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Abstract. Interest in stochastic models for business processes has been revived
in a recent series of studies on uncertainty in process models and event logs, with
corresponding process mining techniques. In this context, variants of stochas-
tic labelled Petri nets, that is with duplicate labels and silent transitions, have
been employed as a reference model. Reasoning on the stochastic, finite-length
behaviours induced by such nets is consequently central to solve a variety of
model-driven and data-driven analysis tasks, but this is challenging due to the
interplay of uncertainty and the potentially infinitely traces (including silent tran-
sitions) induced by the net. This explains why reasoning has been conducted in
an approximated way, or by imposing restrictions on the model. The goal of this
paper is to provide a deeper understanding of such nets, showing how reasoning
can be properly conducted by leveraging solid techniques from qualitative model
checking of Markov chains, paired with automata-based techniques to suitably
handle silent transitions. We exploit this connection to solve three central prob-
lems: computing the probability of reaching a particular final marking; computing
the probability of a trace or that a temporal property, specified as a finite-state au-
tomaton, is satisfied by the net; checking whether the net stochastically conforms
to a probabilistic Declare model. The different techniques have all been imple-
mented in a proof-of-concept prototype.

Keywords: Stochastic Petri nets · stochastic process mining · qualitative verifi-
cation · Markov chains

1 Introduction
In process mining, recorded organisational process data is leveraged to gain insights into
business processes by means of analysis techniques. Process mining techniques have
traditionally taken the frequency and timing of observed behaviour into account im-
plicitly: depending on the type of analysis performed, the most-occurring happy paths
vs. little-occurring deviations, as well as quick vs. slow performing activities, might be
of interest and is essential for quantifiable insights. For instance, a quality control pro-
cess with 30% failed checks is a considerably different process than a process with 2%
failed checks, even though the control flow would be equivalent. Explicitly modelling
the stochastic perspective of process models – how likely each behaviour is – may assist
in obtaining quantifiable insights, and in ensuring the quality of simulation, prediction
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(b) Stochastic net with confusion, adapted from [6].

Fig. 1: Two examples of labelled stochastic Petri nets.
and recommendation. Recent work includes discovery techniques to automatically dis-
cover stochastic process models [22,5].

Stochastic process models (such as generalised stochastic Petri nets [19]) provide
this information explicitly by indicating the likelihood and timing of steps in the process
and, indirectly, of process behaviour (traces). Not surprisingly, interest in these stochas-
tic models has been revived in the context of process mining, with a series of recent
studies focused on: (1) discovery of stochastic process models that indicate the likeli-
hood of behaviour [5,22]; (2) repair of process models [21]; (3) conformance checking,
either comparing the stochastic behaviour of a log with that expected by a stochastic
process models to gain insights from their differences [15,16], or using the likelihood
of model traces when aligning observed traces with a reference model [2].

When attacking these problems, it becomes essential to reason on the stochastic
behaviour captured by the process, for example to determine the likelihood of model
traces. Traditional techniques relying on the connection between stochastic Petri nets
and Markov chains [20,19] cannot be readily applied to this setting, due to key con-
ceptual mismatches related to the usage of stochastic Petri nets to represent business
processes. First, transitions in the net must be labelled with corresponding (names of)
activities in the processes, possibly using the same label for multiple transitions. Sec-
ond, silent transitions should be supported, to represent control-flow structures in the
process (such as gateways) that do not correspond to any visible activity. Third, when
analysing the dynamics of the net the focus is not on infinite, recurring behaviour, but
on finite traces representing the possible executions of process instances, moving a case
object from the initial to a final state without considering which silent steps have been
taken in between.

Supporting all these modelling requirements makes it difficult to actually reason
on the traces supported by these nets and their probabilities. To see this, consider the
labelled stochastic Petri net shown in Figure 1(a) (we will introduce these nets formally
in Section 3). This model has two traces, however computing the likelihood of the traces
may be counterintuitive: the likelihood of the trace of a followed by b is 2

3 [17]. The
challenge here stems from the loop of silent transitions, which “favours” b over c.

Another example of potentially counterintuitive likelihoods of traces is shown in
1(b). In this net, the likelihood of a followed by c is 3

4 . The challenge in this example is
again the silent transition, which is used here in a semi-concurrent context: the transition
c is mutually exclusive with transition d, but as c is part of two runs (that is, executed
before or after the silent transition), its probability is higher than one might expect [6,
confusion]. In Section 2, we describe how existing techniques address or circumvent
these challenges.

The main contribution of the paper is to take stochastic process mining a step further
by providing analytic methods to solve the following related problems:



Reasoning on Labelled Petri Nets and their Dynamics in a Stochastic Setting 3

(Outcome probability) Given a stochastic Petri net and a set of final markings, what
is the likelihood of a trace of the net ending in one of the markings?

(Verification) Given a temporal property captured by a finite-state automaton (e.g., an
LTLf formula or a Declare model), what is the probability that the net generates
a trace satisfying the property? A special case of this problem is calculating the
probability of a trace.

(Stochastic model conformance) Given a set of probabilistic temporal constraints
[18] and a labelled stochastic Petri net, does the net conform to the set by com-
paring their stochastic behaviours?
We address these problems by transforming them into problems that can be solved

using well-established techniques. In particular, we build on the connection [19] be-
tween stochastic Petri nets and Markov chains [11,12], paired with automata-based
techniques to handle their qualitative verification against temporal properties [1, Ch.10].
We use the former to compute the probability of reaching a target marking, and the latter
to handle silent transitions, and to isolate the behaviour induced by the net that satisfy
a property of interest.

The methods have been implemented as part of the ProM framework [10].

