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Abstract: Since their introduction, process trees have been frequently used as a process modeling1

formalism in many process mining algorithms. A process tree is a (mathematical) tree-based model of2

a process, in which internal vertices represent behavioral control-flow relations and leaves represent3

process activities. Translation of a process tree into a sound Workflow net is trivial; however, the4

reverse is not the case. Simultaneously, an algorithm that translates a WF-net into a process tree is of5

great interest, e.g., the explicit knowledge of the control-flow hierarchy in a WF-net allows one to6

reason on its behavior more easily. Hence, in this paper, we present such an algorithm, i.e., it detects7

whether a WF-net corresponds to a process tree, and, if so, constructs it. We prove that, when the8

algorithm finds a process tree, the language of the process tree is equal to the language of the original9

WF-net. The experiments conducted show that the algorithm’s corresponding implementation has10

a quadratic time complexity in the size of the WF-net. Furthermore, the experiments show strong11

evidence of process tree re-discoverability.12

Keywords: process trees; Petri nets; workflow nets; process mining.13

1. Introduction14

Process mining [1] is concerned with distilling knowledge of the execution of processes by analyzing15

the event data generated during the execution of these processes, i.e., stored in modern-day information16

systems. In the field, different (semi-)automated techniques have been developed that allow one to17

distill processes knowledge from event data, i.e., ranging from automated process discovery algorithms to18

conformance checking algorithms. In automated process discovery, the main aim is to translate observed19

process behavior, i.e., as stored in the information system, into a process model that accurately describes20

the behavior of the process. In this context, the discovered process model should strike an adequate21

balance between accounting for unobserved, yet likely, process behavior (i.e., avoiding overfitting)22

and being precise (i.e., avoiding underfitting) at the same time. Conformance checking techniques23

allow us to compute to what degree the observed behavior is in line with a given reference process24

model (either designed by hand or discovered using an automated process discovery technique). Since25

processes are the cornerstone of process mining, so are the models that allow us to represent them (and26

reason about their behavior and quality). As such, various process modeling formalisms exist, e.g.,27

BPMN [2], EPCs [3], etc., some of which are heavily used in practice.28

Recently, process trees were introduced [4]. A process tree is a hierarchical representation of a29

process corresponding to the mathematical notion of a rooted tree, i.e., a connected undirected acyclic30

graph with a designated root vertex. The internal vertices of a process tree represent how their children31

relate to each other regarding their control-flow behavior (i.e., their sequential scheduling). The leaves32
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of the tree represent the activities of the process. Consider Fig. 3 (page 6), in which we depict an33

example process tree. Its root vertex has label→, specifying that first its leftmost child, i.e., activity a,34

needs to be executed, secondly its middle child, and, finally, its rightmost child. Its middle child has35

a 	 label, specifying cyclic behavior, i.e., its leftmost child is always executed, whereas the execution36

of its rightmost child stipulates that we need to repeat its leftmost child. The ×-label in a process tree37

represents an exclusive choice, e.g., vertex v1.3 specifies that we either executed activity g or h, yet not38

both. Finally, the ∧-label refers to concurrency, i.e, the children of a vertex with such a label are allowed39

to be executed simultaneously, i.e., at the same time. Furthermore, consider the two models depicted40

in Fig. 1. (page 3). The models represent the same behavior, based on a real-life event log. Clearly,41

the hierarchy of the process tree allows one to more easily understand the main control-flow of the42

process.43

The previous examples show the relative simplicity at which one can reason on the behavior44

of a process tree. Furthermore, it is straightforward to translate process trees into other process45

modeling formalisms, e.g., Workflow nets (WF-nets). By definition, a process tree corresponds to a46

sound WF-net, i.e., a WF-net with desirable behavioral properties, e.g., the absence of deadlocks. The47

reverse, i.e., translating a given WF-net into a process tree (if possible), is less trivial. At the same48

time, obtaining such a translation is of great interest, e.g., it allows us to discover control-flow-aware49

hierarchical structures within a WF-net. Such structures can, for example, be used to hide certain parts50

of the model, i.e., leading to a more understandable view of the process model. Furthermore, any51

algorithm optimized for process trees, e.g., by exploiting the hierarchical structure, can also be applied52

to WF-nets of such a type. For example, in [8], it is shown that the computation time of alignments [9],53

i.e., explanations of observed behavior in terms of a reference model, can be significantly reduced54

by applying Petri net decomposition on the basis of model hierarchies. Hence, computing a process55

tree representation of the WF-net can be exploited to reduce the computational complexity of the56

calculations mentioned.57

In this paper, we present an algorithm that determines whether a given WF-net corresponds to a58

process tree, and, if so, constructs it. We prove that, if the algorithm finds a process tree, the original59

WF-net is sound, and the obtained process tree’s language is equal to the language of the original60

WF-net. A corresponding implementation, extending the process mining framework PM4Py [10], is61

publicly available. Using the implementation, we conducted several experiments that show a quadratic62

time complexity in terms of the WF-net size. Furthermore, our experiments indicate that the algorithm63

can re-discover process trees, i.e., the process models used to generate the input for the experiments64

are re-discovered by the algorithm.65

The remainder of this paper is structured as follows. In Section 2, we present preliminary concepts66

and notation. In Section 3, we present the proposed algorithm, including the proofs w.r.t soundness67

preservation and language preservation. In Section 4, we evaluate our approach. In Section 5, we68

discuss related work. In Section 6, we discuss various aspects of our approach, e.g., extensibility, in69

more detail. Section 7, concludes the paper.70

2. Preliminaries71

In this section, we present basic preliminary notions that ease the readability of this paper. In72

Section 2.1, we present the basic notation used in this paper. In Section 2.2, we introduce Workflow73

nets. Finally, in Section 2.3, we present the notion of process trees and their relation to Workflow nets.74

2.1. Basic Notation75

Given set X, P(X)= {X′ ⊆ X} denotes its powerset. Given a function f : X→Y and X′⊆X,76

we extend function application to sets, i.e., f (X′)={y|∃x∈X′( f (x)=y)}. Furthermore, f |X′ : X′→Y77

restricts f to X′. A multiset over set X, i.e., m : X→N∪{0}, contains multiple instances of an element.78

We write a multiset as m=[xi
1, xj

2, ..., xk
n], where m(x1)=i, m(x2)=j, ..., m(xn)=k, for i, j, ..., k>1 (in case,79

m(xi)=1, we omit its superscript; in case m(xi)=0, we omit xi). The set of all multisets over X is written80
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(a) The process, represented as a WF-net.

(b) The process, represented as a Process Tree.
Figure 1. The same process model, obtained by applying the Inductive Miner [5] implementation
of ProM [6] on a real event data set [7], in different process modeling formalisms. Because of its
hierarchical nature, the process tree formalism easily allows us to spot the main control-flow behavior.



Version October 29, 2020 submitted to Algorithms 4 of 25

pi t1

a

p1

t3

c

p2

t4

d

p3

p4

t5

e

t2

b

p5

t6

f

t7

g

t8

h
po

Figure 2. WF-net W1 [1] with initial marking [pi] and final marking [po].

asM(X). Given m∈M(X), we write x∈+m if m(x)>0, and, x/∈+m if m(x)=0, and, m={x|x∈+m}.81

For example, the multiset [x2, y] consists of two instances of x, one instance of y, and zero instances82

of z. The sum of two multisets m1, m2 is written as m1]m2, e.g., [x2, y]][x3, y, z]=[x5, y2, z], their83

difference is written as m1−m2, e.g., [x2, y]−[x, y, z]=[x]. A set is considered a multiset in which each84

element appears only once. Hence, we also apply the operations defined for multisets on sets, and, on85

combinations of sets and multisets, e.g., {x, y, z}][x2]=[x3, y, z].86

A sequence is an ordered collection of elements, e.g., a sequence σ of length n over base set87

X is a function σ : {1, ..., n}→X. We write |σ| to denote the length of σ, e.g., |σ|=n. We write88

σ=〈σ(1), σ(2), ..., σ(|σ|)〉, where σ(i) denotes the element at position i, (1≤i≤|σ|). ε denotes the89

empty sequence, i.e., |ε|=0. We extend the notion of element inclusion to sequences, e.g., x∈〈x, y, z〉.90

X∗ denotes the set of all sequences over members of set X. Concatenation of sequences σ, σ′∈X∗ is91

written as σ·σ′. We let σ�σ′ denote the set of all possible order-preserving merges, i.e., the shuffle92

operator, of σ and σ′, e.g., given σ1=〈b, p〉, σ2=〈m〉, then σ1�σ2= {〈b, p, m〉, 〈b, m, p〉, 〈m, b, p〉}. It93

is easy to see that σ�σ′=σ′�σ (the operator is commutative). We extend the shuffle operator to94

sets (and overload notation), i.e., given S, S′∈X∗, S�S′={σ∈σ1�σ2 | σ1∈S1∧σ2∈S2}. Note that,95

(σ�σ′)�{σ′′} = {σ}�(σ′�σ′′) (associative), hence, we write the application of the shuffle operation96

on n sequences as σ1�σ2�· · ·�σn. Similarly, we write S1�S2�· · ·�Sn for sets of sequences97

S1, S2, ...Sn∈X∗. Given a function f : X→Y and a sequence σ∈X∗, we overload notation for function98

application, i.e., f (σ)=〈 f (σ(1), f (σ(2)), ..., f (σ|σ|)〉. We extend the notion of sequence application to99

sets of sequences, i.e., given f : X → Y and X′⊆X∗, f (X′)={σ∈Y∗ | ∃σ′∈X′ ( f (σ′)=σ)}. Furthermore,100

given X′⊆X and a sequence σ∈X∗, we define σ↓X′
, where (recursively) ε↓X′

=ε, (〈x〉·σ)↓X′
=x · σ↓X′

if101

x∈X′ and (〈x〉·σ)↓X′
=σ↓X′

if x/∈X′.102

2.2. Workflow Nets103

Workflow nets (WF-nets) [11] extend the more general notion of Petri nets [12]. A Petri net is a104

directed bipartite graph containing two types of vertices, i.e., places and transitions. We visualize places105

as circles, whereas we visualize transitions as boxes. Places only connect to transitions and vise-versa.106

