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Abstract. Evidence-based innovations are critical in optimising the de-
livery of healthcare services. Process mining aims to provide healthcare
stakeholders with insights, derived from historical data recorded in hos-
pital information systems, to optimise healthcare processes. Healthcare
processes are well-known for their complexity and control-flow varia-
tions are inherent in patient pathways undertaken by different patient
cohorts. Comparative process mining can reveal insights from studying
the differences between healthcare processes to better understand best-
practice patient pathways. In this paper, we take a design science ap-
proach to redefine an existing method for process comparison (PCM).
Where PCM considers predominantly the control-flow perspective, we
extend this method with the stochastic perspective, that is, how likely
a particular pathway is for certain patient cohorts, to obtain the Prob-
abilistic Process Comparison Method (P2CM). Furthermore, we further
automate the method. Concretely, we introduce new, stochastic-aware,
methods for sub-dividing process behaviour into cohorts based on trace
attributes or other trace features, methods for focusing the compara-
tive analysis on specific pairs of interesting cohorts, and provide a new
method for in-depth comparison of process differences. The approach
is evaluated using three real-life healthcare datasets, of which one case
study is conducted with a domain expert from an Australian hospital.

Keywords: process mining · healthcare · comparative process mining

1 Introduction

Healthcare is a field that is confronted with widespread challenges, which re-
quire process improvement to be an integral part of the system. Data-informed
innovations are important to make healthcare better and efficient [1,2,3]. New
methods can assist healthcare organisations to rapidly adapt their processes to
changing needs. Healthcare organisations around the world recognise the need
to continually put efforts to improve their clinical as well as administrative pro-
cesses. Healthcare organisations rely heavily on hospital information systems
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which support clinical and administrative processes, and record executed pro-
cess steps in process execution data [4]. This data consists of sequences of process
steps (activities) executed for patients, hospital stays, etc. (cases).

Process mining is a family of techniques and methods, which can assist in
answering questions that are crucial to improving processes in healthcare or-
ganisations. One area of process mining focuses on comparing groups of cases
(cohorts) of a process. In such comparative process analysis, processing of dif-
ferent cohorts is compared, which may lead to insights into the process-based
differences between cohorts - if processing is expected to be similar, e.g. leading
to the identification of best practices, and into process-based similarities - where
differences are expected [5,6]. The insights from such comparative process anal-
ysis can then be leveraged to optimise the processes involved. When comparing
processes, several perspectives can be identified: the control-flow perspective en-
tails the activities that can be performed in a process and their organisation into
pathways, while the stochastic perspective describes how likely activities, path-
ways and behaviour in processes are [7]. In comparative process mining analysis,
both perspectives may be beneficial: the control flow perspective may indicate
that, for instance, a rework loop is possible, however without knowledge of the
stochastic perspective that will indicate how likely that rework loop is, it remains
unclear what the impact on the process of the rework loop is. A little-executed
rework may be part of normal operating procedure, while an often-executed
loop may pose a threat to process performance. Thus, a comparison of both
perspectives may be beneficial in process comparison to optimise optimisation
efforts [1].

Several techniques have been proposed to compare different parts of a process
with one another, however applying them effectively in practice requires highly
similar processes [5]: benefits have been shown to be derivable from the same
(or, supposedly similar) process being executed in different settings. In some
literature, such a setting of highly similar processes was known, for instance,
comparing fulfilment processes in different geographic regions [8] and building
permit processes in different municipalities [9]. To compare two processes with
one another, several techniques can be applied [10,11]. However, if a single pro-
cess is to be considered, a sub-division into variants (or, in log terms, cohorts) is
necessary first. Several techniques have been proposed to identify cohorts from
event logs [6,12].

To assist with applying the combination of these techniques, in [5] a generic
method was proposed, the Process Comparison Methodology (PCM). However,
as we detail in Section 2, PCM does not consider the stochastic perspective, and
is highly manual with little automated support. As such, there is no method
that takes an event log file as an input and identifies cohorts as output, along
with visualisations of similarities and differences between the cohorts.

