
Investigating the Influence of Data-aware
Process States on Activity Probabilities in

Simulation Models: Does Accuracy Improve?

Massimiliano de Leoni1, Francesco Vinci1, Sander J.J. Leemans2, and Felix
Mannhardt3

1 University of Padua
massimiliano.deleoni@unipd.it, francesco.vinci.1@phd.unipd.it

2 RWTH Aachen
s.leemans@bpm.rwth-aachen.de

3 Eindhoven University of Technology
f.mannhardt@tue.nl

Abstract. Business process simulation enables analysts to run a pro-
cess in different scenarios, compare its performances and consequently
provide indications on how to improve a business process. Process sim-
ulation requires one to provide a simulation model, which should accu-
rately reflect reality to ensure the reliability of the simulation findings.
An accurate simulation model passes through a correct stochastic mod-
elling of the activity firings: activities are associated with the probability
of each to fire. Literature determines these probabilities by looking at
the frequency of the activity occurrences when they are enabled. This is
a coarse determination, because this way does not consider the actual
process state, which might influence the probabilities themselves (e.g.,
a thorough loan assessment is more likely for larger loan requests). The
process state is as a faithful abstraction of the process instance execution
so far, including the process-variable values, the activity firing history,
etc. This paper aims to investigate how process states can be leveraged
to improve activity firing probabilities. A technique has been put forward
and compared with the baseline where basic branching probabilities are
employed. Experimental results show that, indeed, business simulation
models are more accurate to replicate the real process’ behavior.

Keywords: Process Simulation · Stochastic Models · Branching Prob-
abilities · Process Mining

1 Introduction

Business process simulation refers to techniques for the simulation of business
process behavior on the basis of a process simulation model, a process model
extended with additional information for a probabilistic characterization of the
different run-time aspects (case arrival rate, activity durations and probabilities,
roles, etc.). Simulation provides a flexible approach to analyse and improve busi-
ness processes. Through simulation experiments, various ’what if’ questions can



2 M. de Leoni et al.

be answered, and redesigning alternatives can be compared with respect to some
key performance indicators. The main idea of business process simulation is to
carry out a significantly large number of runs, in accordance with a simulation
model. Statistics over these runs are collected to gain insight into the processes,
and to determine the possible issues (bottlenecks, wastes, costs, etc.). By apply-
ing different changes to the simulation model, one can assess the consequences of
these changes without putting them in production, and consequently can explore
dimensions to possible process improvements.

A successful application of business process simulation for process improve-
ment relies on a simulation model that reflects the real process behavior; con-
clusions drawn on an unrealistic simulation model lead to process redesigns that
may not yield improvements, or even may worsen the performances. A large
body of research work has already focused on accurately creating process mod-
els and several of their run-time aspects (cf. Section 5), including case arrival
rate, activity durations, and roles. However, no recent work has focused on ac-
curately estimating, given a set of enabled activities at run time, the probability
of each to occur. Currently, this determination is solely based on the branching
probabilities. Of course, this is a course determination, which does not consider
that probabilities of activities to occur may vary as function of the characteris-
tics of the process instances, the activities that previously occurred in the same
process instance, time-related information, etc. Consider, for example, a loan
application process: the probability of executing an activity about a thorough
assessment grows, e.g., with the amount of the requested loan, and decreases
with annual salary of the applicant. Also, the probability of rejecting an applica-
tion may grow with the number of requests to the applicant of providing further
documents.

This paper introduces the concept of process state, which is a faithful ab-
straction of a case, and investigates the research question how a proper choice of
this abstraction allows a more accurate estimation of the activity firing proba-
bilities of simulation models, with respect to the simple branching probabilities.
More accurate firing probabilities lead to more accurate simulation models.