2 Related Work
Stochastic process-based models have been studied extensively in literature. In the con-
text of this work, we are interested in formal, Petri net-based stochastic models that
are at the basis of the recent series of approaches in stochastic process discovery [5,22]
and conformance checking [15,16,3]. Such approaches all refer to the model of (gener-
alised) stochastic Petri nets, or fragments thereof. A first version of this model was pro-
posed in [20], extending Petri nets by assigning exponentially distributed firing rates to
transitions. This was extended in [19] by distinguishing timed (as in [20]) and immedi-
ate transitions. Immediate transitions have priority over timed ones, and have weights to
define their relative likelihood. As these two types of transitions, abstracting from time,
behave homogeneously, we may capture the stochastic behaviour of the net through a
discrete-time Markov chain [19].

Several variants of stochastic Petri nets have been investigated starting from the
seminal work in [19]. These variants differ from each other depending on the features
they support (e.g., arbiters to resolve non-determinism, immediate vs timed transitions)
and the way they express probabilities. Such nets may aid modellers in expressing cer-
tain constructs. An orthogonal, important dimension is to ensure that probabilities and
concurrency interact properly. This can be achieved through good modelling princi-
ples [19,6] or automated techniques [4].

Contrasting these formal models with recent works in stochastic process mining,
key differences exist. Traditional stochastic nets do not support transition labels nor
silent transitions, and put emphasis on recurring, infinite executions and the so-called
steady-state analysis, focused on calculating the probability that an execution is cur-
rently placed in a given state. This is done by constructing a discrete-time Markov chain
that characterises the stochastic behaviour of the net [20,19]. Finding the probability of
a finite-length trace in such nets is trivial, as every trace corresponds to a single path.
However, no transition labels or silent steps are supported, which limits their usefulness
for process mining due to the omnipresence of such transitions in process models. On
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the other hand, when these features are incorporated in stochastic Petri nets, which is
precisely what we target in this paper, computing the probability of a trace cannot be
approached directly anymore, as infinitely many paths would in principle need to be
inspected. At the same time, in business processes we are interested in behaviour at
the trace level rather than at the process level – that is, traces have a finite length and
are in principle independent –, thus the large body of work on steady-state-based anal-
yses does not apply for our purposes. This explains why reasoning on the stochastic
behaviour of such extended nets has been conducted in an approximated way [15,16],
or by imposing restrictions on the model [3].

To bridge this gap, in this paper we take the most basic stochastic Petri nets: we
do not consider time or priority, but we add (duplicate) labels and silent transitions.
Importantly, our results seamlessly carry over bounded, generalised stochastic Petri
nets, thanks to the fact that incorporating priorities in bounded nets is harmless, and
that timed and immediate transitions are homogeneous from the stochastic point of
view. To the best of our knowledge, outside of recent work using stochastic Petri nets
with silent transitions [15,17,3], such nets have not been defined or studied before.

While intuitively stochastic conformance checking techniques need to obtain the
probability of a given trace in a stochastic process model (for instance, [17] explicitly
obtains this probability to compute a distance measure between a log and a stochastic
process model), some stochastic conformance checking techniques avoid computing
the probability for a single trace, for instance by playing out the model to obtain a
sample of executions [15], or by assuming that the model is deterministic [16]. The
results presented in this paper therefore enable the practical application of [17], and
may enable further stochastic conformance checking techniques and, consequently, new
types of analysis.

Silent steps have been studied in the context of automata. For instance, in [13] an
ad-hoc method is described to iteratively remove all silent steps from a stochastic au-
tomaton. Due to concurrency and confusion (see for instance Figure 1(b)), such tech-
niques are not directly applicable to stochastic Petri nets. A result of this paper is that
silent steps can be handled directly, without the need for ad-hoc techniques.

3 Stochastic Petri Net-Based Processes

We first provide some brief preliminaries on multisets. A multiset a over a set U (which
defines the support of the multiset) is a function a : U → N, where for u ∈ U , a(u)
indicates the multiplicity (i.e., the number of occurrences) of u. Given two multisets a
and b over U , we write:
• a + b for the union of a and b, defined as the multiset that assigns to each u ∈ U

multiplicity a(u) + b(u);
• a ≤ b if for every u ∈ U , we have a(u) ≤ b(u);
• assuming a ≤ b, b−a for the difference of b and a, defined as the multiset that assigns

to each u ∈ U multiplicity b(u)− a(u).
The set of all multisets over U is defined as M(U). Multiset a is explicitly represented
placing inside squared brackets [. . .] each element u with non-zero multiplicity, using
notation ua(u).
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Fig. 2: Stochastic net of an order-to-cash process. Weights are presented symbolically.
Transition t12 captures a task that cannot be logged, and so is modelled as silent.

3.1 Labelled Petri Nets

As underlying control-flow structure to specify work processes, we consider Petri nets
that are labelled with (atomic) tasks. As customary in Business Process Management,
the same task may be used to label multiple transitions in the process, and among all
labels, we include a special label to indicate silent steps, which are internal execution
steps of the process that are not explicitly exposed to the external environment (and are
thus not recorded in event logs). To capture such labels, we assume a finite set Σ to
denote task (names), and a special label τ ̸∈ Σ to indicate a silent step. We also use
Σ = Σ ∪ {τ} to denote the extended set containing task names and the silent label.

Definition 1 (Labelled Petri net). A labelled Petri net N is a tuple ⟨Q,T, F, ℓ⟩, where:
(i) Q is a finite set of places; (ii) T is a finite set of transitions, disjoint from Q (i.e.,
Q ∩ T = ∅); (iii) F ⊆ (Q × T ) ∪ (T × Q) is a flow relation connecting places to
transitions and transitions to places; (iv) ℓ : T →Σ is a labelling function mapping
each transition t ∈ T to a corresponding label ℓ(t) that is either a task name from Σ
or the silent label τ . ◁

In the paper, we adopt a dot notation to extract the component of interest from a net,
that is, given a net N , its places are denoted by N.Q, etc. We will adopt the same
notational convention for the other definitions as well. Given a net N and an element
x ∈ N.Q ∪ N.T , the preset and post-set of x are respectively defined by •x = {y |
⟨y, x⟩ ∈ F} and x• = {y | ⟨x, y⟩ ∈ F}. If x is a transition, then its pre- and post-set
respectively denote its input and output places.