Consider Fig. 2, depicting an example Petri net (which is also a WF-net). We let N=(P, T, F, `)107

denote a labeled Petri net, where, P denotes a set of places, T denotes a set of transitions and108

F⊆(P×T) ∪ (T×P) represents the arcs. Furthermore, given a set of labels Σ and the symbol τ/∈Σ,109

` : T→Σ∪{τ} is the net’s labelling function, e.g., in Fig. 2, `(t1)=a, `(t2)= b, etc. Given an element110

x∈P∪T, •x = {y | (y, x)∈F} denotes the pre-set of x, whereas x•= {y|(x, y)∈F} denotes its post-set,111

e.g., in Fig. 2, •t1= {pi} and p1•= {t2, t3}. We lift the •-notation to the level of sets, i.e., given X⊆P∪T,112

•X= {y | ∃x∈X (y∈•x)} and X•= {y | ∃x∈X (y∈x•)}. Let N=(P, T, F, `) be a Petri net and let P′⊆P,113

T′⊆T and F′ = F∩((P′×T′) ∪ (T′×P′)). The Petri net N′= (P′, T′, F′, `|T′) is a subnet of N, written114

N′vN. In the context of this paper, we refer to a subnet N′vN as a fragment if it is weakly connected.115
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Furthermore, a fragment N′vN is place-bordered iff the only vertices of N′ (i.e., members of P′∪T′)116

that are connected to vertices that do not belong to N′ (i.e., members of P∪T\(P′∪T′)) are places,117

i.e., {x∈P′∪T′ | (x, y)∈F\F′∨(y, x)∈F\F′}⊆P′. Furthermore, we refer to P′i ={x∈P′|(y, x)∈F\F′}118

and P′o={x∈P′|(x, y)∈F\F′} to the input and output places of the place-bordered fragment. For119

example, in Fig. 2, the subnet formed by places p1, p2, p3, p4, p5, transitions t2, t3, t4, t5 and the120

arcs (p1, t2), (p1, t3), . . . , (t5, p5) is a place-bordered fragment. Observe that, if we remove place p5121

(and the corresponding arc (t5, p5)), the subnet is still a fragment, yet, no longer place-bordered. If we122

also remove t5 and the arcs (p3, t5) and (p4, t5), the subnet is not a fragment as it is no longer weakly123

connected. We let N denote the universe of Petri nets.124

The state of a Petri net is expressed by means of a marking, i.e., a multiset of places. A125

marking is visualized by drawing the corresponding number of dots in the place(s) of the126

marking, e.g., the marking in Fig. 2 is [pi] (one black dot is drawn inside place pi). Given a127

Petri net N = (P, T, F, `) and marking M∈M(P), (N, M) denotes a marked net. Given a marked128

net (N, M), a transition t∈T is enabled, written (N, M)[t〉, if ∀p∈•t (M(p)>0). If a transition129

is not enabled in marking M, we write (N, M)[�t〉. An enabled transition can fire, leading to130

a new marking M′= (M−•t)]t•, written (N, M)
t−→(N, M′). A sequence of transition firings131

σ=〈t1, t2, ..., tn〉 is a firing sequence of (N, M), yielding marking M′, written (N, M)
σ−→→(N, M′),132

iff ∃M1, M2, ..., Mn−1∈M(P) s.t. (N, M)
t1−→(N, M1)

t2−→(N, M2)· · ·(N, Mn−1)
tn−→(N, M′). We write133

(N, M)
σ−→→◦, in case σ is a firing sequence in (N, M), yet, we are not interested in the marking134

it leads to. In some cases, we simply write (N, M) (N, M′), if ∃σ∈T∗
(
(N, M)

σ−→→(N, M′)
)

.135

LN (N, M, M′) =
{

σ∈T∗ | (N, M)
σ−→→(N, M′)

}
denotes all firing sequences starting from marking M,136

leading to marking M′. The labeled-language of N, conditional to markings M and M′, is defined137

as Lν
N (N, M, M′)=`(LN (N, M, M′))↓Σ . R(N, M) =

{
M′∈M(P) | ∃σ∈T∗

(
(N, M)

σ−→→ (N, M′)
)}

138

denotes the reachable markings.139

Given a Petri net N= (P, T, F, `), and a designated initial and final marking Mi, M f∈M(P), the140

triple SN=(N, Mi, M f ) denotes a system net. As system net SN=(N, Mi, M f ) is formed by N, we141

write SN as a replacement for N, e.g., (SN, M) denotes a marked system net. Clearly, R(SN, M),142

LN (SN, M, M′), etc., are readily defined for arbitrary markings M, M′∈M(P). The language of SN143

is referred to as LN (SN, Mi, M f ), for which we simply write LN (SN) (respectively Lν
N (SN),R(SN),144

etc.), i.e., we drop Mi and M f from the notation as they are clear from context. SN denotes the145

universe of system nets.146

A WF-net is a special type of Petri net, i.e., it has one unique start and one unique end place.147

Furthermore, every place/transition in the net is on a path from the start to the end place. We formally148

define a WF-net as follows149

Definition 1 (Labeled Workflow net (WF-net)). Let Σ denote the universe of (activity) labels, let τ/∈Σ and150

let ` : T→Σ∪{τ}. Let N = (P, T, F, `)∈N and let pi 6=po∈P. Tuple W=(P, T, F, pi, po, `) is a Workflow net151

(WF-net), iff:152

1. •pi=∅ ∧ @p∈P\{pi} (•p=∅); pi is the unique source place.153

2. po•=∅ ∧ @p∈P\{po} (p•=∅); po is the unique sink place.154

3. Each element x∈P∪T is on a path from pi to po.155

We letW denote the universe of WF-nets.156

Observe that, a WF-net is a system net with Mi=[pi] and M f=[po] Hence, since a WF-net is157

formed by an underlying Petri net, and, has a well-defined initial and final marking, i.e., [pi] and [po],158

we write LN (W) (respectively Lν
N (W),R(W), etc.) as a shorthand notation for LN (W, [pi], [po]).159

Of particular interest are sound WF-nets, i.e., WF-nets that are guaranteed to be free of deadlocks,160

livelocks and dead transitions. We formalize the notion of soundness as follows.161
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Figure 3. Process tree [1], describing the same language as the WF-net in Fig. 2.

Definition 2 (Soundness). Let W=(P, T, F, pi, po, `)∈W . W is sound iff:162

1. (W, [pi]) is safe, i.e., ∀M∈R(W, [pi]) (∀p∈P (M(p)≤1)),163

2. [po] can always be reached, i.e., ∀M∈R(W, [pi]) ((W, M) (W, [po])).164

3. Each t∈T is enabled, at some point, i.e., ∀t∈T (∃M∈R(W, [pi]) (M[t〉)).165

Observe that, the Petri net depicted in Fig. 2 is a sound WF-net, i.e., it adheres to all three166

requirements of Definition 2.167

2.3. Process Trees168

Process trees allow us to model processes, that comprise a control-flow hierarchy. A process169

tree is a mathematical tree, where the internal vertices are operators and leaves are (non-observable)170

activities. Operators specify how their children, i.e., sub-trees, need to be combined from a control-flow171

perspective. Several operators can be defined, however, in this work, we focus on four basic operators,172

i.e., the→, ×, ∧ and 	-operator. The sequence operator (→) specifies sequential behavior. First its173

left-most child is executed, then its second left-most child, ..., and finally its right-most child. For174

example, the root operator in Fig. 3 specifies that first activity a is executed, then its second sub-tree175

(	) and then its third sub-tree (×). The exclusive choice operator (×), specifies an exclusive choice,176

i.e., one (and exactly one) of its sub-trees is executed. Concurrent/parallel behavior is represented by177

the concurrency operator (∧), i.e., all children are executed simultaneously/in any order. Finally, we178

represent repeated behavior by the loop operator	. Whereas the→, × and ∧-operator have an arbitrary179

number of children, the 	-operator has two children.1 Its left child (the “do-child”) is always executed.180

Secondly, executing its right child (the “re-do-child”) is optional. After executing the re-do-child, we181

again execute the do-child. We are allowed to repeat this, yet, we always finish with the do-child.182

For example, consider Fig. 3, in which we depict an example process tree (describing the same183

language as the WF-net in Fig. 2). The root of the tree, i.e., v0, is a sequence operator, specifying that184

first its left-most child (v1.1) needs to be executed. Its middle child, i.e., v1.2, represents a loop operator.185

The left sub-tree of the loop operator (i.e., having vertex v2.1 as its root) is always executed. Vertex186

v2.2 represents the “redo” part of the loop operator. The last part of the tree is represented by v1.3, i.e.,187

specifying a choice construct between executing activity g or h.188

Definition 3 (Process Tree). Let Σ denote the universe of (activity) labels and let τ/∈Σ. Let
⊕

denote the189

universe of process tree operators. A process tree Q, is defined (recursively) as any of:190

1 Note that various definitions of the loop operator exist, i.e., with three/an arbitrary number of children (e.g. [1,
Definition 3.13]). However, all of these definitions can be rewritten into the binary loop operator, as described here.
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Figure 4. Instantiations of λ (Definition 5). The λ-functions for operators are defined recursively, using
the λ̂-values of their children, i.e., a place “entering”/“exiting” a λ̂(Qi) fragment, connects to pi•/•po

(respectively) of λ(Qi).