In order to answer this research question, the paper builds upon Petri nets,
and discovers a so-called weight function for each transition, which is defined
over a process state, which, e.g., can include process variables, and the transition-
firing history. Then, for the cases that are simulated, the current process state
is computed and used to evaluate the weight function of the transitions that are
enabled at that point. The probability to fire a transition is thus obtained as the
ratio of its weight and the sum of the weights of all enabled transitions. It follows
that the higher is the weight of a transition, the higher is the probability of that
transition to fire. Since the case characteristics that may influence the proba-
bility may depend on the specific process that is being simulated, we propose a
framework where the process-state abstraction can be customized to include or
exclude certain characteristics. In Section 2, some examples for process states
are provided. In this paper, we report on the use of logistic regression to learn



Influence of Data-aware Process States on Activity Probabilities 3

the weight function, but other approaches could be alternatively employed, such
as regression trees.

The research question is finally answered by applying the aforementioned
framework to two real-life processes, each with a real-life event log. For each
process, five different definitions of process states have been considered to com-
pute weights of the Petri-net models of the two processes to be simulated. The
results show that the simulation using models with transition probabilities based
on process states allows obtaining simulation results that are more accurate, if
compared with simulation models based on branching probabilities.

Section 2 starts introducing the preliminary concepts of event logs, and then
continues (i) introducing the novel notion of the process-state abstraction and
(ii) their usage with stochastic labelled Data Petri nets, a Petri-net extension to
associate weights to transitions. Section 3 discusses how to compute the tran-
sition weights as function of a customizable abstraction of the process state.
Section 4 illustrates how Stochastic labelled Data Petri nets can be represented
via Coloured Petri nets in CPN Tools, and reports on the benefits for simulation
models to use transition probabilities based on process states. Section 5 reports
on the related works, and Section 6 concludes the paper.

2 Event Logs and Stochastic Data Petri Nets

The determination of the weights is obtained from an analysis of an event log of
the process that aims to be simulated:

De�nition 1 (Events). Let A be the set of process’ activities. Let V the set of
process attributes. Let WV be a function that assigns a domain WV(x) to each
process attribute x 2 V. Let W = [x2VWV(x). An event is a tuple (a; v) 2
A � (V 6! W) where a is the event activity, v is a partial function assigning
values to process attributes with v(x) 2 WV(x).

A trace is a sequence of events, the same event can potentially occur in different
traces, namely attributes are given the same assignment in different traces. This
means that potentially the entire same trace can appear multiple times. This
motivates why an event log is to be defined as a multiset of traces:4

De�nition 2 (Traces & Event Logs). Let E = A� (V 6! W) be the universe
of events. A trace � is a sequence of events, i.e. � 2 E�. An event-log L is a
multiset of traces, i.e. L � B (E�).

In this paper, simulation models are provided in form of so-called Stochastic
Labelled Data Petri Nets (SLDPNs). While SLDPNs are not able to represent
every aspect relevant for simulation models, they are simple, yet sufficient to
discuss and formalize the concepts behind activity probabilities. In SLDPNs, a
transition firing consists in executing a transition and assigning values to some
process attributes. The sequence of transition firings determines the process
state:
4 B(X) indicates the set of all multisets with the elements in set X.



4 M. de Leoni et al.

p0 a

p1

p2

b

1
2X

c

1
2X

d

1 � 1
X

p3

p4

e p5

Fig. 1: Example of a Stochastic Data Petri Net. Transitions are annotated with
the weights, when the latter are present.

De�nition 3 (Process State). Let T be a set of transitions. Let V the set of
process attributes. Let WV be a function that assigns a domain WV(x) to each
process attribute x 2 V. Let W = [x2VWV(x). Let � be the set of process states.
A process-state function maps a sequence of transition �rings to a process state:
S� : (T � (V 6! W))� ! �.

