s healthcare journey several

times or not at all (e.g., a patient may require assistance breathing intermittently during a
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hospital stay). Thus, this evaluation uses the dynamic characterisation of slices within EESA

to study clinical outcomes. Here we assume that clear distinctions within exogenous data could

lead to earlier detection of adverse clinical outcomes. Furthermore, our instantiation of xPM

was chosen such that we can focus on the enhancement step.

5.2.1. Clinical Outcomes in ICUs

In this evaluation, we focus on a healthcare scenario where we consider invasive procedures

performed on patients admitted to an intensive care unit (ICU) at a hospital. Intensive care units

(ICU) are clinical areas that are designed to manage the most critically ill patients. Critically

ill patients are those that have failure of one or more organ systems that require advanced

supportive therapies. Patients admitted to ICUs will require one or more intravascular accesses

(i.e. intravenous cannulae, central venous catheters, arterial monitoring lines) and are typically

managed with an array of monitoring and therapeutic devices.

Sepsis is a condition that is defined by serious organ dysfunction associated with a dysregu-

lated host response, and it has been highlighted by the World Health Organization as a global

health priority and a major threat to patient safety [66]. Affecting more that 50 million people

each year [67], septic shock is sepsis that is associated with hypotension, lactatemia and a range

of etiologies, which are most commonly associated with serious infections.

Infections (e.g., severe pneumonia) are not only among the most common reasons for patients

to be admitted to ICUs, but also frequently complicate a patient’s stay. Growth of micro-

organisms in cultures of specimens from patients are typically required to diagnose an infection.

Bloodstream infections are those where microorganisms are present in the bloodstream of a

patient and may be related to infections at any body site such as the respiratory (pneumonia),

gastrointestinal, or genito-urinary tracts.

Recognising patients with early or incubating infections and/or predicting those who will de-

velop subsequent infections/sepsis is a major challenge. As a result of their inherent complexity
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due to severe illness and the plethora of clinical variables arising from physiologic observations

and interventions, usual bedside examination and monitoring of patients will occasionally fail

to detect patients at very early stages of infection/sepsis when treatment would be most effica-

cious. Thus, developing approaches to support decision-making around the early detection of

infection/sepsis in critically ill patients is a priority research objective.

To date, technology developments in healthcare centre around the support of clinical decision-

making to improve patient care and outcomes [68, 69, 70]. Process mining has recently been used

to explore the process of care and the diagnostic trajectory of a disease [71, 25, 10, 26]. How-

ever, several key issues arise when technology is employed to support clinical decision making in

healthcare, such as rule based systems or Bayesian neural networks [70]. These issues include the

quality of data to produce accurate and reliable outputs[69, 70]; the lack of mining techniques

that can provide understandable, high-level information[68, 69]; and the ethical responsibility to

maintain healthcare professionals trust in those outputs [68, 72, 70]. Therefore, we investigate

if our EESA contribution could fill a gap, by providing understandable information to enhance

the clarity of a clinical outcome in retrospective analysis.

5.2.2. Procedure

Using this scenario, we will show that the combination of our techniques, process behaviour,

and exogenous data can identify, within patient vital sign measurements, clinical outcomes

related to a sepsis/infection. Our instantiation of xPM for this evaluation is outlined below.

L We used the patient (subject_id), hospital admission (hadm_id) and ICU (icustay_id)

identifiers to link all exogenous data sets (except laboratory results) to traces. Laboratory

results were linked using patient and hospital admission identifiers.

S We included four slicing functions: a slicing function collects all exo–measurements either

2, 4, 6 or 12 hours before an event (i.e. a procedure).

T We included a single transformation function that determines if a vital sign increased or
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decreased over time. The slice is used to find the line of best fit for all exo–measurements,

then returns the gradient of the line as an event attribute for annotation.

D Instead of applying a discovery technique, we used a hand-made process model. This

model used a flower-like pattern to describe the process, and repeated the same pro-

cess behaviour for different admission intervals (lengths of stay) to help identify different

cohorts of patients.