1. x∈Σ∪{τ}; an (non-observable) activity,191

2. ⊕(Q1, ..., Qn), for ⊕∈⊕, n≥1, where Q1, ..., Qn are process trees;192

We let Q denote the universe of process trees.193

Given a process tree Q∈Q, its language is of the form LQ(Q)⊆Σ∗, which is recursively defined in194

terms of of the languages of the children of a process tree. For example, the language of the→-operator,195

is formed by concatenating any element of the language of its first child, with any element of its second196

child, etc. We formally define the language of a process tree as follows.197

Definition 4 (Process Tree Language). Let Q∈Q be a process tree. The language of Q, i.e., LQ(Q)⊆Σ∗, is
defined recursively as:

LQ(Q)={ε}, if Q=τ

LQ(Q)={〈a〉} if Q=a∈Σ

LQ(Q)={σ=σ1·σ2· · ·σn | σ1∈LQ(Q1), σ2∈LQ(Q2), ..., σn∈LQ(Qn)} if Q =→ (Q1, Q2, ..., Qn)

LQ(Q)=
n⋃

i=1

LQ(Qn) if Q=× (Q1, Q2, ..., Qn)

LQ(Q)=LQ(Q1)�LQ(Q2) · · ·�LQ(Qn) if Q=∧ (Q1, Q2, ..., Qn)

LQ(Q)={σ1·σ′1·σ2·σ′2 · · · σn|n≥ 1∧∀1≤i≤n (σi∈LQ(Q1)) ∧ ∀1≤i<n
(
σ′i∈LQ(Q2)

)
} if Q=	 (Q1, Q2)

The process tree operators that we consider in this paper (→, ×, ∧ and 	) are easily translated to198

sound WF-nets, cf. Fig. 4. Hence, we define a generic process tree to WF-net translation function, s.t.,199

the language of the two is the same.200

Definition 5 (Process Tree Transformation Function). Let Q∈Q be a process tree. A process201

tree transformation function λ, is a function λ : Q→W , s.t., Lν
N (λ(Q))=LQ(Q). We let202

λ̂ : Q→N , where, given λ(Q)=W=(P, T, F, pi, po, `), λ̂(Q)=(P′, T, F′, `), with, P′=p\{pi, po} and203

F′=F\ ({(pi, t)∈F}∪{(t, po)∈F}).204

Given an arbitrary process tree Q∈Q, there are several ways to translate it to a sound WF-net W,205

s.t., Lν
N (W)=LQ(Q), i.e., instantiating λ and λ̂. As an example, consider the translation functions,206

depicted in Fig. 4. Note that, each transformation function in Fig. 4, is sound by construction.207

Interestingly, recursively inserting the λ̂-generated fragments of the sub-trees of a given process208
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tree, corresponds to the sequential application of WF-net composition, as described in [13, Section 7].209

Hence, we deduce that their recursive composition is also a sound [13, Theorem 3.3]. Note that, in the210

remainder of this paper, we explicitly assume the use of λ, as presented in Fig. 4.2211

3. Translating Workflow Nets to Process Trees212

In this section, we describe our approach. In Section 3.1, we sketch the main idea of the approach,213

using a small example. In Section 3.2, we present PTree-nets, i.e., Petri nets with rng(`)=Q, which we214

exploit in our approach. In Section 3.3, we present Petri net fragments, used to identify process tree215

operators within the net, together with a generic reduction function. Finally, in Section 3.4, we provide216

an algorithmic description that allows us to find process trees, including correctness proofs.217

3.1. Overview218

The core idea of the approach concerns searching for fragments in the given WF-net that represent219

behavior that is expressible as a process tree. The patterns we look for bear significant similarity with220

the translation patterns defined in Fig. 4, i.e., they are a strongly generalized reverse of those patterns.221

When we find a pattern, we replace it with a smaller net fragment representing the process tree that222

was identified. We continue to search for patterns in the reduced net until we are not able to find any223

more patterns. As we prove in Section 3.4, in case the final WF-net contains just one transition, its label224

carries a process tree with the same labeled-language as the original WF-net.225

Consider Fig. 5, in which we sketch the basic idea of the algorithm, applied on the example WF-net226

W1 (Fig. 2). First, the algorithm detects two choice constructs, i.e., one between the transitions labeled227

b and c, and one between the transitions labeled g and h. The algorithm replaces the fragments by228

means of two new transitions, carrying labels ×(b, c) and ×(g, h) respectively (Fig. 5a). Subsequently,229

a concurrent construct is detected, i.e., between the transitions labeled×(b, c) and d. Again, the pattern230

is replaced (Fig. 5b). A sequential pattern is detected and replaced (Fig. 5c), after which a loop construct231

is detected (Fig. 5d). The resulting process tree, i.e., carried by the remaining transition in Fig. 5e,232

→ (a,	 (→ (∧(×(b, c), d), e), f ),×(g, h)), is equal to Fig. 3.233

3.2. PTree-Nets and their Unfolding234

As indicated, we aim to find Petri net fragments in the WF-net representing behavior equivalent to235

a process tree. As illustrated in Section 3.1, the patterns found in the WF-net are replaced by transitions236

with a label carrying a corresponding process tree. In the upcoming section, we present four different237

fragment characterizations, corresponding to the basic process tree operators considered. However, in238

this section, we first briefly present PTree-nets, i.e., a trivial extension of Petri nets, in which labels are239

process trees.240

Definition 6 (Process Tree-labeled Petri-net (PTree-net)). Let Q denote the universe of process trees. Let P241

denote a set of places, let T denote a set of transitions, let F⊆(P×T)∪(T×P) denote the arc relation and let242

κ : T→Q. Tuple N=(P, T, F, κ) is a Process Tree-labeled Petri net (PTree-net). NQ denotes the universe of243

PTree-nets.244

Given N∈NQ, for any marking M, M′ we have κ (LN (N, M, M′))∈Q∗, and,245

LQ (κ (LN (N, M, M′)))∈Σ∗, i.e., the definition of LQ ignores τ/∈Σ.3 Clearly, since PTree-nets246

extend the labelling function to Q, PTree-System-nets, and, PTree-WF-nets are readily defined. We let247

SNQ andWQ represent their respective universes. Note that, we use a different symbol to indicate248

whether a labeling function maps to Q or Σ∪{τ}, i.e., κ : T→Q, whereas ` : T→Σ∪{τ}.249

2 Note that, certain proofs presented later build upon the recursive nature of the translations ad presented in Fig. 4.
3 Observe: Lν

N (N, M, M′) =κ (LN (N, M, M′))↓Σ
=LQ (κ (LN (N, M, M′))).
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pi t1

a
p1 t′2

×(b, c)

p2

t4

d

p3

p4

t5

e
p5

t6

f
t′1

×(g, h)
po

(a) Result of the first two rounds of the algorithm.
The first two patterns that can be found are choice
constructs, between b and c, and, g and h, respectively.

pi t1

a
p1

p2

t′3

∧(×(b, c), d)
p3

p4

t5

e
p5

t6

f
t′1

×(g, h)
po

(b) Result of the third round of the algorithm on the
running example. We find a concurrent construct
between transition t′2 and t4.

pi t1

a
p1

p2

t′4

→ (∧(×(b, c), d), e)
p5

t6

f
t′1

×(g, h)
po

(c) Result of the fourth round of the algorithm. We
find a sequential construct.

pi t1

a
p1

p2

t′5

	 (→ (∧(×(b, c), d), e), f )
p5 t′1

×(g, h)
po

(d) Result of the fifth round of the algorithm. We find
a loop construct.

pi t′6

→ (a,	 (→ (∧(×(b, c), d), e), f ),×(g, h))
po

(e) Result of the final round of the algorithm. We find
a sequence construct.

Figure 5. Application of the algorithm on the running example, i.e., W1. The label of t′6, i.e.,
κ(t′6), depicted in Fig. 5e, is the resulting process tree. The resulting process tree, i.e., → (a,	 (→
(∧(×(b, c), d), e), f ),×(g, h)), is equal to Fig. 3.

Since a PTree-net contains process trees as its labels, which can be translated into a Petri250

net fragment, we define a PTree-net unfolding, cf. Definition 7, which maps a PTree-net onto a251

corresponding conventional Petri net.252

Definition 7 (PTree-net Unfolding). A PTree-net unfolding Λ : NQ→N is a function where, given253

N=(P, T, F, κ)∈NQ, Λ(N)=(P′, T′, F′, `), with:254

Let λ(κ(t))=(Pt, Tt, Ft, pit , pot , `t) and λ̂(κ(t))=(P̂t, T̂t, F̂t, ˆ̀t), ∀t∈T,255

1. P′=P∪ ⋃
t∈T

P̂t,256

2. T′=
⋃

t∈T
T̂t,257

3. F′=
⋃

t∈T
F̂t∪

⋃
t∈T
{(p, t) | p∈•t∧t∈pit•}∪

⋃
t∈T
{(t, p) | p∈t•∧t∈•pot},258

4. `=
⋃

t∈T
ˆ̀t.4259

Observe that, under the assumption that we use the instantiation of λ as shown in Fig. 4, indeed,260

each transition in the unfolding of a PTree-net has a corresponding label in Σ∪{τ}. Furthermore, note261

that, unfolding the WF-net in Fig. 5a yields the original model in Fig. 2. The unfolding of the other262

WF-nets in Fig. 5 yields a different WF-net. However, the language of all unfolded WF-nets remains263

equal to the language of the WF-net in Fig. 2.264

4 Since functions are binary Cartesian products, we write set operations here.
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3.3. Pattern Reduction265

In this section, we describe four patterns used to identify and replace process tree behavior.266