Note that the marking is not part of the process state (see below). A process-state
function can be customized, according to the specific domain. For instance, if
one wants to account for the process attributes in the set V, the set � of possible
process states consists of tuples (x1; : : : ; xn) where xi is the value assigned to
variable vi 2 V, after defining an ordering of the attributes in V. In particular,
for a sequence � = h(t1; f1); : : : ; (tm; fm)i of transition firings, S� returns a tuple
(x1; : : : ; xn) in which xi is the latest value assigned to vi in �, namely there is
a transition firing (tj ; fj) 2 � such that fj(vi) = xi and, for all j < k � m, vi is
not in the domain of fk.

In SLDPNs, each transition is associated to a weight function that is depen-
dent on a process state.

De�nition 4 (Stochastic Labelled Data Petri Net - syntax). Let A be a
set of activities, and � the set of possible process states. A stochastic labelled
data Petri net (SLDPN) is a tuple (P; T; F; �;�;M0; w), such that (P; T; F ) is
a Petri Net, � : T 6! A be a labelling function, M0 is the initial marking, and
w : T ��! R+ is a weight function.

Example. Figure 1 shows an example of an SLDPN. The control flow of this
SLDPN consists of an AND split followed by the parallel executions of b and
a choice between c and d. The transitions are annotated with weight functions
depending on the continuous variable X.

The state of an SLDPN is the combination of a marking and an process
state d 2 �. Hereafter, when clear from the context, the process state is simply
referred to as state. The marking determines which transitions are enabled, while
the process state influences the probabilities of transitions:



Influence of Data-aware Process States on Activity Probabilities 5

De�nition 5 (Stochastic Labelled Data Petri Net - semantics). Let N =
(P; T; F; �;�;M0; w) be an SLDPN. Let � 2 (T � (V 6! W))� be a sequence of
transition �rings, leading to marking M . Let S� be the process-state function,
and E(M) � T be the set of transitions enabled at marking M of Petri net
(P; T; F ). The probability to �re t after � is:

PrN (t;M; �) =
w(t; S�(�))P

t02E(M) w(t0; S�(�))
:

3 Framework for Determination of Weights

In this section, we introduce a framework that, given an event log L, a Petri
net (P; T; F ), a labelling function � and an initial marking M0, can be used to
determine the weights of the transitions, thereby transform the Petri net into
an SLDPN. The framework can be instantiated for a process-state function S�,
generalising the proposal in [10], and a parameterised weight function w, and
consists of four steps:

Step 1 For each trace � 2 L, reconstruct the corresponding path of transitions
that � took through the model. This reconstruction is performed using a
sequence of moves: a synchronous move combines an event (a; v) in the log
trace with a transition t on the model path such that �(t) = a; a model move
is a transition on the model path; while a log move is an event in the log
trace. Such a sequence of moves, where the projection of the sequential syn-
chronous and log moves yields the trace, and the projection of the sequential
synchronous and model moves yields the path, is called an alignment [1].

For a given trace of the event log, an optimal alignment is an alignment with
a minimal number of log and model moves5, over all paths in the model. Note
that this alignment does not need to take the data values or weight functions
into account and can be computed solely based on the regular Petri net and
each trace of the event log.

Step 2 For one optimal alignment of each trace in the event log, we use the
process-state function S� to reconstruct the sequence of process states �.
By definition, any path of the model starts in the initial markingM0 and the
process state S�(h i). For each synchronous or model move m in the optimal
alignment, we have a transition t available. As the moves are sequential, we
can take the partial function assigning values to process attributes (v) from
the last synchronous move in the alignment, before m. If no such last move
exists, we take an empty function.

As such, we obtain a sequence of transition firings (t; v). Through S�, this
sequence yields a sequence of process states � 2 �. Similarly, the sequence
of markings can be derived from the model and the sequence of transition
firings.