Given this gap, our problem statement is that we would like to have a method
with which analysts can compare sub-processes for stochastic processing differ-
ences. In this paper, we use a design science [13] approach to extend the PCM
method with stochastic awareness, operationalise PCM in a systematic manner,
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and provide further guidance on how the techniques can be applied. We refer to
this new method as the Probabilistic Process Comparison Method (P2CM). We
evaluate our updated method twofold: using two real-life data sets, we validate
the applicability of the method and using a case study, we validate the usefulness
of the method in practice.

The remainder of this paper is organised as follows: Section 2 discusses related
work. Section 3 details the research design. Section 4 introduces the updated
method, Section 5 discusses the evaluative case studies, and Section 6 concludes
the paper.

2 Related Work

In this section, we discuss related literature and derive our design objectives.
Process Mining in Healthcare. While PCM can be applied to datasets from any
domain, in this paper we focus on healthcare processes as these processes typ-
ically consist of many variants, and as domain experts are keen to understand
how the different patient cohorts pass through a hospital. Healthcare processes
are characterised as complex and inherent to significant variations [14]. These
variations can be a result of the differences in which the patient pathways pro-
ceed in a hospital. Process mining has the potential of uncovering details related
to the execution of processes and has been used in healthcare. The potential
has been explained in literature reviews [15] and a research agenda paper that
highlights various opportunities and challenges [2]. In [16], the authors reviewed
a pool of articles to understand how process mining has been applied to clin-
ical pathways. The papers were classified in three categories, (i) discovery of
actual execution pathways, (ii) analyse variants of execution pathways, and (iii)
improve execution pathways.

As noted, one of the key areas of use of process mining is variant explo-
ration. In [17,1], the authors used process mining to understand the similarities
and differences between practices of different hospitals, but this comparison was
done manually. Identifying differences between groups of pathway executions
using process variant analysis can help to identify areas of potential improve-
ment. Specific challenges related to process variant analysis exist. For example,
comparing processes from a resource perspective, checking for compliance, and
finding adverse events were mentioned in [2,18]. Despite growing interest in com-
paring healthcare processes, [2] identified the need for algorithms and methods
that provide detailed explanations on the differences between process “variants”
as a key challenge. This brings forth our first design objective:

DO1: A method that allows comparative analysis of process-based differences
in cohorts of a single process.
Comparative & Stochastic Analysis. To compare multiple event logs with one
another, a cross-comparison method has been proposed that first discovers a pro-
cess model for each event log, and measures the differences between the model
and each other event log in a cross-product setting [9]. This method, used in
PCM [5] as well, is susceptible to the trade-offs that are present in process
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discovery, and consider the stochastic perspective only partially, as the discov-
ered models only consider the control-flow perspective. To compare two event
logs with one another, approaches have been proposed based on transition sys-
tems [11,10] and fingerprints [19]. Furthermore, [20] and [9] both cross-compare
two event logs: [20] by means of quality measures and [9] by means of deviations.
Furthermore, in [21], predicted future process models can be compared. How-
ever, these techniques do not consider the stochastic perspective explicitly, which
is essential to spot e.g. that exceptional behaviour is much more likely in one
part than in the other, and assume that the two to-be compared event logs are
known. Therefore, for our method, we specified the following design objective:

DO2: A method that compares the stochastic behaviour of two processes.

Process Comparison Methodology (PCM) PCM [5] has been proposed as a method
to support comparative process mining. PCM consists of 5 consecutive phases:
(1) in the first phase, the data must be extracted from information systems and
pre-processed into the XES event log format [22]. Furthermore, in this step a
trace attribute is selected to divide the event log (the α attribute). (2) in the
second phase, the event log is divided into sub-logs, and an initial selection of
these sub-logs is made, such that this selection will enable the answering of busi-
ness questions and satisfy the goal of the comparative analysis. (3) in the third
phase, suitable pairs of sub-logs (cohorts) are selected for comparison. (4) in
the fourth phase, the selected pairs of sub-logs are compared to obtain detailed
process-based differences. (5) the fifth phase involves reporting the relevant and
impactful differences to the process owner.