Furthermore, we propose a corresponding overarching reduction function, which shows how to267

reduce a PTree-WF-net containing any of these patterns. However, first, we present the general notion268

of a feasible pattern. Such a feasible pattern is a system net, formed by a place-bordered fragment of a269

given PTree-net. Furthermore, the language of the unfolding of the system net needs to be equal to the270

language of the process tree it represents. We formalize the notion of a feasible pattern as follows.271

Definition 8 (Feasible Pattern). Let
⊕

denote the universe of process tree operators. Let N=(P, T, F, κ)∈NQ,
let N′=(P′, T′= {t1, ..., tn} , F′, κ|T′)vN be a place-bordered fragment of N (N′vN) with corresponding
input places P′i and output places P′o. Let Mi=Pi and M f=Po. Given ⊕∈⊕, SN=(N′, Mi, M f )∈SNQ is a
feasible ⊕-pattern, written θ⊕(N, SN), iff:

LQ (⊕ (κ (t1) , ..., κ (tn))) =Lν
N

(
Λ
(

N′
)

, Mi, M f

)
(1)

Observe that any place-bordered fragment of a WF-net that describes the same local language as its272

corresponding process tree representation is a feasible pattern. As such, any feasible pattern is locally273

language-preserving. Transforming such a detected pattern within the given WF-net is straightforward,274

i.e., we add a new transition t′ to the WF-net with label ⊕ (κ (t1) , ..., κ (tn)) and pre-set Pi and post-set275

Po. For example, consider the reduction of the choice construct between transitions t2 and t3 of Fig. 2,276

i.e., depicted in Fig. 5a, in which places p1 and p3 serve as the pre and post set of the newly added277

transition t′2 with label ×(b, c). We formally define the notion of feasible pattern reduction as follows.278

Definition 9 (Pattern Reduction). Let ⊕∈{→,×,∧,	}, let N=(P, T, F, κ)∈NQ, let
N′=(P′, T′= {t1, ..., tn} , F′, κ|T′)vN be a place-bordered fragment of N with corresponding input
places Pi and output places Po. Let Mi=Pi, M f=Po and let SN=

(
N′, Mi, M f

)
s.t. θ⊕(N, SN). We let

Θ⊕(N, SN)=N′′=(P′′, T′′, F′′, κ′) denote the θ⊕(N, SN)-reduced PTree-net, with, for t′/∈T:

P′′=(P\P′)∪Pi∪Po

T′′=
(
T\T′

)
∪{t′}

F′′=(F\F′)∪{(p, t′)|p∈Pi}∪{(t′, p)|p∈Po}
κ′=κ|T\T′∪{(t′,⊕(κ(t1), ..., κ(tn)))}

A feasible pattern θ⊕(N, SN) is globally language preserving iff279

∀M, M′∈M(P′′)
(
Lν
N (Λ(N), M, M′)=Lν

N (Λ(N′′), M, M′)
)

280

It is important to note that the notion of globally language-preserving is defined on the unfolding281

of a net and its corresponding reduced net. For example, consider Fig. 6. In the WF-net in Fig. 6a,282

we observe concurrent behavior between a sequential construct between a and c, and, activity283

b. The fragment formed by p1, p3, p5 and t2 and t4, is a feasible sequence pattern. In Fig. 6b,284

we depict the reduced counterpart of the net in Fig. 6a, in which transitions t2 and t4, and the285

place connecting them, i.e., p3, are replaced by transition t′2 with label →(a, c). Observe that, the286

language of the original net (Fig. 6a) is {〈t1, t2, t3, t4, t5〉, 〈t1, t3, t2, t4, t5〉, 〈t1, t2, t4, t3, t5〉}, whereas the287

language of the corresponding reduced net (Fig. 6b) is {〈t1, t′2, t3, t5〉, 〈t1, t3, t′2, t5〉}. Consequently,288

the corresponding labeled languages are {〈a, b, c〉, 〈b, a, c〉, 〈a, c, b〉} and {〈→(a, c), b〉, 〈b,→(a, c)〉}289

respectively. The labeled language of the reduced net, after evaluating the process tree fragments inside,290

yields {〈a, c, b〉, 〈b, a, c〉}, i.e., the trace 〈a, b, c〉 is not in the corresponding language. However, if we first291

unfold the label of t′2 in Fig. 6b, i.e., yielding the model in Fig. 6a (modulo renaming of transitions), the292

labeled languages of the two nets are indeed equal, i.e., they both describe {〈a, b, c〉, 〈b, a, c〉, 〈a, c, b〉}.293
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pi t1

p1

p2

t2

a

t3

b

p3

p4

t4

c
p5

t5 po

Place-bordered fragment describing→(a, c)

(a) A WF-net describing concurrent behavior between a sequential construct between a and c, and, activity b.
Observe that, the fragment formed by p1, p3, p5 and t2 and t4 is a feasible sequence pattern.

pi t1

p1

p2

t′2

→(a, c)

t3

b

p3

p4

t5 po

(b) The (PTree)WF-net after reduction of the sequential pattern between t2 and t4.
Figure 6. Example WF-net (and a corresponding reduction) in which we are able
to detect the feasible pattern →(a, c). The language of the original net (Fig. 6a) is
{〈t1, t2, t3, t4, t5〉, 〈t1, t3, t2, t4, t5〉, 〈t1, t2, t4, t3, t5〉}. The language of the reduced net (Fig. 6b) is
{〈t1, t′2, t3, t5〉, 〈t1, t3, t′2, t5〉}. Applying the label functions on the firing sequences yields different
labeled languages.

Furthermore, observe that there exist feasible patterns that are locally language-preserving, yet,294

not globally language-preserving. For example, consider the WF-net in Fig. 7. The place-bordered295

fragment formed by the subnet consisting of places p1 and p2 and transitions t2 and t3 (with the296

arcs connecting them), form a feasible pattern corresponding to 	(a, b) (with Mi=[p1] and M f=[p2]).297

However, note that after reduction, i.e., by inserting t′2, we obtain a WF-net that no longer has the same298

language as the original model. This is because, before reduction, executing transition t5 allows us to299

enable transition t3. After reduction, however, this is no longer possible. Hence, whereas the observed300

feasible pattern is locally language preserving, i.e., when considering the elements it is composed of, it301

is not globally language-preserving.302

In the upcoming paragraphs, we characterize an instantiation of a global language preserving303

feasible pattern for each process tree operator considered in this paper. For each proposed pattern, we304

prove that it is both locally and globally language preserving.305

3.3.1. Sequential Pattern306

The→-operator, i.e.,→ (Q1, ..., Qn), describes sequential behavior, hence, any subnet describing307

strictly sequential behavior, describes the same language. If a transition t1 always, uniquely, enables308

transition t2, which in turn enables transition t3, ..., tn, and, whenever t1 has fired, the only way to309

consume all tokens from t1•, is by means of firing t2, and similarly, the only way to consume all310

tokens from t2•, is by means of firing t3, etc., then t1, ..., tn are in a sequential relation. We visualize the311

→-pattern in the left-hand side of Fig. 8.5312

We formally define the notion of a sequential pattern as follows313

5 In the visualization, we omit Pi and Po respectively, i.e., •t1 and tn•.
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pi t1 p1 t2

a
p2

t3

b

t4

c
p3

t5

d

t6 po

Place-bordered fragment, locally describing 	(a, b)

(a) The WF-net containing two local language equivalent feasible patterns.

pi t1 p1 t′2

	 (a, b)
p2 t4

c
p3

t5

d

t6 po

(b) The (PTree)WF-net after reduction of the loop pattern between t2 and t3.
Figure 7. Example WF-net (and a corresponding reduction) in which we are able to detect feasible
patterns (	 (a, b) and 	 (c, d)) that are not globally language preserving. In the exemplary reduced net
(Fig. 7b), once we have executed t′2, we are only able to execute the loop construct between t4 and t5.

Figure 8. Schematic visualization of the→-pattern reduction (dashed arcs are allowed to be part of the
pattern, solid arcs are required). The post-set of each transition ti acts as the pre-set of ti+1 (1≤i<n).
The transition t′ replacing the identified pattern inherits •t1 and tn• (these corresponding places are
not explicitly visualized in this figure). The label of t′ is formed by the sequence operator defined on
top of the labels of t1, ..., tn respectively.

Proposition 1 (→-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:314

1. ∀1≤i<n (|ti•|≥1∧ti•=•ti+1); transition ti enables ti+1,315

2. ∀1≤i<n (∀p∈ti• (•p={ti}∧p•={ti+1})); enabling is unique,316

then, system net SN=(N′=(P′, T′, F′, κ|T′), •t1, tn•) (Pi=•t1 and Po=tn•), with P′=•t1∪•t2∪· · ·•tn∪tn•,317

F′={(x, y)∈F | y∈T′∨x=tn}, is a feasible→-pattern.318

Proof. Observe that t1 is the only enabled transition in marking Mi=Pi. By definition of the319

proposed pattern, after firing ti (1≤i<n), the only enabled transition is ti+1. After firing tn we320

reach the final marking M f , which is a deadlock marking (the only deadlock marking) of the321

place-bordered subnet. Hence, any firing sequence of Λ(N′) can be written as σ1·σ2· · ·σn, s.t.,322

(Λ(N′), Mi)
σ1−→→ (Λ(N′), t1•)

σ2−→→ · · · σn−→→ (Λ(N′), M f ). Observe that each element of σ1 is a transition323

in λ(κ(t1)), each element of σ2 is a transition in λ(κ(t2)), etc. Furthermore, by definition of λ, σ1 is a324

firing sequence describing (when projected on its visible labels) a memmber of LQ(κ(t1)), σ2 describes325

as sequence in LQ(κ(t1)), etc. Hence, the set of all firing sequences projected on their visible labels326

equals LQ(→(κ(t1), κ(t2), . . . , κ(tn))).327

Lemma 1 (→-Pattern (Proposition 1) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and328

let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, tn•) s.t. θ→(N, SN) according to Proposition 1. The329

feasible pattern θ→(N, SN) is globally language-preserving.330
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Figure 9. Visualization of the ×-pattern reduction (dashed arcs are allowed to be part of the pattern,
solid arcs are required). All transitions in the pattern share the same pre- and post-set. The replacing
transition inherits said pre- and post-set.