Figure 2 shows a labelled Petri net where silent transitions are either used to cap-
ture control-flow structures (t41 for looping, and t45 for rerouting), or tasks that can-
not be logged (t12, which represents a non-loggable task for inserting an item). Silent
transitions may result from modelling skips, loopbacks, or to start and join concur-
rent branches, however can also be used to represent processes with non-loggable tasks
(Figure 2 even contains a loop of silent transitions). Also, Petri net discovery algorithms
may produce nets containing silent loops. This motivates why we study such nets.

An execution state of a net is described by a marking, which is a multiset of places.
A transition is enabled in a marking if its input places contain at least one token each.
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Firing an enabled transition produces a new marking where one token per input place
is consumed, and each output place gets one token more.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,
mapping each place q ∈ N.Q to the number m(q) of tokens on q. Given a marking m
of N , and a transition t ∈ N.T , we say that:
• t is enabled in m, written m[t⟩N , if •t ≤ m;
• EN (m) is the set of enabled transitions in a marking m.
• assuming m[t⟩N , t fires in m for N producing a new marking m′ of N , written
m[t⟩Nm′, if m′ = (m− •t) + t•; ◁

The next definitions are essential to capture that we are interested in finite-trace
executions over nets. Specifically, as customary in BPM, each execution represents the
evolution of a process instance from the initial state to a final state.

Definition 3 (Execution). An execution of a net N from a marking ms to a marking
mf of N is a (possibly empty) finite sequence t0, . . . , tn of transitions in N.T such that
there exist markings m0, . . . ,mn+1 of N with (i) m0 = ms, (ii) mn+1 = mf , (iii) for
every i ∈ {0, . . . , n} we have mi[ti⟩Nmi+1. ◁

Definition 4 (Deadlock, livelock). A marking m of a net N is a:
• deadlock if there is no transition enabled: EN (m) = ∅;
• livelock if there is no execution of N from m to a deadlock marking. ◁

Definition 5 (Petri net-based process, runs). A Petri net-based process (PNP) is a
triple ⟨N,m0,Mf ⟩, where: (i) N is a net; (ii) m0 is a marking of N denoting the
initial state; (iii) Mf is a finite set of deadlock markings of N denoting its possible final
states. An execution (Definition 3) starting in m0 and ending in an m′ ∈ Mf is a run.
A PNP N is:
• deadlock-free if the only reachable deadlock markings are from N .Mf ;
• livelock-free if RG(N ) does not contain any livelock marking. ◁

A single transition in a PNP without an input place makes the net unable to reach
a final marking, and thus the PNP has no runs. This is a special case of an unavoidable
livelock.

By fixing an initial marking and a set of final markings, we define a process:
Restricting final states to deadlocks markings is without loss of generality: one can

take a non-deadlock marking and turn it into a deadlock one by introducing a new silent
transition pointing to a dedicated, exclusive “final” deadlock place.

Remark 1. There are two types of execution of a PNP N that, starting from its initial
state, cannot be extended into proper runs:
• Executions ending in a deadlock marking not being a final marking in N ;
• Executions in a livelock from which no deadlock marking can be reached. ◁

A trace is a sequence σ = e0, . . . , en ∈ Σ∗ of events over Σ, where, for simplicity,
each event ei indicates the execution of a task by means of the firing of a transition. A
trace is a model trace for a PNP if it is produced by one of its runs, considering only the
visible labels of the transitions contained in the run.
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Definition 6 (Model trace). A trace σ is a model trace of PNP N if there ex-
ists a run η = t0, . . . , tm of N .N whose corresponding sequence of labels
N .N.ℓ(t0), . . . ,N .N.ℓ(tm) coincides with σ once all τ elements are removed. In this
case, we say that η induces σ. ◁

A model trace σ of PNP N may be induced by multiple, possibly infinitely many,
runs. The set of runs of N inducing σ is denoted by runsN (σ).

The execution semantics of a PNP can be described through a reachability graph,
namely a (possibly infinite-state) labelled transition system whose states correspond to
reachable markings, and whose transitions match transition firings of the PNP.

Definition 7 (Labelled transition system). A labelled transition system is a tuple
⟨S, s0, Sf , ϱ⟩ where: (i) S is a (possibly infinite) set of states; (ii) s0 ∈ S is the ini-
tial state; (iii) Sf ⊆ S is the set of accepting states; (iv) ϱ ⊆ S ×Σ × S is aΣ-labelled
transition relation. A run is a finite sequence of transitions leading from s0 to one of the
states in Sf in agreement with ϱ. ◁

Due to our requirement that all final markings are deadlock markings, accepting states
have no outgoing transitions either.

Definition 8 (Reachability graph). The reachability graph RG(N ) of a PNP N is a
labelled transition system ⟨S, s0, Sf , ϱ⟩ whose components are defined by mutual in-
duction as the minimal sets satisfying the following conditions:
1. s0 = m0 ∈ S;
2. for every state m ∈ S, every transition t ∈ T , and every marking m′ ∈ M(Q),

if m[t⟩Nm′ we have that (a) m′ ∈ S; (b) if m′ ∈ N .Mf , then m′ ∈ Sf ;
(c) ⟨m, ℓ(t),m′⟩ ∈ ϱ. ◁

The runs of RG(N ) capture all and only the runs of N . It will be useful later to refer
to outgoing transitions from a given state s. We do so with notation succRG(N )(s).

We close this part by defining some key, standard properties of PNPs. In particular,
we fix the last control-flow feature of our model, namely the fact that we focus on
bounded processes.