In [5], the PCM method was applied to a non-healthcare case study, using
semi-automated techniques and visualisations for phases 2, 3 and 4. However,
most of the mentioned techniques utilised in PCM [5] only take the control flow
– which steps are executed – into account, but only implicitly and unpredictably
considering the stochastic perspective – how likely pathways are. Furthermore,
considering the phases in detail, the alpha-attribute is chosen in phase 1, but lit-
tle guidance is provided on how this attribute can be chosen, and data-supported
automation that may aid analysts is limited. These details resulted in the fol-
lowing design objective:

DO3: A method that combines guidance for users with automated recom-
mendations derived from data.

3 Research Design

We adopt a design science approach [23] and follow the six phases as described
in [24].

(1) Problem Identification. Prior literature conveys that comparative process
mining is important, in general, and in the healthcare sector in particular, to
visualise the similarities and differences between processes. There is a need to
develop comparative process mining techniques and methodological guidance to
assist healthcare organisations in identifying potential improvements.
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(2) Definition of Design Objectives. The overall objective is to propose
a process comparison method that takes an event log file as an input, groups
similar cohorts together, and provides visualisation of similarities and differences
among the cohorts. Three design objectives (DOs) motivated by the related work
in 2 are as follows:

DO1 A method that allows comparative analysis of process-based differences in
cohorts of a single process;

DO2 A method that compares the stochastic behaviour of two processes;

DO3 A method that combines guidance for users with automated recommenda-
tions derived from data.

(3) Design and Development. The design objectives identified in Step 2 were
used to design and develop the P2CM method. The proposed method leverages
the overall structure of PCM and extends several steps with stochastic awareness,
provides more automated techniques, and provides more guidance for users of
the method. As such, the P2CM method can be seen as an enhanced version of
PCM. The six steps of the P2CM method are detailed in Section 4.

(4) Demonstration. To apply the P2CM method in practice, we implement
scripts for the new alpha attribute selection technique and the new comparative
process visualisation algorithm.

(5) Evaluation. To evaluate the P2CM method, we use the evaluation frame-
work presented by [25]. Two ex-post evaluation strategies are used. First, an
experimental controlled experiment [23] is conducted by applying the P2CM
method to two real-life publicly available event logs with the objective of assess-
ing the applicability of the method. Second, we perform an observational case
study [23] with the emergency department of a healthcare organisation - the
Princess Alexandra Hospital, Brisbane, Australia. The objective was to assess
the usefulness of the method, i.e., whether the method we propose can be used
to unearth meaningful insights for stakeholders. The findings are presented in 5.
The ex ante evaluation [25] of these design objectives - to, for instance, validate
their applicability in practice or their appropriateness with focus groups – is
not within the scope of this paper, but would be an interesting area of further
research.

(6) Communication. This manuscript is a means of sharing the new P2CM
method. All introduced techniques have been implemented, and their source code
is publicly available.

4 Artifact: P2CM

In this section, we introduce our new method, the Probabilistic Process Compar-
ison Method (P2CM), which extends and instantiates the PCM framework. As
by DO3, we aim to automate the steps as much as possible, we slightly change
the overall structure of the PCM method, described in Section 2: we denote the
selection of the alpha attribute in its own phase, as this step can be automated.
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Fig. 1: P2CM. The darker steps are new or different from PCM.

Fig. 1 provides a visual overview of P2CM. Furthermore, we change the follow-
ing phases to explicitly consider the stochastic perspective (DO2) and further
automate them (DO3): we introduce the new phase 2 (selecting the alpha at-
tribute), we change phase 4 (identifying comparable sub-logs) and change phase
5 (in-depth comparison).