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po. We331

need to prove that ∀M, M′∈M(P′′)
(
Lν
N (Λ(N), M, M′)=Lν

N (Λ(N′′), M, M′)
)
.332

Observe that Λ(N) and Λ(N′′) are identical, except for Λ(N′) in N and λ̂(t′) (the333

transition-bordered unfolding of the newly added transition t′) in N′′ respectively. The only334

connections between N′ in N and t′ in N′′ with the identical parts of the two nets are through Pi and Po.335

Hence, if there exists a visible firing sequence in Lν
N (Λ(N), M, M′) that is not in Lν

N (Λ(N′′), M, M′),336

this can only be due to different behavior described by Λ(N′) and λ(t′). However, this directly337

contradicts feasibility of the pattern.338

3.3.2. Exclusive Choice Pattern339

The ×-operator, i.e., ×(Q1, ..., Qn), describes “execute either one of Q1, ..., Qn”. In terms of a Petri340

net fragment, transitions t1, ..., tn are in an exclusive choice pattern if their pre and post-sets are equal341

(yet non-overlapping). Consider Fig. 9, in which we schematically depict the ×-pattern. We formalize342

the ×-pattern as follows.343

Proposition 2 (×-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:344

1. •t1=•t2=· · ·=•tn; all pre-sets are shared among the members of the pattern,345

2. t1•=t2•=· · ·=tn•; all post-sets are shared among the members of the pattern,346

3. ∀1≤i≤n (•ti 6=ti•); self-loops are not allowed.347

then, system net SN= (N′= (P′, T′, F′, κ|T′) , •t1, t1•) (Pi=•t1 and Po=t1•), with P′=•t1∪t1•,348

F′={(x, y)∈F | x∈T′∨y∈T′}, is a feasible ×-pattern.349

Proof. Observe that t1, t2, ..., tn are the only enabled transitions in N′ in marking Mi=Pi. When we fire350

any one of these transitions, we immediately mark Po, which is the final marking of the system net.351

Hence, the set of firing sequences of the system net is the union of the set of sequences (Λ(N′), Mi)
σ−→→352

(Λ(N′), Mi), where σ either corresponds to a labelled language of LQ(κ(t1), or LQ(κ(t2), ..., or353

LQ(κ(tn). Observe that, indeed, this set corresponds to LQ(×(κ(t1), κ(t2), . . . , κ(tn))).354

Lemma 2 (×-Pattern (Proposition 2) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and355

let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ×(N, SN) according to Proposition 2. The356

feasible pattern θ×(N, SN) is globally language-preserving.357

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po.358

Observe that, similar to the sequential pattern, Λ(N) and Λ(N′′) are identical, except for Λ(N′) and359

λ̂(t′) respectively. Again, the only connections between N′ and t′ with the identical parts of the two360

nets are through Pi (“entering”) and Po(“exiting”). Hence, if there exists a visible firing sequence361

in Lν
N (Λ(N), M, M′) that is not in Lν

N (Λ(N′′), M, M′), this can only be due to different behavior362

described by Λ(N′) and λ(t′), again contradicting the feasibility of the pattern.363
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Figure 10. Visualization of the ∧-pattern reduction. Transitions t1, ..., tn have disjunct pre-sets, yet,
their pre-sets have the exact same pre-sets. The same holds for the post-sets of transitions t1, .., tn. The
replacing transition inherits all pre- and post-sets of t1, .., tn.

3.3.3. Concurrent Pattern364

The concurrent pattern is the most complicated pattern that we consider in this paper. In the365

concurrent pattern, interference between its transitions is possible. The interference is achieved by366

requiring that the pre-sets and post-sets of the transitions do not have any overlap. Furthermore, the367

pre-set of the transition’s pre-set places needs to be shared by all of these places, and, symmetrically, the368

post-set of the transition’s post-set places needs to be shared by all of these places. That is, the enabling369

of the transitions in the pattern needs to be the same, and their post-set should jointly block any further370

action (i.e., within its local scope) until all places in their joint post-set are marked. Consider the371

left-hand side of Fig. 10, in which we schematically depict the concurrent pattern, which we formalize372

in Proposition 3.373

Proposition 3 (∧-Pattern). Let N=(P, T, F, κ)∈NQ and let T′= {t1, ..., tn}⊆T (n≥2). If and only if:374

1. ∀1≤i<j≤n
(
•ti∩•tj=∅

)
; no interaction between the member’s pre-sets,375

2. ∀1≤i<j≤n
(
ti•∩tj•=∅

)
; no interaction between the member’s post-sets,376

3. ∀1≤i≤n (∀p∈•ti (p•= {ti})); pre-set places uniquely connect to a member,377

4. ∀1≤i≤n (∀p∈ti• (•p= {ti})); post-set places uniquely connect to a member,378

5. ∀p∈•T (•p∩{t1, ..., tn}=∅); members do not influence other members,379

6. ∀p, p′∈•T (•p=•p′); member’s pre-sets share their pre-set,380

7. ∀p∈T• (p•∩{t1, ..., tn}=∅); member firing does not affect other members,381

8. ∀p, p′∈T• (p•=p′•); member’s post-sets share their post-set,382

9. ∀t, t′∈ • (•T) (•t=•t′); pre-sets of enablers are equal,383

10. ∀t, t′∈ (T•) • (t•=t′•); post-sets of enablers are equal,384

then, system net SN= (N′= (P′, T′, F′, κ|T′) , •T′, T′•) (Pi=•T′, Po=T′•), with P′=•T∪T•,385

F′={(x, y)∈F|(x∈P′∧y∈T′)∨(x∈T′∧y∈P′)} is a feasible ∧-pattern.386

Proof. Observe that, t1, t2, ..., tn are the only enabled transitions in N′ in marking Mi=Pi. Furthermore,387

since none of the transitions share any of their presets, the transitions can be fired in any order. Note388

that, by definition of the pattern, after all transitions have fired, we reach final marking M f (which is389

a deadlock in the place-bordered system net). Hence, the labeled language described by the pattern390

equals LQ(κ(t1))� LQ(κ(t2)) · · ·�LQ(κ(tn)), which equals ∧ (κ(t1), κ(t2), ..., κ(tn)).391

Lemma 3 (∧-Pattern (Proposition 3) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and392

let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ∧(N, SN) according to Proposition 3. The393

feasible pattern θ∧(N, SN) is globally language-preserving.394

Proof. Observe that, Λ(N) and Λ(N′′) are identical, except for Λ(N′) and λ̂(t′) respectively. Again,395

the only connections between N′ and t′ with the identical parts of the two nets are through Pi396

(“entering”) and Po(“exiting”). Hence, if there exists a visible firing sequence in Lν
N (Λ(N), M, M′) that397

is not in Lν
N (Λ(N′′), M, M′), this can only be due to different behavior described by Λ(N′) and λ(t′),398

again contradicting the feasibility of the pattern.399
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Figure 11. Visualization of the 	-pattern reduction. The pre-set of transition t1 equals the post-set of t2

and vice-versa. The replacing transition inherits the pre- and post-set of transition t1.

3.3.4. Loop Pattern400

The final operator we consider is the 	-operator, i.e., the only operator with just two children.401

Hence, the fragments representing a loop pattern in the Ptree-net consist of two transitions. Consider402

the left-hand side of Fig. 11, in which we schematically depict the loop pattern fragment. Conceptually,403

the loop operator requires us first to execute its leftmost child (the “do-part”). Secondly, its rightmost404

child is optionally executed (the “redo-part”). However, we always finish with the leftmost child. As405

such, the post-set of a transition corresponding to the do-part needs to be the pre-set of the transition406

that represents the redo-part. Furthermore, there should be no other way to enable the redo-part.407

Hence, the do-part needs to be the only transition that marks the pre-set of the redo-part. Similarly, to408

guarantee global language preservation, the do-part should be the only element in the post-set of its409

pre-set, i.e., no other transition may be enabled by the pre-set of the do-part. Reconsider Fig. 7, observe410

that p2 contains multiple incoming and outgoing arcs, hence, it does not describe a loop-pattern for411

transitions t2 and t3, nor for transitions t4 and t5.412

Proposition 4 (	-Pattern). Let N=(P, T, F, κ)∈NQ and let t1 6=t2∈T. Iff:413

1. •t1=t2•; pre-set of t1 is the post-set of t2,414

2. t1•=•t2; pre-set of t2 is the post-set of t1,415

3. ∀p∈•t1 (p•={t1}); t1 is the only transition in the post-set of its pre-set,416

4. ∀p∈t1• (•p={t1}); t1 is the only transition in the pre-set of its post-set417

then, system net SN=
(

N′=
(

P′, T′, F′, κ|{t1,t2}

)
, •t1, t1•

)
(Pi=•t1, Po=to•), with P′=•t1∪t1•,418

T′={t1, t2}, F′={(x, y)∈F | x∈{t1, t2}∨y∈{t1, t2}} is a feasible 	-pattern.419

Proof. Observe that t1 is the only enabled transition in N′ in marking Mi=Pi. When we fire it,420

we immediately mark Po, which is the final marking of the place-bordered system net. In said421

marking, t2 is the only enabled transition. Firing t2 yields us with marking Mi again. We can repeat422

this infinitely. Hence, the labeled language described by the pattern is {σ1·σ′1·σ2·σ′2 · · · σn | n ≥423