Definition 9 (Bounded PNP). A PNP N is bounded if there exists a number k such
that, for every reachable marking m ∈ RG(N ).S and every place q ∈ N .N.Q, we
have m(p) ≤ k. ◁

A key property of bounded PNPs is that they induce a reachability graph that has finitely
many states. Boundedness is a standard property assumed when capturing business pro-
cesses; verifying boundedness is decidable [9] and well-known techniques exist. In the
remainder of this paper, we assume bounded PNPs.

3.2 Stochastic Behaviour

We now extend PNPs with stochastic behaviour, by incorporating stochastic decision
making to determine which enabled transition to fire. Technically, this is done by
adding a weight to each transition in a PNP [19]. The probability of firing an enabled
transition is the fraction of the weight of the transition compared to the sum of the
weights of all enabled transitions.

A stochastic PNP is then a PNP of which the transitions similarly have a weight.
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Fig. 3: Stochastic reachability graph of the order-to-cash bounded stochastic PNP.
States are named. The initial state is shown with a small incoming edge. Final states
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Definition 10 (Stochastic Petri net). A stochastic Petri net N is a tuple
⟨Q,T, F, ℓ, w⟩, where ⟨Q,T, F, ℓ⟩ is a labelled Petri net, and W : N.T → R+

is a weight function assigning a positive weight to each transition in N . Given a
marking m of N , and an enabled transition t ∈ EN (m), the firing probability of t in
m, Pm,N (t), is N.w(t)∑

t′∈EN (m) N.w(t′) . [19] ◁

Please note that stochastic Petri nets inherit the concurrency properties of Petri nets:
execution is atomic, and “true” concurrency needs to be added on top. The stochastic
perspective may still matter in concurrency, for instance in resource-constrained set-
tings. It is easy to see that the firing probability defines a discrete probability distribu-
tion over EN (m), as

∑
t∈EN (m) Pm,N (t) = 1. Then, we can define the semantics of

stochastic PNPs using a stochastic transition system and a stochastic reachability graph.

Definition 11 (Stochastic transition system). A stochastic transition system is a tuple
⟨S, s0, Sf , ϱ, p⟩ where ⟨S, s0, Sf , ϱ⟩ is a transition system, while p is a transition prob-
ability function mapping each transition in ϱ to a corresponding probability value in
[0, 1], such that for every state s ∈ S,

∑
ξ∈succN (s) p(ξ) = 1. ◁

The reachability graph RG(N ) of a stochastic PNP N is hence defined as a stochas-
tic transition system obtained as in Definition 8, defining the transition probability func-
tion as follows: for every transition ⟨m, ℓ(t),m′⟩, its probability is set to Pm,N .N (t).

Example 1. Figure 2 shows an stochastic PNP (Norder) capturing an order-to-cash pro-
cess. The reachability graph of Norder is shown in Figure 3, where transition probabil-
ities are calculated using the weights of the stochastic net. If, for example, we fix the
weight a of transition t35 to 80, and the weight r of transition t37 to 20, we get that in
marking [q3] (corresponding to the state where the order has been finalised), there is 0.2
chance that the order is rejected, and 0.8 chance that the order is accepted. ◁

Remark 2. The probability of firing an enabled transition only depends on the current
marking, thus stochastic Petri nets and stochastic PNPs are Markovian. ◁

Consequently, to calculate the probability of a run, we may consider each choice
therein as independent. In a stochastic PNP N = ⟨N,m0,Mf ⟩, we denote the prob-
ability of a run η = t0, . . . , tn with PN (η). Let m0, . . . ,mn+1 be the markings cor-
responding to η; then PN (η) =

∏
i∈{1,...,n} Pmi−1,N (ti). The probability PN (η) of a
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trace σ of N is in turn obtained by summing up the probabilities of all runs of N that
induce σ: PN (σ) =

∑
η∈runsN (σ) PN (η). Notice that this may be an infinite sum.

Remark 3. Our approach directly lifts to full, bounded generalised stochastic Petri nets
[19] as follows: (i) transitions are partitioned into immediate and timed (for the latter,
interpreting weights as rates of an exponential distribution); (ii) a timed transition is
enabled if it is so in the usual sense, and there is no enabled immediate transition. ◁

4 Outcome Probability
In this section, we tackle a first, fundamental problem: computing outcome probabili-
ties, that is, computing what the probability is that a process instance of the bounded
stochastic PNP of interest evolves from the initial to one among a desired set of fi-
nal states (representing the desired outcomes). For example, we may be interested in
knowing the probability that the bounded stochastic PNP Norder of our running example
(Figure 2) evolves an order from opening to payment.

Technically, given a bounded stochastic PNP N , we borrow the standard notion
of conditional probability and indicate the probability that N evolves marking m into
some marking from a set M as PN (M |m1). Formally, this corresponds to the sum of
the probabilities of all executions of N from m1 to some marking in M (in the sense of
Definition 3). This leads us to the formulation of the OUTCOME-PROB(N , F ) problem:
Input: Bounded stochastic PNP N , set F ⊆ N .Mf of desired final states;
Output: Probability value PN (F |N .m0) =

∑
η run of N ending in m∈F PN (η).

Notice that the same problem can also get, as input, a stochastic transition system in
place of a bounded stochastic PNP.