E This step is the focus of our experiment. We applied our EESA procedure and the ranking

procedure, outlined in Sections 4.2 & 4.3. Using these contributions, we looked to identify

points of interest between patients associated with sepsis and those that are not.

5.2.3. Data

For this evaluation, we use the MIMIC-III dataset [27], to collect ICU admissions. We

included all patient admissions to an ICU ward such that: sepsis was not noted at the time of

admission to the hospital (noted in admissions table), at admission the patient was at least

18 years old and the ICU stay lasted at least 48 hours. These requirements exclude cases of

pre-existing sepsis and focus on sepsis that could be associated with the ICU stay.

We did not distinguish between ICU wards for this evaluation, resulting in 11,161 admissions

being included using the admissions and icustay tables. The following procedures were used

as activities from the procedureevents_mv table: mutli-lumen, intravenous cannula (recorded

as gauge 18-22), picc line, invasive ventilation, cordis/introducer, dialysis and arterial line. Each

event was split into a start and stop event as these require clinicians involvement.

The exo–description included the following exo–panels representing vital sign measurements

of patients: heart rate (beats/min), respiratory rate (insp/min), non-invasive blood pressure

(mmHg), blood oxygen saturation (SpO2 %) and body temperature (celsius). These exo–panels

were extracted from the chartevents table and represent nurses updating the patient’s electronic

chart.
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Figure 10: Histogram showing the top-ranked vital signs in EESA visualisations (only considering EESA

visualisation where at least 1% of procedures were associated with sepsis).

We also included an exo–panel for laboratory results from the microbiologyevents table,

specifically blood tests, where a blood culture was tested for the presence of organisms. We inter-

polated the outcome of these laboratory results to identify when a patient had a sepsis/infection

during a ICU admission. In total, across six exo–panels, we extracted 111,312 exo–series and

18,014,496 exo–measurements. Our extraction scripts for both the endogenous and exogenous

data from the MIMIC-III can be found in a public repository7.

5.2.4. Results

In total, 2,240 EESA graphs were produced. In which 2028 EESAs described trends between

patients with sepsis and without; hence sepsis was seen in 81.77% of all process activities within

admissions. Drilling down to where sepsis occurred to a noticeable degree (i.e. at least 1%

of procedures were associated with sepsis), the overall presence dropped to 36.05% of process

activities seen in admissions.

The histogram in Figure 10 shows the frequency of basic vital sign measures seen in the

top ranked (rank < 90) EESA visualisations, with at least 1% of procedures were associated

with sepsis. In which we see the majority of EESAs with a higher level of discrimination

occurred when considering the heart rate of the patient. Moreover, drilling down to the length

7https://github.com/adambanham/icpm2021
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Figure 11: A top-ranked EESA of heart rate measurements linked to 20,342 intravenous cannula pro-

cedures, of which, 278 procedures were associated with a patient acquiring sepsis. Patients’ heart rate

measurements were taken from the two-hour window prior to the patient undergoing the intravenous

cannula procedure. All procedures occurred within the first 48 hours of admission.

of observations, we can see that using two hours of vital sign measurement provides the greatest

discrimination between sepsis outcomes across all vital sign measurements.

These results demonstrate that this approach can transform clinical data from being clin-

ically uninterpretable (Figure 5a) to interpretable and having potential clinical value given

further interrogation (Figure 11 & 12). In Figure 11, we can see that our EESA visualisation

can convert 20,340 exo–series into a clinically interpretable visualisation. Furthermore, in Fig-

ure 12, our EESA visualisations shows how those patients who develop infection/sepsis may be

discriminated based on heart rate values alone.

5.2.5. Discussion

This analysis was primarily based on standard, routinely measured, vital signs. In the

course of a given day, a patient admitted to ICU may be expected to have tens to hundreds

of intermittent measurements and thousands of continuous measurements. While clinicians do

examine trends, typically most clinical decisions are made on “snap shot” intermittent measures.