1∧ ∀1≤i≤n (σi∈LQ(κ(t1))) ∧ ∀1≤i<n
(
σ′i∈LQ(κ(t2))

)
}, which equals 	 (LQ(κ(t1)),LQ(κ(t2)))424

Lemma 4 (	-Pattern (Proposition 4) is Globally Language-Preserving). Let N=(P, T, F, κ)∈NQ and425

let SN=(N′=(P′, T′={t1, t2, . . . , tn}, F′, κ|T′), •t1, t1•) s.t. θ	(N, SN) according to Proposition 4. The426

feasible pattern θ	(N, SN) is globally language-preserving.427

Proof. Let N′′ denote the net obtained after reduction (cf. Definition 9) and let P′′=(P\P′)∪Pi∪Po.428

Observe that, Λ(N) and Λ(N′′) are identical, except for Λ(N′) and λ̂(t′) respectively. Again, the only429

connections between N′ and t′ with the identical parts of the two nets are through Pi (“entering”)430

and Po(“exiting”). In particular, when Pi is marked, the only way to mark Po is by firing t1, followed431

by an arbitrary number of 〈t2, t1〉 repetitions. Hence, if there exists a visible firing sequence in432

Lν
N (Λ(N), M, M′) that is not in Lν

N (Λ(N′′), M, M′), this can only be due to different behavior433

described by Λ(N′) and λ(t′), contradicting the feasibility of the pattern.434
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Algorithm 1: WF-net Reduction
input :W= (P, T, F, pi, po, `)∈W
output :W ′=(P′, T′, F′, pi, po, κ)∈WQ

1 P′, T′, F′, κ←P, T, F, `;
2 while ∃ SN∈SNQ s.t. θ⊕(N, SN) for ⊕∈{→,×,∧,	} do
3 P′, T′, F′, κ ← Θ⊕(N, SN);

4 return (P′, T′, F′, pi, po, κ);

3.4. Algorithm435

In this section, we present an algorithm that iteratively applies the reductions defined in Section 3.3.436

By doing so, the algorithm is able to translate a WF-net into a process tree. We prove that, if the437

algorithm terminates correctly, i.e., it finds a process tree, the input WF-net is sound. Moreover, we438

show that the language of the input WF-net equals the language of the process tree found.439

Consider Algorithm 1, in which we present an algorithmic description of the reduction algorithm,440

on the basis of the proposed patterns in Section 3.3. As an input, the algorithm needs any WF-net W,441

which, by definition, is also a PTWF-net. Initially, the elements of W, excluding the initial and final442

place, are copied into variables P′, T′, F′, κ. In case any pattern of the form θ⊕(N, SN) is found in N,443

the corresponding reduction Θ⊕(N, SN) is applied (line 3). If no more pattern is found, the algorithm444

returns (N, pi, po, κ). The algorithm returns the most recent reduction, if no more pattern is found.445

Observe that, intentionally, the order and size of the patterns to be reduced is not specified, i.e., it446

is of no relevance to any of the lemmas and the theorems regarding the algorithms properties and447

correctness.448

In case the obtained PTree-WF-net consists of just one transition, i.e., connected to place pi449

(incoming) and place po (outgoing), cf. Fig. 5e, the label of the transition represents a process tree,450

describing the same language as the original WF-net. Furthermore, we can conclude that the original451

WF-net is, in fact, a sound WF-net. We prove these observations in Theorem 1. However, before this,452

we first present two useful lemmas. In Lemma 5, we prove that the proposed reduction rules are453

bidirectionally soundness preserving, i.e., if a PTree-WF-net is sound, the reduced PTree-WF-net is454

sound (and vice versa). In Lemma 6, we prove that, if we are able, from the initial marking [pi], to455

enable the observed fragment (enabling differs per fragment), then the language of the original net456

and the reduced net is equal (and vice versa). Observe that, trivially, the reduction rules applied on a457

PTree-WF-net yield a PTree-WF-net, i.e., none of the requirements of Definition 1 are violated on the458

resulting net.459

Lemma 5 (Pattern Reduction is Soundness Preserving). Let ⊕∈{→,×,∧,	460

}, let W=(P, T, F, pi, po, κ)∈WQ, let SN∈SNQ, s.t., θ⊕(W, SN), and, let461

W ′=(P′, T′, F′, pi, po, κ′)=Θ⊕(W, SN)∈WQ. W ′ is sound iff W is sound.462

Proof. (⇒) Let t′∈T′\T. Assume that W is sound, yet, W ′ is not sound. By definition of any reduction463

Θ⊕(W, SN), if W ′ is not safe, then W is not safe. For any t∈T∩T′, if @M∈R(W ′, [pi]) ((W ′, M)[t〉), then464

also, @M∈R(W, [pi]) ((W, M)[t〉). Similarly, if @M∈R(W ′, [pi]) ((W ′, M)[t′〉), then this is also holds465

for the transitions in SN. In case ∃M∈R(W ′, [pi]) s.t. @σ∈T′∗
(
(W ′, M)

σ−→→ (W ′, [po])
)

, then, again by466

definition of the reductions, also M∈R(W ′, [pi]) and @σ∈T′∗
(
(W, M)

σ−→→ (W, [po])
)

, contradicting467

soundness of W.468

(⇐) Assume that W ′ is sound, yet, W is not sound. Given that W ′ and W only differ on t′ and SN469

respectively, the “non-sound” part of W needs to be part of SN. However, it is easy to see that none470

of the patterns defined in Section 3.3 do not describe any non-sound construct. Hence, replacing SN,471

implies that W ′ needs to be unsound, which contradicts the assumption.472
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Figure 12. Overview of the experimental setup of the conducted experiments.

Lemma 6 (Pattern Reduction is Language Preserving in Λ). Let ⊕∈{→473

,×,∧,	}, let W=(P, T, F, pi, po, κ)∈WQ, let SN∈SNQ, s.t., θ⊕(W, SN), and, let474

W ′=(P′, T′, F′, pi, po, κ′)=Θ⊕(W, SN)∈WQ. Lν
N (Λ(W))=Lν

N (Λ(W ′)).475

Proof. Trivially follows from Lemmas 1-4.476

Theorem 1 (Algorithm 1 is able to find Language-Equal Process Trees). Let W= (P, T, F, pi, po, `)∈W477

and let W ′=(P′, T′, F′, p′ i, p′o, κ)∈WQ be the resulting WF-net of Algorithm 1 on W. If P′={Pi, Po}, T′={t},478

and, F= {(pi, t) , (t, po)}, then, LQ(κ(t))=Lν
N (W).479

Proof. Observe that, W is sound. Lemma 5 implies that if we (continuously) revert the reductions480

applied by Algorithm 1, i.e., corresponding to all intermediate assignments of W in Algorithm 1, all481

reverted nets are sound.6 Observe that, Lemma 6 proves that the language of the unfoldings of all the482

intermediate WF-nets found is the same as well. Since the labels of the initial WF-net are all members483

of Σ∪{τ}, their unfolding remains the same. Hence, we deduce LQ(κ(t))=Lν
N (W).484

It is important to note that the algorithm nor the supporting lemmas and proofs specify any485

condition on order and the size of the pattern(s) to be reduced. In fact, the size of the pattern reduced486

is not of influence w.r.t. any of the correctness proofs. Note that, indeed,→ (Q1,→ (Q2,→ (Q3, τ)))487

corresponds to→ (Q1, Q2, Q3), and hence, whether we iteratively find the first pattern, or apply some488

form of pattern maximization strategy to instantly find the latter pattern is not at all of influence w.r.t.489

correctness of the proposed algorithm.490

4. Evaluation491

In this section, we evaluate the proposed algorithm. We briefly present the implementation, after492

which we discuss the experimental setup and the results.493

4.1. Implementation494

An implementation of Algorithm 1 is available7, i.e., built on top of the process mining framework495

PM4Py [10]. As indicated, the size of the patterns identified has no influence on the correctness of the496

algorithm. Hence, the implementation searches for binary patterns, yielding binary trees. Such a tree497

can be further reduced, e.g.,→ (Q1,→ (Q2,→ (Q3, τ))) corresponds to→ (Q1, Q2, Q3).498

4.2. Experimental Setup499

Here, we briefly discuss the experimental setup of our experiments. Consider Fig. 12, in which500

we present a graphical overview. Using an implementation of PTandLogGenerator [14,15], we generate501

process trees, using two triangular distributions for the number of activities, i.e., {10, 20, 30} and502

{40, 50, 60}. The process trees are translated to WF-nets, using two different translations. One503

translation creates invisible start and end transitions for each operator; the other translation only504

does so when required (similar to Fig. 4). The first translation generates larger nets in terms of505

transitions/places/arcs. For each tirangular distribution/translation combination, we generate 50.000506

6 As a corollary of this fact, it follows that W is sound.
7 https://github.com/s-j-v-zelst/pm4py-source/blob/pn_to_pt/scripts/pn_to_pt.py

https://github.com/s-j-v-zelst/pm4py-source/blob/pn_to_pt/scripts/pn_to_pt.py
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Figure 13. Average time performance of the implementation. A quadratic relation, in computation
time measured in micro-seconds (µ-seconds), w.r.t. the size of the WF-net, is observable.

process trees (yielding 200.000 experiments). Finally, we compare the generated process tree in canonical507

form[16, Section 5.1], to the resulting process tree in canonical form.508

4.3. Results509

Here, we briefly discuss the results of the conducted experiments. Consider Fig. 13, in which we510

present the average time performance of the implementation on the data as generated according to511

the described experimental setup. We plot the time performance, conditional to the size of the input512

WF-net. Additionally, we plot a polynomial trend-line, computed using polynomial least squares. As513

is clearly observable in Fig. 13, the time performance is quadratic in the size of the net (|P|+ |T|). This514

is confirmed by the R2-score of the trend-line, i.e,. ∼ 0.988. In all experiments, the canonical form of515

the generated process tree equals the canonical form of the (re)discovered process tree.516