OUTCOME-PROB cannot be solved exactly through an enumeration of runs, as there
may be infinitely many. It can be approximated by fixing a maximum threshold either on
the length of runs [15], or on their minimum probability [2]. To obtain an exact answer,
we build on the connection between bounded stochastic PNPs and discrete-time Markov
chains [11], lifting [19] to our setting.3

Remark 4. The reachability graph RG(N ) = ⟨S, s0, Sf , ϱ, p⟩ of a bounded stochastic
PNP N can be seen as a discrete-time Markov chain C where: (i) S is the finite set of
states of C, with s0 the initial state; (ii) Sf are the absorption/exit states of C; (iii) ϱ
and p define the transition matrix of C, where the entry for a pair s1, s2 ∈ S gets value
p(s, l, s′) for some label l ∈Σ if ⟨s, l, s′⟩ ∈, 0 otherwise. ◁

We exploit this, noticing that the OUTCOME-PROB problem corresponds to the prob-
lem of calculating exit distributions in a discrete-time Markov chain [11] (also called the
problem of calculating absorption/hit probabilities [12]). To analytically solve the prob-
lem, we take OUTCOME-PROB(N , F ) and create a system of equations, starting from
the reachability graph RG(N ). Specifically, each state s of RG(N ).S corresponds to
a state variable xsi denoting the probability PN (F |s) of reaching one of the states in F
from s; hence xRG(N ).s0 represents the solution of the problem. Then, each equation
defines the value of one of the state variables xs as follows:

3 In case of generalised stochastic Petri nets, the resulting discrete-time Markov chain is the so-
called embedded/jump chain obtained from the continuous-time Markov chain capturing the
execution semantics of the net [20,19].
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Base case if s has no successor states (i.e., is a deadlock marking), then xsi = 1 if s
corresponds to a final marking, otherwise xsi = 0;

Inductive case if s has successors, its variable is equal to sum of the state variables of
its successor states, weighted by the transition probability to move to that successor.

Formally, OUTCOME-PROB(N , F ) with RG(N ) = ⟨S, s0, Sf , ϱ, p⟩ gets encoded into
the following linear optimisation problem EF

N :

Return xs0 from the minimal non-negative solution of

xsi = 1 for each si ∈ F (1)

xsj = 0 for each sj ∈ S \ F s.t. |succRG(N )(sj)| = 0 (2)

xsk =
∑

⟨sk,l,s′k⟩∈succRG(N)(sk)

p(⟨sk, l, s′k⟩) · xs′
k

for each sk ∈ S s.t. |succRG(N )(sk)| > 0 (3)

By recalling that states of RG(N ) are markings of N , the schema (1) of equations
deals with final (deadlock) states, that in (1) with non-final deadlock states, and that in
(1) with non-final, non-deadlock states.

EF
N has always at least a solution. However, it may be indeterminate and thus admit

infinitely many ones, requiring in that case to pick the least committing (i.e., minimal
non-negative) solution. The latter case happens when N contains livelock markings.
This is illustrated in the following examples.

Example 2. Consider bounded stochastic PNP Norder (Figure 2). We want to solve the
problem OUTCOME-PROB(Norder, [q6]), to compute the probability that a created order
eventually completes the process by being paid. To do so, we solve E [q6]

Norder
by encoding

the reachability graph of Figure 3 into:

xs8 = 0 xs5 = xs8 xs2 = ρmxs1 + ρfxs3

xs7 = 0 xs4 = ρbxs1 + ρdxs5 + ρpxs6 xs1 = ρixs2 + ρcxs5

xs6 = 1 xs3 = ρaxs4 + ρrxs7 xs0 = xs1

This yields xs0 =
ρiρfρaρpxs6+ρiρfρrxs7+(ρiρfρaρd+ρc)xs8

1−ρiρm−ρiρfρaρb
=

ρiρfρaρp

1−ρiρm−ρiρfρaρb
, which

is the only solution. If we assume that the weights of Norder are all equal, the probability
distributions for choosing the next transition are all uniform, leading to ρi = ρf =
ρm = ρa = 1

2 and ρp = ρb = 1
3 , and, in turn, that the probability of completing the

process by paying the order is xs0 = 1
17 ∼ 0.06.

With an analogous approach, we can prove that the probability that an order gets
deleted is 13

17 , and the one that an order gets rejected is 3
17 . Notice that the sum of all

such probabilities is, as expected, 1, that is, every order gets paid, deleted or rejected. ◁

Example 3. Consider the bounded stochastic PNP Nlive in Figure 4. To compute the
outcome probability of its single final state, we solve E [q1]

Nlive
by encoding the reachability

graph of Figure 4(b) into:

xs0 = ρaxs1 + ρbxs2 xs1 = 1 xs2 = xs3 xs3 = ρdxs2 + ρexs3

We get xs3 = ρdxs3 + ρexs3 = (ρd+ ρe)xs3 = xs3 , making the system indeterminate.
Its minimal non-negative solution is then the one where xs3 = 0, and in turn xs0 = ρa.◁
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(a) Stochastic net.
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(b) Reachability graph.

Fig. 4: Reachability graph (b) of a bounded stochastic PNP with net shown in (a), initial
marking [q0] and final marking [q1]. States s2 and s3 are livelock markings.

Example 3 illustrates how the technique implicitly gets rid of livelock markings,
associating to them a 0 probability. This captures the essential fact that, by definition,
a livelock marking can never reach any final marking. More in general, we can in fact
solve OUTCOME-PROB(N , F ) by turning the linear optimisation problem EF

N into the
following system of equalities, which is guaranteed to have exactly one solution:

xsi = 1 for each deadlock marking si ∈ F (4)
xsj = 0 for each deadlock marking sj ∈ S \ F (5)
xsk = 0 for each livelock marking sk ∈ S (6)

xsh =
∑

⟨sh,l,s′h⟩∈succRG(N)(sh)

p(⟨sh, l, s′h⟩) · xs′h
for each remaining marking sh ∈ S (7)

Recall that checking whether a marking s is livelock can be done over RG(N ) by
checking (non-)reachability of some deadlock marking in RG(N ) from s. This check
does not involve probabilities at all, but extends to probabilistic settings as per Defini-
tion 10, all transitions have a non-zero weight.

5 Qualitative Verification and Trace Probability
We now further leverage the connection between bounded stochastic PNPs and discrete-
time Markov chains (cf. Remark 4), to deal with the verification of (qualitative, i.e.,
non-probabilistic) temporal/dynamic properties over bounded stochastic PNPs. This
amounts to compute the probability that a run of the PNP indeed satisfies the property of
interest. We rely on [1, Ch. 10] and employ automata-theoretic techniques coupled with
the computation of outcome probabilities to solve the problem. We then show how this
technique also solves another, related problem: that of computing trace probabilities.