4.1 Assisted Alpha Attribute Selection

The alpha attribute plays a significant role in distinguishing between process
variants. However, identifying a suitable alpha attribute in an event log requires
domain expertise and a good understanding of the process. To assist the ana-
lyst while minimising domain expert input, we rank the trace attributes in an
event log by feature importance as a guide to the user. We propose two machine
learning techniques, one based on unsupervised learning (ID-K), which groups
similar data points without any dependency on a target variable and the other
on supervised learning (ID-R), which combines decision trees for classification
based on a target variable.. Each method returns a graph of the relative im-
portance of each trace attribute in an event log. Both techniques may indicate
the importance of an attribute; an attribute indicated by both provides an even
stronger indication.

ID-K: k-Means Clustering. Clustering groups data into clusters based on their
similarity in certain features. For our analysis, we start with an XES event log,
and consider the trace attributes. Numeric, boolean and categorical features are
considered, while unique identifiers, timestamps and free-text comments are not
considered. These latter categories are inherently unsuitable as alpha attributes,
as they do not sub-divide the traces of the log into clearly defined and under-
standable sub-logs. To transform data into a format that machine learning algo-
rithms can process, factorisation is used for categorical and boolean attributes4,
which transforms this data into enumerated or categorical values.

Once the data has been transformed, the next step is determining the opti-
mal number of clusters through the Elbow method [26], which allows a user to
select the appropriate number of clusters by visualising the within-cluster sum

4 https://pandas.pydata.org/docs/reference/api/pandas.factorize.html
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of squares (WCSS)[27]. The inflection point or ”elbow” in the plot, where in-
creasing the number of clusters would not significantly lower the WCSS, shows a
levelling out of the inter-cluster variability. For instance, Fig. 3 shows the elbow
graph for one of our evaluations. In this graph, the elbow is at number of clusters
= 2, as after that there is no significant decrease in the WCSS.

Then, the k-means clustering algorithm is applied to the selected trace at-
tributes. The contribution of each attribute in segregating the traces into dif-
ferent groups is studied and a plot of the relevant importance of each feature
is returned. This is done by calculating the significance of each feature for each
cluster based on the magnitude of the weight of the feature in the centroid vector.

ID-R: Random Forest Classifier In a supervised learning setting, we assess the
influence of each trace attribute on a target variable. Here, we consider the length
of a trace as the target variable, while the training features are the attributes
from the log data. We want the outcome to factor in the effect of length of
a trace as the count of activities carried out for a case may have interesting
reasons, so we extract the count of activities per trace and add it as the target
feature in the data set. We choose to utilise an ensemble classifier, specifically the
Random Forest classifier, which combines multiple decision trees to enhance the
model’s overall performance [28]. It operates by training multiple decision trees
on randomly selected subsets of the data and then averaging the predictions of
all the trees to make a final prediction. This method is robust to high variance
and outliers.

In a random forest classifier, the importance of attributes is calculated using
the mean decrease impurity (MDI) method [28], which calculates the total re-
duction of Gini impurity that each attribute provides across all the trees in the
forest. The attribute importance is then determined by averaging the reduction
in impurity across all trees that use the attribute.

4.2 Identifying Comparable sub-Logs

The identification of comparable sub-logs is the next phase of the analysis. Some-
times the alpha attribute may have hundreds or thousands of values and compar-
ing them one-on-one creates n ∗ (n− 1)/2 comparisons. To reduce the potential
number of comparisons, and thereby limit domain expert involvement (DO3),
we introduce a new method, consisting of ranking, filtering and clustering. The
method follows several steps. First, it ranks the values of the alpha attributes
based on their count and takes the top-most frequent ones, based on a user-
provided parameter. Second, we reduce the n2 comparison space by clustering
sub-logs based on their similarities with other sub-logs.