5. Related Work517

Process trees are often used in the domain of process mining. However, a complete overview of518

the field is outside of scope, i.e., we refer to [1] for a gentle introduction. Similarly, we refer to [17] for519

an in-depth overview of process discovery algorithms, and, we refer to [18] for an overview of the520

sub-field of conformance checking.521

The conceptual idea of transforming a given process model in a certain formalism F into an522

alternative process modeling formalism F′ is well-studied. Transformations of graph-oriented modeling523

formalisms, e.g., Petri nets, and block-oriented modeling formalisms, e.g., Process Trees, are often studied.524

In [19], the authors generalize work that transforms (both ways) graph-based process modeling525

formalisms into Business Process Execution Language for Webservices (BPEL) (an XML-based format). The526

authors characterize several strategies for such translations. In this context, the work presented in this527

paper belongs to the structure-identification category.528

Of particular interest is the work of van der Aalst and Lassen [20,21], i.e., on translating of WF-nets529

to BPEL. In the work, XML fragments of BPEL are generated on the basis of a given WF-net. Since530

XML, by definition, is a tree-like data representation, BPEL and process trees are conceptually close.531

The algorithm replaces components, i.e., connected, complete subnets with a unique start and end532

element, i.e., such a start/end element can be either a place or a transition. The authors prove that533

“folding” a WF-net based on an identified component, under certain conditions, yields a sound WF-net.534

The folding operator for components as defined in [20] can be regarded as being very similar to the535
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reduction (cf. Definition 9) presented in this paper. However, note that the proofs in [20] only hold536

for compoonents, i.e., subnets with a single entry and exit. The algorithm described in [20] is similar537

to the algorithm presented in this paper, i.e., searching and replacing patterns until either a WF-net538

with a single transition is found, or no more pattern is found. However, within the algorithm, a539

specific ordering for the patterns and a maximization of the pattern-size is applied. Observe that,540

whereas [20,21] is conceptually close to the work presented here, there are several differences as well.541

For example, in this work, we use system nets to represent patterns, i.e., lifting the single source/sink542

requirement for pattern recognition. As such, the algorithm presented in this paper is able to detect543

process tree fragments in WF-nets, in which the algorithm reported on in [20,21] would not find any544

fragments. Similarly, the algorithm presented in this paper does not impose any order on the reduction545

of the patterns identified, nor on their size. However, there is no clear motivation provided in [20] on546

the underlying reasons for imposing an order and maximization w.r.t. pattern detection.547

In [22,23] the notion of the Refined Process Structure Tree (RPST) and its computation is introduced.548

The RPST is a hierarchical grouping of the edges present in a process model (defined as a workflow549

graph). As such, the given process model can be decomposed, i.e., on the basis of the hierarchy550

described by the RPST. Similar to [20,21], the identified model-fragments need a single source and551

a single sink element. The works [22,23] exemplify computing the RPST of a given BPMN model552

(which complies with the definition of the workflow graphs mentioned earlier), yet, indicate that553

the concepts can be generalized to WF-nets. However, as we show in Section 6.2, the fact that the554

RPST, by definition, ignores the semantics of the model provided as an input, leads the algorithm555

to find tree structures in unsound Workflow nets. The RPST decomposition has been exploited in556

various noteworthy other studies. In [24,25], the authors use the RPST to “structure acyclic process557

models”. The core idea is to compute an RPST decomposition of a given acyclic model, which is558

possibly unstructured. An unstructured part of the model is recognized as a rigid component in the559

RPST decomposition. Subsequently, the behavioral ordering relations of the rigid component are560

computed, and a corresponding structured process model is synthesized. Since there exist process561

models that do not have an equivalent well-structured representation, the aforementioned work is562

further extended in [26], in which the authors exploit the RPST decomposition to compute a maximally563

structured version of the input process model. In [27], the authors extend the notion of RPSTs for564

sound free-choice Wf-nets, i.e., referred to as a WF-tree. Within a WF-Tree, certain internal vertices can be565

labeled as being either place-bordered, transition-bordered, or as a loop construct. As such, the authors566

partially annotate the RPST with behavioral information. Whereas the RPST is computed on the basis567

of a tree of triconnected components, other similar tree-based abstractions of process models have been568

considered as well. In [28], the authors propose to exploit the tree of biconnected components to check569

whether a given workflow net is sound on the basis of its structure. In particular, the authors show570

that it is sufficient to show that one biconnected subnet of the workflow net is not safe and sound, to571

conclude that the WF-net as a whole is not sound.572

The reductions presented in this paper, alternatively to the different works on translating process573

modeling formalisms into each other, bear similarity to various reduction rules established on general574

Petri nets. The general idea of Petri net reduction (or the opposite, expansion) is a substitution of575

elements of a Petri net, i.e., either by a smaller or larger newly added subnet, while preserving the576

behavioral properties of the net. For example, in [29], the authors propose step-wise refinements of577

both transitions and places in Petri nets, while preserving liveness and boundedness properties of578

the Petri net. Similarly, in [30], the author propose a set of reduction rules for Colored WF-nets, i.e.,579

WF-nets with additional data flow semantics. In [31], the authors present a set of reduction rules for580

free-choice probabilistic WF-nets, i.e., WF-nets in which transitions have an associated probability and581

reward. In particular, the reduction rules are proposed in order to preserve the expected reward of the582

workflow.583

Clearly, the work presented in this paper bears similarity with the different works mentioned.584

However, the works in the area of process model transformation are typically not defined for WF-nets,585
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Figure 14. Schematic visualization of the 	s-pattern reduction. The pre and post-set of transitions
t1, t2, ..., tn are the same. In the reduction, the places are “split” into two groups, one copying all dashed
incoming arcs, one copying all dashed outgoing arcs. The newly added transition t′ is placed inbetween
with label 	 (τ,×(κ(t1), ..., κ(tn))).

e.g., the RPST decomposition, or are more restrictive on the patterns to be replaced, e.g., the maximized586

unique source/sink patterns of [20]. Similarly, whereas the reduction patterns defined here do preserve587

the soundness of the WF-net, i.e., if the given WF-net is sound, the core of the related work in the field588

focuses more on the preservation of various behavioral properties.589

6. Discussion590

In this section, we discuss various aspects of the algorithm proposed in this paper. Firstly, i.e.,591

in Section 6.1, we discuss the degree of extensibility of the framework, e.g., we discuss the detection592

of self-loops. Secondly, i.e., in Section 6.2, we provide an in-depth discussion of the relation of the593

proposed algorithm w.r.t. computation of the RPST decomposition. Finally, in ??, we discuss the594

reducibility of arbitrary WF-nets in the context of our proposed algorithm, i.e., we show an example of595

simple sound WF-nets for which the algorithm cannot find a corresponding process tree.596

6.1. Extensibility597

Since correctness of the proposed algorithm (cf. Theorem 1) holds for any feasible pattern (cf.598

Definition 8) that is globally language preserving, the algorithm presented in this paper is easily599

extended with additional reduction rules. Hence, any system net that describes a language that is600

equal to the language of a process tree can be reduced (conditional to the aforementioned global601

language preservation). For example, consider the self-loop reduction visualized in Fig. 14 and defined602

in Proposition 5.603

Proposition 5 (	s-Pattern (Self-Loop)). Let N=(P, T, F, κ)∈NQ and let T′⊆T (|T|≥1). If and only if:604

1. ∀t, t′∈T′ (•t=t•=•t′=t′•); all transitions are self-loops on the same set of places,605

then, system net SN=(N′=(P′, T′, F′, κ|T′), •T, T•), with P=•T, F={(x, y)∈F | x∈T′∨y∈T′}, is a feasible606

	s-pattern.607

Observer that, applying the reduction as defined in Definition 9, again yields a self-loop. Hence,608

in the reduction, we split-up the places, i.e., one group of places, forming the preset of the newly609

generated transition t′ copies all incoming arcs of the places of the pattern (excluding the connections610

to t1, ..., t2). The other “freshly” added place copies all outgoing arcs of the places of the pattern (again611

excluding the connections to t1, ..., t2).612

Consider Fig. 15, in which we depict a simple example of the application of the self-loop reduction613

as described. The transitions t2 and t3 in the WF-net depicted in Fig. 15a are self-loops on place p1.614

In Fig. 15b, the reduction is applied only on t2. Note that, in this model, a loop reduction can be615

applied yielding 	 (	 (τ, b), c). Note that, first reducing t3 is symmetrical, i.e., eventually yielding616

	 (	 (τ, c), b). Note that both process trees, indeed, describe the language (b∗c∗)∗ (i.e., when described617

as a regular expression). In Fig. 15c, we show the application of the self-loop reduction when it is618

applied directly using T={t2, t3}. In this case, the reduction yields a new transition t′2 with label619
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(a) Simple WF-net, having self loop transitions t2 and
t3.
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(b) Self-loop reduction where T′={t2}.
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p′1 t′2

	 (τ,×(b, c))

p′′1 t4
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(c) Self-loop reduction where T′={t2, t3}
Figure 15. Example application of the self-loop pattern reduction.