5.1 Verification of Temporal Properties

Properties of interest intensionally describe a (possibly infinite) set of desired finite-
length traces that may be induced by runs of the stochastic PNP under scrutiny. Such
traces are defined over the task names in Σ (without τ ). We opt for a very general
formalism to describe such properties: (deterministic) finite-state automata.

Definition 12 (DFA, acceptance, language). A deterministic finite-state automaton
(DFA) over L is a tuple A = ⟨L, S, s0, Sf , δ⟩, where: (i) L is a finite alphabet of
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symbols; (ii) S is a finite set of states, with s0 ∈ S the initial state and Sf ⊆ S the
set of final states; (iii) δ : S × L → S is a transition transition function that, given a
state s ∈ S and a label l ∈ L, returns the successor state δ(s, l). A accepts a trace
σ = l0, . . . , ln over L⋆ if there exists a sequence of states s0, . . . , sn+1 starting from
the initial state and such that: (i) sn+1 ∈ Sf , and (ii) for every i ∈ {0, . . . , n}, we have
si+1 = δ(si, li). The language L(A) of A is the set of all traces accepted by A. ◁

This accounts for non-deterministic automata (NFAs), as each NFA can be encoded
into a corresponding DFA. Also, it makes our approach directly operational for other
property specification languages, as long as they can get encoded into DFAs. This holds,
e.g., when for regular expressions, LTLf /LDLf temporal formulae over finite traces [8],
and Declare possibly extended with meta-constraints [7].

In this setting, verification takes as input a bounded stochastic PNP N and an au-
tomaton A whose transitions are labelled by task names, and returns the probability that
N generates a model trace that belongs to the language of A. Technically, we define the
VERIFY-PROB(N , A) problem as follows:
Input: Bounded stochastic PNP N , DFA A over Σ;
Output: Probability value equal to

∑
σ model trace of Ns.t. σ∈L(A) PN (σ).

To solve the problem, we need to account for three different aspects:
1. deal with the mismatch between runs over N and traces of A;
2. single out all and only those model traces of N that are also traces of A;
3. compute the collective probability of all such traces.

We tackle these three aspects with corresponding three steps.

Automaton with silent transitions. Definition 6 indicates that the set of runs inducing
a trace consists of all those runs that insert an arbitrary number of τs before and after
each event in the trace. For a trace σ = a0, . . . ,an, this set corresponds to the language
of the regular expression τ∗;a0; τ

∗; . . . ; τ∗;an; τ
∗. We then take the input automaton

A over Σ and turn it into a corresponding automaton Ā overΣ whose language L(Ā)
corresponds to all and only the possible runs that induce the traces of L(A). This is
done by simply expanding it with τ -labelled self-loops connecting every state to itself.

Definition 13 (Run DFA). Given a DFA A = ⟨Σ,S, s0, Sf , δ⟩ over Σ, its run DFA Ā
is a DFA overΣ defined as ⟨Σ,S, s0, Sf , δ

′⟩ with identical states (including the initial
and final ones), and where δ′ = δ ∪ {⟨s, τ⟩ → s | s ∈ S}. ◁

Product stochastic transition system. We now consider RG(N ) and Ā. Since they
are both run-generating devices, we can obtain an intensional representation of all the
runs of N by constructing a product stochastic transition system generates all and only
runs that are common to N and Ā, which in turn are the runs of N that induce traces
of A. This can be done by the usual product automaton construction, with the only
difference that we need to retain the stochastic information coming from N . This is
straightforward, as Ā is qualitative, i.e., does not contain probabilities.

Definition 14 (Product system). Let N by a bounded stochastic PNP with RG(N ) =
⟨S1, s

1
0, S

1
f , ϱ1, p1⟩, and Ā = ⟨Σ,S2, s

2
0, S

2
f , δ2⟩ a DFA overΣ. The product system Υ Ā

N
of N and Ā is a stochastic transition system ⟨S, s0, Sf , ϱ, p⟩ whose states are pairs of
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s0 s1
Σ \ open

open

Σ \ paypay

(a) Every open is followed by pay

s0 s1

s2

Σ \ can

can

Σ \ paypay

Σ

(b) At some point can and then pay

s0 s1

s2

Σ \ {fin, acc}

fin
Σacc

Σ

(c) Acc only possible after fin

Fig. 5: DFAs of three properties for the order-to-cash example. A single edge labelled
by a set L of task names describes a set of edges, each labelled by a task name from L.

states from S1 ×S2, and whose components are defined by mutual induction as the sets
satisfying the following conditions:
1. s0 = ⟨s10, s20⟩ ∈ S;
2. for every state ⟨s1, s2⟩ ∈ S and every label l ∈Σ such that (i) ⟨s1, l, s′1⟩ ∈ ϱ1 for

some s′1 ∈ S1, and (ii) δ2(s2, l) = s′2 for some s′2 ∈ S2, by fixing s′ = ⟨s′1, s′2⟩ we
have: (a) s′ ∈ S, (b) ⟨s, l, s′⟩ ∈ ϱ, (c) p(⟨s, l, s′⟩) = p1(s

′
1), (d) if s′1 ∈ S2

f and
s′2 ∈ S2

f , then s′ ∈ Sf . ◁

The so-defined product system is not a complete stochastic transition system: there may
be states whose successor probabilities do not add up to one. It can be made complete
by adding a fresh non-final sink state and transitions pointing from such incomplete
states to the fresh one, each decorated with the probability value needed to reach 1, and
labelled with whatever label fromΣ. This completion is not essential for the consequent
computation (as the state variable for such a sink state would be equal to 0).