In order to take the stochastic perspective into account, we use the Earth
Movers’ Stochastic Conformance Checking (EMSC) [7] to obtain a sub-log vs
sub-log similarity score table. We used the stochastic perspective instead of the
control flow perspective to show the likelihood of following a pathway by similar
patient cohorts (DO2). Given two sub-logs, EMSC will compute a score that
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is 1 if the two logs have the same stochastic behaviour, and 0 if the stochastic
behaviour of the two sub-logs is completely different.

In the table of similarity scores, each sub-log has a pairwise similarity score
between 0-1 with every other sub-log. After creating this table, we need to find
the optimum number of clusters, for which we apply the Elbow method. Next,
clustering is applied to the vectors of EMSC scores, to identify clusters of sub-
logs.

Then, the sub-logs to compare are to be chosen, which is a step that inher-
ently requires domain expertise. Nevertheless, the clustering provides guidance
in two ways: pairs of sub-logs in different clusters are likely to differ in stochastic
behaviour, while pairs of sub-logs are less likely to differ in stochastic behaviour.
The former can be used to study the differences between process cohorts – e.g.
to perform auditing –, while the latter can be used to study commonalities – e.g.
to identify best practices.

4.3 In-Depth Comparison

Using the techniques of sections 4.1 and 4.2, we get the alpha attributes and the
sub-logs that we want to compare. In this section, we present a new visualisation
technique of in-depth comparison between two sub-logs which we call the Visual
Process Comparator (VPC). VPC takes a log (the complete, not-subdivided
log), L and two sub-logs of that log, L1 and L2. At first, a directly follows
graph (DFG) is made from L. In a DFG, every node represents an activity
and the edges describe the relationship between the activities [29]. To increase
understandability, and to avoid clutter and spaghetti models, we first filter the
edges: given a percentage parameter set by the analyst, we remove all edges
that are below that threshold. If the log is not very complex, we can choose a
threshold of 0. Then we check how many of those connections are present in L1

and L2 and use only those. Second, we visualise the differences between L1 and
L2 on this filtered DFG.

We denote L1(a → b) and L2(a → b) as the frequency of the DFG edge from
a to b in L1 and L2 respectively. For a particular node a,

∑
(a,b′)∈DFG L1(a, b

′)

and
∑

(a,b′)∈DFG L2(a, b
′) denote the summation of all the edge frequencies out

going from that particular node for L1 and L2 respectively.
The below formula is used for showing the relative frequency difference D:

D(a→b) =
L1(a → b)∑

(a,c′)∈DFG L1(a, c′)
− L2(a → b)∑

(a,c′)∈DFG L2(a, c′)

To indicate the importance of an edge, we scale the width according to its
relative appearance in both sub-logs varying between a width of 0.5 when the
edge is present in neither L1 or L2 to 1.5 when the edge is the only outgoing
edge of that node. The below formula is used for width calculation,

width(a→b) =
L1(a → b)∑

(a,c′)∈DFG L1(a, c′)
+

L2(a → b)∑
(a,c′)∈DFG L2(a, c′)

+ 0.5
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Fig. 2: Example of the Visual Process Comparator.

The edges are coloured so that the user can see the differences instantly. We
use the HSV colour scale for the graph. The colour ranges from red (0◦, 73%,
96%) to blue (200◦, 73%, 96%) and all the colours in between based on D (see
Fig. 2). Grey colour indicates the edges are neither in L1 nor L2.

Besides that, the frequency of each edge of each sub-log (denoted as F1 and
F2) and the relative frequency differences in percentage between two sub-logs,
are also shown on each edge.

For instance, consider Fig. 2. The thin grey edges indicate they are only
present in the L but not in L1 and L2 and the green edge indicates near 0
relative difference. CRP → Leucocytes edge is deep blue as it only present in
L2. ER Registration → CRP has a teal colour as the relative difference is 71%
and ER Registration → Leucocytes has relative difference of -61.98% and the
colour is orange here.

5 Evaluation

In this section, we describe the twofold evaluation we performed to verify the
applicability and usefulness of the method and its implemented tool support.