	 (τ,×(b, c)). Again, the language described by the process tree discovered can be described by620

(b∗c∗)∗. Finally, let X denote any of the three process tree fragments discoverable in the example621

describing (b∗c∗)∗. Observe that the reduction algorithm discovers→(a, X, d) (or any binary form622

thereof), which corresponds to the regular expression a(b∗c∗)d, which is indeed the language of the623

WF-net depicted in Fig. 15a.624

Observe that the self-loop pattern shows that the algorithm proposed is extensible. However,625

in this case, the reduction step needs to be altered to avoid iteratively adding self-loop places (i.e.,626

indefinitely). Any pattern can be reduced, i.e., as long as it is a feasible pattern that is globally627

language-preerving. For example, in some cases, the inclusive or operator is considered in the context628

of process trees, i.e., ∨(Q1, ..., Qn). An inclusive or structure dictates that at least one of its children629

Q1, ..., Qn is executed, yet, possibly, all are executed. The order in which the children are executed is630

irrelevant. Similarly, the interleaved operator is sometimes considered, i.e.,↔(Q1, ..., Qn). This operator631

requires that all its children are executed in any order, however, the behavior of the respective children632

cannot be shuffled, i.e., this is allowed by ∧(Q1, ..., Qn). Since both operators have a translation to a633

Petri net structure, these patterns can serve as a basis for reduction (potentially in a generalized form).634

However, note that these patterns are more involved w.r.t. the four basic patterns (and the self-loop635

pattern) presented in this paper.636

6.2. Relation to Refined Process Structure Tree637

One of the works that is conceptually very close to the work presented in this paper, is the work638

on the Refined Process Structure Tree (RPST) [22,23]. An RPST describes a hierarchy of sub-workflows639

of a workflow graph, such that each sub-workflow represents a connected subgraph with a single entry640

and single exit of control. In this context, a workflow graph is simply a two-terminal graph (TTG),641

i.e., a directed graph without self-loops with a unique source (s) and sink node (t 6=s), s.t. each node642

in the TTG is on a path from s to t. Note that a WF-net, i.e., from a graph-theoretical perspective,643

is a workflow graph. However, various other process modeling formalisms, e.g., BPMN, are also644

considered a workflow graph. Hence, an RPST can be computed on a much wider variety of process645

modeling formalisms, i.e., compared to the approach presented in this paper.646

Formally, given a workflow graph GW=(V, E, w) (a multi-graph in which w assigns each edge647

in E to an ordered pair of nodes) an RPST is a hierarchy of fragments. A fragment is a subset E′⊆E of648

arcs, s.t., the subgraph formed by E′ (including their incident vertices) is connected. Furthermore, the649

fragment should only contain one unique entry vertex and one unique exit vertex. A vertex is an entry650

vertex iff none of its incoming arcs are part of E′ or all of its outgoing arcs are part of E′. A vertex is an651

exit vertex iff none of its outgoing arcs are part of E′ or all of its incoming arcs are part of E′. The RPST652

of a workflow graph is the set of canonical fragments, i.e., those fragments that completely contain653
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(a) Simple WF-net W2.
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(b) The workflow graph of W2, including
its canonical fragments.
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(c) The RPST of W2

Figure 16. Example of an RPST decomposition (Fig. 16c) based on the workflow graph (Fig. 16b) of a
simple sound WF-net W2 (Fig. 16a) .

other fragments or are completely contained by other fragments, i.e., any overlap between fragments654

is not allowed. In [23], the authors show that computation of an RPST is equivalent to computing the655

tree of triconnected components on a normalized variant of GW
8.656

Clearly, each individual edge of a workflow graph is a fragment. Similarly, the complete set of657

arcs E defines a fragment. As an example, consider Fig. 16, in which we present a simple example658

WF-net (Fig. 16a) and its corresponding RPST decomposition (Fig. 16b and Fig. 16c). The edges (pi, t1)659

and (t1, p1), visualized as e1 and e2 are part of the root fragment, i.e. F0, which is the complete edge set660

of the WF-net/workflow graph. The choice construct, i.e., connecting place p1 and po to transitions661

t2 and t3 respectively, comprises fragment F1, which is further subdivided into fragments F2 and F3.662

Note that, the process tree corresponding to W2 is→ (a,×(b, c)), i.e., consisting of 5 vertices. Hence,663

to translate the RPST to the corresponding process tree, we need to “collapse” F2 and F3 into b and c664

respectively. Similarly, F1 needs to be transformed to ×, and, F0 needs to be transformed to→. Finally,665

e1 and e2 need to be merged into a.666

The previous example illustrates that there is no general direct correspondence between the RPST667

of a WF-net and a corresponding process tree that describes the same language. Furthermore, it shows668

that translation of the RPST to a process tree is a non-trivial operation. As the RPST decomposition669

ignores the semantics of a WF-net, i.e., contributing to its more general applicability w.r.t. the algorithm670

presented in this paper (only applicable to process models that can be transformed into a WF-net), it671

also exists for WF-nets that are unsound.672

Due to the generic nature of the RPST, i.e., it defines a graph-theoretical property of a workflow673

graph, it (largely) ignores the semantics and graph-theoretical properties of Petri nets. In particular,674

as an activity in a BPMN model only consists of a single entry and exit arc, within the underlying675

workflow graphs these activities are simply presented as a single edge. Since transitions in Petri nets676

represent process activities, and, transitions are able to have multiple incoming and outgoing arcs,677

transitions in a WF-net cannot be represented as a single arc in the corresponding WF graph.678

For example, consider Fig. 16, in which we show the RPST of a WF-net that is not well-handled,679

i.e., t1 generates concurrent behavior, place p3 merges both branches of concurrent behavior. Since680

the RPST decomposition is not aware of the conceptual difference between places and transitions, the681

RPST subdivides the graph into several fragments. However, this is rather inconvenient, since the682

WF-net is not sound at all. Hence, from the RPST decomposition itself, one cannot judge whether a683

corresponding process tree exists.684

The reverse is also possible, i.e., given a WF-net with a corresponding process tree representation,685

finding an RPST can be challenging. For example, when computing the RPST of the running example686

8 Normalization is performed by splitting vertices with multiple different incoming and outgoing edges into two nodes
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(a) Simple unsound (not
well-handled) WF-net W3.
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(b) The workflow graph of W3, including
its canonical fragments.
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Figure 17. Example of an RPST decomposition (Fig. 16c) based on the workflow graph (Fig. 16b) of a
simple sound WF-net W2 (Fig. 16a) .
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Figure 18. A Free-Choice WF-net for which the algorithm cannot find a corresponding process tree.

used in this paper, i.e., Fig. 2, the behavior formed by the loop transition t6 cannot be decomposed into687

smaller chuncks9 Observe that the algorithm proposed in this paper is able to find the loop behavior688

due to the simplification of the reduction steps executed prior to the loop detection in Fig. 5c.689

Note that the aforementioned examples are not intended to disqualify the application of the690

RPST decomposition for the purpose of transforming WF-nets to process trees. However, they merely691

indicate that using the RPST decomposition as a basis for such translation is not a trivial adoption.692

6.3. Reducibility of WF-Nets693

Thus far, we have considered various system net based patterns that we reduce into a694

corresponding process tree notation. We have shown that if the algorithm returns a WF-net with a695

specific structure, its label captures a process tree describing the same language as the original WF-net.696

However, it remains an open question what class of WF-nets are guaranteed to result in a process tree.697

Since the basic operators considered in this paper all correspond to free-choice WF-nets, i.e., WF-nets698

s.t., ∀p∈P (|p•|=1∨•(p•)={p}) (a place either has one outgoing arc, or it is the sole incoming arc of699

all transitions it connects to). Hence, intuitively, we suspect that the class of free choice nets always700

yields a corresponding process tree.701

However, consider Fig. 18, in which we depict a free-choice WF-net, which the proposed algorithm702

is not able to reduce. Observe that the model consists of two concurrent branches, i.e., enabled by703

transition t1. However, execution of transition t5 is conditional to execution of t2, i.e., firing both t3 and704

t2 enables transition t5. One can look at this type of condition, i.e., induced by place p7, as a non-local705

behavioral relation. There is interaction between members of the “upper part” and the “lower part”706

of the concurrent construct. Such a type of interaction cannot be modeled using a tree-based process707

modeling formalism.708

Based on the previous example, we conclude that any class extending free-choice Petri nets709

might represent various WF-nets that cannot be reduced by the algorithm proposed. The notion of710

block-structured WF-nets seems to be an adequate subclass of free-choice WF-nets that can always be711

reduced by the model, i.e., they are often used interchangeable with process trees. However, an exact712

9 In terms of RPST, the loop structure is generating a rigid fragment.
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structural definition of said class of WF-nets does not exist in literature (yet). For example, in [16],713

an informal description of block-structured WF-nets is proposed: “A workflow net is block structured714

if for every place or transitions with multiple outgoing arcs, there is a corresponding place or transition with715

multiple incoming arcs. The parts of the net between the outgoing and incoming arcs form regions, and no arcs716

can exist between regions, i.e. the regions have a single entry and a single exit.” However, transforming said717

description into a formal, graph-theoretical property, is not trivial for cyclic models.718

7. Conclusion719

In this paper, we presented an algorithm to construct a process tree on the basis of a Workflow net720

(WF-net). The proposed algorithm replaces fragments of the WF-net that correspond to a process tree721

operator, i.e., by means of reduction rules. If the algorithm reduces the WF-net into a net, containing just722

one transition, there exists a corresponding process tree for the given WF-net, with the same language.723

The reduction rules proposed are bidirectionally soundness preserving. Hence, in case a process724

tree is found, the original WF-net is sound. We have conducted experiments using a prototypical725

implementation, indicating quadratic time complexity in the net and process tree rediscoverability.726

Future Work We aim to extend the work presented in this paper in the following directions. We727

aim to provide diagnostics w.r.t. the reason why a given WF-net cannot be reduced further, e.g., by728

assessing if removal of certain elements of the WF-net allows for further reduction. Alternatively,729

it is interesting to “wrap” certain fragments of the net into an encapsulating transition, after which730

the search to process tree fragments is continued. Another interesting direction, as briefly discussed731

in Section 6, is the search for structural properties of WF-nets that directly indicate whether a given732

WF-net corresponds to a process tree.733
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