The possibility exists that patients with slow deterioration in continuously measured parameters
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Figure 12: A top-ranked EESA of heart rate measurements linked to 262 intravenous cannula procedures,

of which, 11 were associated with a patient acquiring sepsis. Patients’ heart rate measurements were

taken from the two-hour window prior to the patient undergoing the intravenous cannula procedure. All

procedures occurred after the patient had been admitted for 25 days. We observe that heart rate may

discriminate between patients associated with sepsis.

(i.e. heart rate) may not be recognised until other measures of worsening (i.e. shock onset)

become overt. One of the values of our approach is that it integrates the vast number of often

seemingly scattered values into patterns that can be of clinical value for decision making and

flag patients for an in-depth bedside review of their clinical status.

While the processed data does not, in its current format (EESA visualisations), predict

whether or not the patient will develop infection/sepsis, it is important that techniques can

demonstrate the discrimination between these two outcomes. Our approach allows domain

experts and process analysts to investigate a broader interpretation of the context, then refine the

interpolation in an iterative manner based on data-driven outcomes. However, further studies

are needed to see if our approach would help find variables that have greater discrimination for

multivariable predictive modelling.

When reviewing the procedure’s ranking, we noted that ranking results included sources with

vastly different measurement units and variability, as seen in Figure 10. While heart rate was

the most common exo–panel included in the top-ranked EESAs, as it does have large variability
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naturally, the other exo–panels were evenly present in the histogram. This inclusion of exo–

panels reflects our design choice to have min-max scaling occur on trends before computing the

DTW distance measurement used for ranking. However, our results may reflect the distinct

nature of sepsis, and the effectiveness of this design choice may not be universal. As such,

future work is needed to understand if our design choice allows for an unbiased comparison of

exo–panels. This also highlights the potential generalisation of our approach.

There are some limitations and assumptions about the presented analysis in this section.

We selected process activities (i.e. arterial line, ventilator, insertion of an intravenous cannula)

in a somewhat arbitrary fashion to explore the potential use of our approach. Furthermore,

we used a very liberal understanding of the process structure (process model used for D), to

emphasise the analysis of EESA visualisations. We also assumed that data quality issues had

not affected our analysis and that our extraction of vital sign measurements was representative.

Finally, we assumed that our identification of patients with sepsis using a blood culture test

provided a reliable understanding of this clinical outcome.

Our evaluation suggests that we can provide clarity in an otherwise noisy analysis area

for healthcare professionals. Further study is needed to evaluate the feasibility of deploying

our approach within a clinical setting. For example, the complexity of an approach could be a

reason for non-acceptance. The adoption of an approach may be subject to a detailed cost benefit

analysis. It is imperative that insights must be comprehensible by healthcare professionals in

order to build trust and acceptance.

6. Conclusion

In this paper, we presented xPM and EESA, an approach for process mining with exoge-

nous data, which analyses the associations between exogenous data and process behaviour. We

evaluated our approach from two perspectives; a process mining analyst’s perspective, and a

clinician’s perspective. We demonstrated that our proposed approach can provide automated
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analysis, and can find useful insights within exogenous data for processes. Furthermore, our

evaluations show that our approach can be used to integrate large amounts of physiologic data

and interventions, with resulting discrimination and conversion to clinically interpretable infor-

mation. This sets the stage for further studies aimed at defining a greater range of variables

that may be included in studies to improve the management of patients admitted to ICUs.

We see many possibilities for extension of this work. The semantics of xDPN could be

expanded to introduce means for expressing temporal changes in data, so that exogenous data

can be presented alongside the process structure. Additionally, new decision mining techniques

could be developed which have operators in preconditions that consider temporal sequences

instead of merely event attribute values. These extensions, while clearly useful in the medical

domain, would also be relevant to other domains such as business processes, transport processes

and manufacturing processes. Lastly, many opportunities exist for enhancement techniques to

take advantage of our framework, providing as it does, access to new types of data variables

(such as slices, or the original exo–series) to provide new types of analyses.
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