5.1 Applicability

As a first evaluation, we assess the applicability of P2CM by applying it to two
real-life healthcare data sets that are publicly available. The aim is to illustrate
that P2CM can be applied to real-life event logs and may lead to insights into the
differences in (stochastic) process behaviour of cohorts within a single process
with minimal domain experts’ input.

Sepsis. Sepsis, a condition characterised by the body’s harmful response to in-
fection, is a frequent cause of severe illness and death worldwide [30]. The data
setfootnotehttps://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_
Log/12707639 consists of 1 050 patient cases recorded between 2013 and 2015
and includes diagnostic test results, patient demographic information and or-
ganisational information. We apply P2CM to understand the diagnostic journey
of sepsis patients and identify factors that may affect patient outcomes.
Data pre-processing. The event log has 5 distinct release types, i.e. patient dis-
charges. After applying a filter to exclude cases that lacked any release activ-
ity, as these cases were deemed incomplete and lacked a definitive end activity,

https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
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Fig. 3: The Elbow method on our Sepsis analysis.

Table 1: Alpha attribute influence.
Sepsis

Feature ID-R ID-K

Age 0.23 0.76
Diagnose 0.33 0.30
SIRSCritHeartRate 0.03 0.16
SIRSCritTachypnea 0.04 0.16
Release type 0.04 0.08

MIMIC

Feature ID-K ID-R

icd title 0.51 0.15
chiefcomplaint 0.08 0.16
acuity 0.44 0.01
heartrate 0.07 0.15
temperature 0.01 0.14

PAH

Feature ID-K ID-R

Time on Ramp 0.10 0.13
Primary Diagnosis 0.86 0.08
Location after Triage 0.44 0.07
Consultation Type 0.03 0.06
Departure Destination 0.11 0.05

a total of 777 cases remained. We added a new trace attribute to the event
log denoting the release type. The event log contains trace attributes such as
Case ID, Age, Transition, Organization, Activity Count, Diagnose, and
Diagnostic Tests. After removing the non-contributing trace attributes (case
identifier, comments and timestamps, see Section 4.1), we have 26 trace at-
tributes for our analysis. We removed the cases with missing values for these
attributes and this filtered event log has 729 cases.

Assisted Alpha Attribute Selection. We applied the ID-K and ID-R methods to
select the alpha attribute from the selected 26 trace attributes and got their
respective relevant importance of each feature as output, using the output of
the Elbow method in Fig. 3). The relevant importance of the top 5 attributes of
both methods is shown in Table 1. It can be observed that ID-K and ID-R both
returned Age and Diagnose as the most important features and for our analysis,
we have considered both Age and Diagnose as candidate alpha attributes.

Scoping analysis. In the selected candidate alpha attributes, Diagnose has more
than 100 distinct values, and we take the top ten most frequent ones choose
C,B,E,H,G,D,K,R,Q and S, as a result we have 10 sub-logs; one for each selected
diagnosis (the diagnoses are anonymised; knowledge of them is not necessary for
P2CM). For Age, we partition the values into 10-year periods, resulting in eight
sub-logs and they are 0-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90.

Identifying comparable sub-logs. In this step, we apply our new method (see
Section 4.2) to obtain the log vs log comparison scores. We find the number of
optimal cluster is 3 by using the elbow method on the scores. After that, we use
k-means clustering to find {C,B,E,H,D,K and, R} in cluster 0, {S} in cluster 1 and
{G,Q} in cluster 2.
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(a) VPC on the B and S sub-logs. (b) VPC on the 0-20 and 30-40 sub-logs.

Fig. 4: VPC on two Sepsis sub-logs.

After applying VPC (Section 4.2) on the age attribute sub-logs, obtaining
the log vs log comparison scores and using the Elbow method (Section 3), we
get 2 clusters. Then using k-means clustering, we find 0-20, 20-30 in cluster 0
and 30-40, 40-50, 50-60, 60-70, 70-80, 80-90 in cluster 1.