5 For the minimalisation, we do not count model moves on unlabelled transitions.



6 M. de Leoni et al.

Step 3 For each transition t in the model, we gather the observations made
in each trace � of the log related to this transition: each time that t was
enabled and fired in the sequence of transition firings, the associated process
state before firing t is recorded as positive observation. Each time that t
was enabled but another transition fired a negative observation using the
process state before firing that transition is recorded. Given these collected
multisets of positive process states �t+ � B (�) and negative process states
�t� � B (�) we build a training set to learn the influence of process states
on the weight of transition t as:

]
�2�t+

[(�; 1)] [
]

�2�t�

[(�; 0)]

Step 4 We leverage any suitable machine learning model that supports the
process state representation chosen as input to serve as parameterised weight
function w. Such a model should assign higher weights, e.g., the 1 in the
training set, for those process states in which the transition t was observed
to occur opposed to those in which another transition was observed. We can
obtain the overall parameterised weight function by fitting a separate model
for each transition t since the weights obtained for enabled transitions in the
SLDPN are not required to sum up to 1.

As an example, we instantiate our framework with a process state function S�
that takes into account (i) the event attribute values observed for the first event
in a trace and (ii) the count of the activity occurrences in the history of the
process instance:

S�(h(t1; v1); : : : ; (tn; vn)i) = (v1; [t1; : : : tn]):

Our process state is, thus, defined as � = (V 6! W)�B (T ). We use the logistic
function over the same attribute values and history as parameterised weight
function w.

Assume the example trace � = haX=3; dX=4; dX=5; bX=3; eX=5i with a single
process attribute X. We align � in Step 1 to the model shown in Figure 1. This
alignment is:

Log aX=3 dX=4 dX=5 bX=3 eX=5

Model a d - b e

In Step 2, we transform this alignment into a sequence of process states:

h(X = 3; [a]); (X = 3; [a; d]); (X = 3; [a; b; d]); (X = 3; [a; b; d; e])i



Influence of Data-aware Process States on Activity Probabilities 7

Then, Step 3 constructs the observations:

�a+ = [(X = ?; [])] �a� = []

�b+ = [(X = 3; [a; d])] �b� = [(X = 3; [a])]

�c+ = [] �c� = [(X = 3; [a])]

�d+ = [(X = 3; [a])] �d� = []

�e+ = [(X = 3; [a; b; d])] �e� = []

In the final Step 4 the weight function is then approximated using logistic re-
gression for each of the transitions using the training sets build from positive
and negative observations. We use logistic regression since it provides white-box
explanations and is more usable for simulators such as CPN Tools. Moreover,
white-box simulators can be used for what-if analysis, whereas deep learning
models cannot [6]. Logistic regression, and many other machine learning models,
requires input variables to be numeric. Thus, we need to transform the multiset
of activity occurrences into several variables, one for each activity in the pro-
cess model. Similarly, we could use one-hot encoding for categorical variables.
Finally, we obtain the coefficients for the logistic function and obtain the final
SLDPN including the learned weight function.

4 Experiments

The experiment focuses on verifying the similarity between the original event logs
and those obtained from simulation. Our probability model of activity firing is
only supported by CPN Tools, which includes simulation features.

Section 4.1 illustrates the case studies that are used to assess the validity of
the proposed approach. Section 4.2 discusses the experimental setup, including
how CPN Tools has been employed to define our probability model. Finally,
Section 4.3 reports the results, and discusses the findings.

4.1 Case studies

The approach has been evaluated in two different case studies for which a public
event log and a reference model is available: Road-Traffic Fines and Sepsis (see [9]
for details).

The Road Traffic Fines event log describes the process of managing road
traffic fines by a local police force in Italy. The event log contains 150370 traces
and 11 different activities, with 12 data attributes. Sepsis case study is a real-
life event log obtained from an Enterprise Resource Planning (ERP) system
of a regional hospital in The Netherlands. It contains 1050 traces, 16 different
activities and several data attributes, most of them binary.