Verification as outcome probability computation. We are now ready to bring every-
thing together, exploiting the notions of run DFA and product system to show how the
VERIFY-PROB problem can be reduced to the OUTCOME-PROB, invoked on Υ Ā

N consid-
ering all its final states.

Theorem 1. For every bounded stochastic PNP N and DFA A, we have that
VERIFY-PROB(N , A) = OUTCOME-PROB(Υ Ā

N , Υ Ā
N .Sf ). ◁

Proof. Considering that the definition of VERIFY-PROB, and that the probability of
a model trace of N is the sum of the probabilities of the runs of N inducing
that trace, we have VERIFY-PROB(N , A) =

∑
σ model trace ofNs.t. σ∈L(A) PN (σ) =∑

η run of N inducing σs.t. σ∈L(A) PN (η). By Definitions 13 and 14, we have that the set of

runs of N inducing traces in L(A) coincides with the set of runs of Υ Ā
N . This, together

with the definition of OUTCOME-PROB, yields:
∑

η run of N inducing σs.t. σ∈L(A) PN (η) =∑
η run of Υ Ā

N
= OUTCOME-PROB(Υ Ā

N , Υ Ā
N .Sf ). ⊣

Example 4. Figure 5 shows three properties of interest for Norder. Solving
VERIFY-PROB for them gives: (1) The probability that Norder verifies the property of
Figure 5(a) coincides with the solution of OUTCOME-PROB when asking the probabil-
ity that an order gets paid (cf. Example 2). (2) The probability that Norder verifies the
property of Figure 5(b) is 0, as there is no run of Norder where an order is first can-
celled and then paid. (3) The probability that Norder verifies the property of Figure 5(c)
coincides with that of a run of Norder reaching completion, as each run either does not
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s0 s1 s2
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τ τ τ

τττ

open fin
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finrej

(a) DFAs Aσ and Āσ .

0, 0 1, 1 2, 1 3, 2 4, 3

1, 32, 33, 47, 5
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1 τ
ρi

τ
ρm fin

ρf

acc
ρa

τρbτ
ρi

τ
ρm

fin
ρf

rej
ρr

(b) Product system between Āσ and RG(Norder).

Fig. 6: DFAs for a trace and product system with the reachability graph of Figure 3.

finalise the order, or does so before possibly accepting it. This probability is actually 1
(as the process does not contain livelocks nor non-final deadlocks). ◁

5.2 Computing Trace Probabilities

A key problem in stochastic conformance checking [15,2] is that of computing the
probability of a trace in a stochastic Petri net. We cast this problem in our setting as the
TRACE-PROB problem, where TRACE-PROB(N , σ) is defined as:
Input: Bounded stochastic PNP N , trace σ over Σ;
Output: Probability PN (σ).
This problem is clearly subsumed by the VERIFY-PROB problem described before. In
fact, we can simply solve it by constructing a so-called trace automaton that trivially
encodes σ as a DFA that only accepts that trace, then invoking VERIFY-PROB on it.

Definition 15 (Trace DFA). Given a trace σ = a0, . . . , an over Σ, its trace DFA Aσ

is the DFA ⟨Σ,S, s0, Sf , δ⟩ over Σ such that: (a) S = {s0, . . . , sn+1} contains n + 1
states; (b) Sf = {sn+1}; (c) for every i ∈ {0, . . . , n}, δ(si, ai) = si+1 (and nothing
else is in δ).

Theorem 2. For every bounded stochastic PNP N and every trace σ over Σ∗, we have
that TRACE-PROB(N , σ) = OUTCOME-PROB(N , Aσ). ◁

Proof. Direct from the definition of the problems, noticing that L(Aσ) = {σ}. ⊣
Example 5. We compute the probability that Norder generates trace σ =
open, fin,acc, fin, rej, where an order is filled, finalised, accepted, then modified, fi-
nalised again, and this second time rejected. Following the described technique, we first
transform σ into its trace DFA Aσ , and then further into its run DFA Āσ . This is shown
in Figure 6(a). We then compute the product system Υ Ā

RG(Norder)
of Āσ and RG(Norder)

(shown in Figure 3), obtaining Figure 6(b) (notice how silent transitions unfold in
this transition system). Finally, we construct E⟨7,5⟩

Υ Ā
RG(Norder)

getting x00 =
ρiρfρaρbρiρfρr

(1−ρiρm)2 ,

which yields the solution to the TRACE-PROB(Norder, σ) problem. ◁

6 Stochastic Conformance with Probabilistic Declare
We now employ the verification machinery from Section 5 to check how the probabilis-
tic behaviour encoded in a stochastic PNP relates to that declaratively specified using
ProbDeclare [18]. We start with a gentle introduction to ProbDeclare, then showing how
we can check whether a bounded stochastic PNP conforms to a ProbDeclare model.
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6.1 Probabilistic Declare

Declare is a constraint-based process modelling language based on LTLf . A model
comes with a set of LTLf constraint, and their conjunction must be respected by the
process. This imposes a crisp interpretation of constraints: a trace satisfies a Declare
model if it satisfies every constraints contained therein. This crisp semantics was re-
laxed in [18]: there, each constraint comes with a probability condition indicating the
allowed probabilities for which a satisfying trace should be generated by the process.
The semantics is formally defined using stochastic languages, and is therefore compat-
ible with that of stochastic PNPs. We recall the necessary definitions.

Definition 16 (Probabilistic constraint). A probabilistic constraint is a triple ⟨φ, ▷◁
, p⟩, where: (i) φ is an LTLf formula over Σ representing the constraint formula;
(ii) ▷◁ ∈ {=, ̸=,≤,≥, <,>} is the constraint probability operator; (iii) p is a ratio-
nal value in [0, 1] representing the constraint probability. ◁

Definition 17 (ProbDeclare). A ProbDeclare model is a triple ⟨Σ, C,P⟩, where C is
a finite set of LTLf formulae called crisp constraints, while P is a set of (genuinely)
probabilistic constraints. ◁

Since each constraint in P can be satisfied or violated, a ProbDeclare model induces
2|P| scenarios, each associated to a corresponding LTLf formula.