In the next step, we perform pairwise comparison within clusters to find the
similarities and between clusters to find key differences. We choose the sub-logs
B vs S from Diagnose and 0-20 vs 30-40 from Age for the in-depth comparison.

In-depth comparison. Next, we compare the sub-logs using VPC, with a filtering
parameter of 40%.

When comparing the sub-logs of B and S (see Fig. 4a), we instantly notice
a significant number of bright red edges, which indicates that B has a lot more
edges. The edges IV Liquid → IV Antibiotics and LacticAcid Triage →
Admission NC (not shown) have relative differences -36.99% and -52.81% which
means for sepsis S patients’ treatment, this paths play an important role.

Analysing the Age attribute of sub-log 0-20 vs 30-40 (see Fig. 4b), we see
that around 50% of the edges are only present in the sub-log 30-40. IV Liquid→
IV Antibiotics has a percentage difference of -39.08 percent which indicates
that for patients’ age between 40-50, this path is more important than any
other paths. When the sub-logs were compared using VPC, it became clear
that the treatment paths for sepsis patients varied significantly and that IV
fluids were preferable to IV antibiotics for patients aged 40–50. Overall, P2CM
provided insights into the differences between sub-logs of healthcare pathways
with minimal domain expert input.

MIMIC MIMIC-IV-ED is a database of emergency department (ED) admis-
sions at the Beth Israel Deaconess Medical Center between 2011 and 2019, which
contains vital signs, triage information, medication reconciliation, medication ad-
ministration and discharge diagnoses of around 425 000 ED stays. The ED is a
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resource limited environment and human care is rationed to provide the best
possible patient care [31]. MIMICEL is an event log derived from MIMIC [31].
Data pre-processing. We selected the event attributes temperature, heartrate,
resprate, o2sat, sbp, dbp, pain, acuity, chiefcomplaint and icd_title and
lifted them to the trace level. Other attributes that had a high percentage of
null values or were identifiers, timestamps or comments were dropped; 10 trace
attributes were used further. Out of the initial 448 972 cases, 436 737 cases re-
mained after filtering traces with missing values.
Assisted alpha attribute selection. We utilised both ID-K and ID-R; the top five
results are shown in Table 1. The two most important features from ID-K are
icd_title and Acuity, and for ID-R are icd_title and chiefcomplaint; we
selected the common one icd_title as the alpha attribute.
Scoping analysis. Here, we find comparable sub-logs based on the icd_title

attribute, which has more than a thousand values, and it is not possible to
compare these all one-on-one. So we select the top ten most frequent values and
generate ten event logs by filtering the event log based on these values.
Identifying comparable sub-logs. Then we create ten event logs from the MIMI-
CEL event log based on these ten values. By using our proposed technique for
identifying comparable sub-logs, we obtain the log vs log comparison scores.
The Elbow method indicates using 3 clusters. We then apply k-means clus-
tering to find Pneumonia, unspecified organism, Altered mental status

unspecified, Fever, unspecified in cluster 0, ALCOHOL ABUSE-UNSPEC, Al-
cohol abuse with intoxication unspecified in cluster 1 and Unspecified

abdominal pain, CHEST PAIN NOS, Chest pain unspecified, ABDOMINAL PAIN

OTHER SPECIED, HEADACHE in cluster 2.
Next, we compare two DFGs - they are ALCOHOL ABUSE-UNSPEC vs Alcohol

abuse with intoxication, unspecified and HEADACHE vs Altered mental

status, unspecified. As ALCOHOL ABUSE-UNSPEC and Alcohol abuse with

intoxication, unspecified are in the same log with very similar diagnosis
name, we are interested in understanding the main differences between them.
HEADACHE and Altered mental status, unspecified are in two different clus-
ters, and thus we also like to observe the main differences between them.
In-depth comparison.