Figures 2 and 3 depicts the Petri Net models used for our evaluations, which
are shown in Figure 12.8 and Figure 13.3 of [9]. The Road-Traffic Fines model



8 M. de Leoni et al.

Fig. 2: Road-Traffic Fines Petri Net model.

allows executions with only one activity, i.e. Create Fine, however, the event
log does not contain any trace such that. This led us to improve the model: a
place and a transition after the first Payment are added to maintain the loop of
it and remove the possibility of ending the trace after Create Fine.

4.2 Experimental Setup

The assessment is based on comparing the similarity of the original event logs
with those obtained via simulation. The simulation models are constructed us-
ing five different characterization of the process state: with data only, namely
using the values of the process attributes; with history only, namely using the
number of occurrences of process activities; and with data and history, as well



Influence of Data-aware Process States on Activity Probabilities 9

Fig. 3: Sepsis Petri Net model.

as with combinations of so-called binary history. History is also delineated in
the binary version, where we only consider whether or not an activity has hap-
pened, irrespectively of the number of occurrences. As baseline of comparison,
we also built the simulation model using branching probabilities, which were
computed through the Multi-perspective Process Explorer [11]. The comparison
of the original event log and those obtained via simulation is computed through
the Earth-Movers’ Stochastic distance introduced in [8]. This measure considers



10 M. de Leoni et al.

the stochastic characteristics of the event logs: which activities are executed in
which order, and how often a particular order of activities is executed.

For evaluating our approach, we divided the original logs into training and
test sets using a temporal split: 70% to the training set and 30% to the test
set. The training set was utilized to calculate the weights of the corresponding
SLDPNs, and also the branching probabilities of the comparison baseline. By
comparing the results of them, we can determine the effectiveness of our approach
and assess the impact of different processing techniques on performance.

We instantiated the framework for determining the weights described in Sec-
tion 3 in ProM by encoding the process state obtained into a set of attributes
and implemented the parameterised weight function as a set of logistic regression
models over that set of attributes and the binary dependent response variable.
We use ridge regression as implemented in WEKA 3.8 [17] and implemented an
export functionality to obtain the resulting coefficients �0; : : : ; �n of the logistic
model that are sufficient to determine the weight. More complex models may be
added to the implementation in the future as long as their parameters can be
used to compute weights based on process states. After exporting the logistic
regression coefficients, we use them in the simulation models.

The simulation models are implemented using CPN Tools. In fact, one of
the key advantages of CPN Tools is the ability to model and analyze complex
systems. Additionally, the Standard ML programming language can be used
to implement custom functions, making it possible to adapt the model to the
specific needs of the simulation.

We illustrate how SLDPNs can be represented via CPN Tools through a sim-
ple example. In particular, we focus on the SLDPN in Figure 1. The CPN model
consists of several parts, each with a specific function. The black part represents
the Petri Net underneath, while the blue part focuses on the simulation of the
CPN Tools: n sim process instances are simulated one at time until the previous
instance is completed. Note that this does not affect the event log similarity since
the evaluation is based on control-flow and not on time-related measurements.
This is done here for the sake of simplicity: it is trivial to extend it to allow for
multiple process instance executions at the same time.

The brown part is related to generating the values of the process attributes
for the different simulated traces. The literature proposes to assign a suitable
statistical distribution to each process attribute (cf. Section 5): values are then
sampled from those distributions. However, this might introduce noise in the
experiments, if suitable distributions are not found. This ultimately leads to an
unfair comparison of the original event log and that obtained from simulation.
Recall that we simulate as many process instances, i.e. traces, as those in the
original event log. We leverage on this, and, for each trace of the original event
log, we use the same set of process-attribute values for one process instance that
is simulated.

The green part of the model checks the enabled transitions and the trace
history. Finally, the purple part is responsible for computing the probabilities of



https://github.com/franvinci/InfluenceofDataawareProcessStatesonActivityProbabilities

	Investigating the Influence of Data-aware Process States on Activity Probabilities in Simulation Models: Does Accuracy Improve?