Definition 18 (Scenario). A scenario for a ProbDeclare model D = ⟨Σ, C,P⟩ is a
total boolean function S : P → {0, 1} indicating which probabilistic constraints are
satisfied, and which violated. The set of scenarios is denoted by SD. ◁

Scenarios come with two dimensions, induced by the crisp and probabilistic con-
straints: a temporal dimension indicating which traces belong to which scenarios, and a
probabilistic dimension indicating how likely it is that a trace belongs to a scenario.

Definition 19 (Characteristic formula). The characteristic formula ΦS of a sce-
nario S for ProbDeclare model ⟨Σ, C,P⟩ is the LTLf formula

∧
φi∈C φi ∧∧

⟨φj ,▷◁j ,pj⟩∈P, S(⟨φj ,▷◁j ,pj⟩)=1 φj ∧
∧

⟨φk,▷◁k,pk⟩∈P, S(⟨φk,▷◁k,pk⟩)=0 ¬φk. Scenario S
is consistent if ΦS is satisfiable (i.e., has at least one satisfying trace). ◁

Definition 20 (Valid scenario distribution). A valid scenario distribution over sce-
narios SD of a ProbDeclare model D = ⟨Σ, C,P⟩ is a probability distribution
PD : SD → [0, 1] such that: (a) for every scenario S ∈ SD, if S is not consis-
tent then PD(S) = 0; (b) For every probabilistic constraint ⟨φ, ▷◁, p⟩ ∈ P , we have∑

S∈SD s.t. S(⟨φ,▷◁,p⟩)=1 PD(S) ▷◁ p. ◁

Example 6. Consider the order-to-cash ProbDeclare model Dorder, with one crisp not
coexistence constraint C1 indicating that pay and rej cannot be both in a trace, and two
response probabilistic constraints C2 and C3, indicating that open must be eventually
followed by pay with a probability of ≥ 1

20 , and that open must be eventually followed
by rej with a probability of ≤ 1

4 . Of the four scenarios over C2 and C3, one is that both
C2 and C3 are satisfied and is inconsistent as it clashes with the crisp constraint C1. ◁
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6.2 Checking Stochastic Conformance

In [18], it is shown how a system of inequalities can be constructed so as to compute
possible valid scenario distributions in accordance with Definition 20. Here we are just
interested in using that system to check whether a probability distribution over scenarios
is indeed valid, and thus we can keep this system of inequalities as a black box.

In a non-stochastic setting, one can check whether a bounded Petri net satisfies a De-
clare model by verifying that every trace it generates belongs to the language accepted
by the model. In our stochastic setting, we define a stochastic variant of this problem.
We start by showing that a bounded stochastic PNP induces a probability distribution
over scenarios of a ProbDeclare model, obtained by collecting, scenario by scenario,
the probability of all PNP traces that satisfy the characteristic formula of that scenario.

Definition 21 (Induced scenario distribution). Let N be a bounded stochastic PNP,
and D a ProbDeclare model. The scenario distribution PN

D induced by N over scenarios
SD is the probability distribution defined as follows: for every S ∈ SD, we have that
PN
D (S) =

∑
σ trace of Ns.t.σ satisfies ΦS

PN (σ). ◁

We then define the stochastic conformance problem S-CONFORM(N ,D) as:
Input: bounded stochastic PNP N , ProbDeclare model D;
Output: Whether PN

D is valid (in the sense of Definition 20).
We address the problem through iterated invocations of the VERIFY-PROB problem,

one per scenario. Specifically, for each scenario S ∈ SD: (1) Construct DFA AS for
characteristic formula ΦS with standard techniques [18,7]; (2) Get the probability value
p = VERIFY-PROB(N , AS); (3) Check whether p is valid for S using the system of
inequalities for Definition 20; (4) If this is the case, proceed with the next scenario,
otherwise return No; and (5) If all scenarios have been checked, return Yes.

Example 7. Consider the bounded stochastic PNP Norder (assuming equal weights for
all transitions) and the ProbDeclare model Dorder. The only scenario where C2 holds is
the one where C2 is satisfied while C3 is violated. The probability induced by Norder for
this scenario corresponds to the outcome probability for Norder to finish with a payment.
As discussed in Example 2, this is 1

17 , which is indeed ≥ 1
20 . The only scenario where

C3 holds is the one where C2 is violated while C2 is satisfied. The probability induced
by Norder for this scenario corresponds to the outcome probability for Norder to finish
with a rejection. As discussed in Example 2, this is 3

17 , which is indeed ≤ 1
4 . This

witnesses that Norder stochastically conforms to Dorder. ◁

In case S-CONFORM is negative, the standard Earth Mover’s Distance can be used
to measure the deviation between the scenario distribution induced by N and the closed
valid scenario distribution for D. This realises a form of stochastic delta analysis.

7 Conclusion
We have provided formal methods and algorithmic techniques solving three key prob-
lems concerning reasoning on labelled Petri nets and their executions in a stochastic
setting: outcome probability, verification, and stochastic model conformance. All tech-
niques are implemented in the StochasticLabelledPetriNets plug-in of ProM. For solv-
ing systems of inequalities, we use a Java LP solver (LPSolve). Our approach lazily
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handles silent transitions when combining the reachability graph of the net with the
automaton of a temporal property of interest.

A natural extension of this work is to incorporate our techniques into stochastic
process mining pipelines, validating the resulting framework experimentally either us-
ing our own implementation or by invoking probabilistic model checkers [14]. We also
want to study if and how our results transfer to richer settings, such as stochastic nets
that map to Markov decision processes, as well as non-Markovian nets.
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