To the selected pairs, we apply the VPC with a filtering parameter of 80%.
When we look at ALCOHOL ABUSE-UNSPEC vs Alcohol abuse with intoxica-

tion, unspecified in cluster 1. As the names suggest, there should not be too
many differences between them, and the graph validates our intuition. All the

Fig. 5: VPC on HEADACHE vs Altered mental status, unspecified compari-
son.
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edges are green except Triage in the ED → Vital sign check, -43.29%. This
shows that, when there is intoxication involved, more patients are sent for Vital
sign check.

Lastly, Headache vs Altered mental status, unspecified Fig. 5 shows
considerable differences in edges. Specially, Triage in the ED → Vital sign

check, -76.03% indicates Vital sign check is an important step when treating
patients with Altered mental status, unspecified. Overall, using P2CM we
were able to study process-based differences with minimal domain expert input.

5.2 Usefulness

The second evaluation entails an application of P2CM in a case study, performed
at the emergency department of the Princess Alexandra Hospital in Brisbane,
Australia. The corresponding data set contains ED pathways in 2019-2021.
Data pre-processing. The data set was converted to XES, after which the activi-
ties related to bed management were removed to focus the analysis. Furthermore,
cases with data-type mismatches were removed. The remaining log had 2 329 846
events, 134 846 traces and 48 activities.
Assisted Alpha Attribute Selection. In our study on alpha attribute extraction, we
utilised our exclusion criteria to select categorical attributes that were likely to
be useful alpha attributes. Our methods ID-K and ID-R both on the pre-selected
attributes revealed that Time on Ramp and Primary Diagnosis Snomed Code

were the top 2 most important attributes for segregating the traces into sub
event-logs. The relative importance of the top 5 attributes of both methods is
shown in Table 1. From the alpha attribute selection, we get Time on Ramp and
Primary Diagnosis Snomed Code (Primary Diagnosis) as the alpha attributes.
Scoping analysis. We binned the Time on Ramp in six parts based on their fre-
quency, while attempting to keep the bins balanced in their number of traces.
From the Primary Diagnosis feature, we chose the top 10 diagnoses based on
their frequency, this included Chest Pain, Mental Health Problem, Abdominal
Pain, Viral Illness, Syncope, Back Pain, NSTEMI - Non-ST Segment Ele-

vation MI, Headache, Cellulitis and Alcohol Intoxication.
Identifying comparable sub-logs. The clustering of sub-logs, with 3 clusters iden-
tified, was according to expectation: the bins of Time on Ramp that were close
in value were clustered together. We go through the same process for Pri-

mary Diagnosis and obtain 3 clusters. Based on the clustering, the domain
expert identified two pairs of potential interest: (1) mental health problem vs
viral illness, as an example of within-cluster differences, and (2) chest pain

vs NSTEMI - Non-ST segment elevation MI, as these are medically closely re-
lated, but still showed as being in different clusters. Furthermore, we decided to
compare sub-logs based on the time on ramp attribute clustering, taking (0,1.0]
vs (1.0,105.0] minutes as representatives of two different clusters (3).
In-depth comparison & interpretation and validation.We apply the VPC to these
three pairs of sub-logs. For the first pair, we compared mental health problem

and viral illness. Some of the procedural differences highlighted in the vi-
sualisation were expected by stakeholders, such as the edge from Triaged at
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Fig. 6: VPC on Chest Pain and NSTEMI - Non-ST segment elevation MI.

Fig. 7: VPC on time on ramp: (0, 1.0] vs (1.0,105.0] minutes.

to Treat Nrs, and Service Commencement to Edip date as for many mental
health problems, neither Emergency Department treatment nor admission oc-
curs. These patients are rapidly transferred to the Emergency Mental Health
Unit. Other differences were Triaged at to Clerk seen at, which stakeholders
indicated may be a missing recording step in the process. For the second pair, we
compared Chest Pain with NSTEMI - Non-ST segment elevation MI, shown
in Fig. 6. Again, several differences were expected, Triaged at → Clerk Seen,
which indicates that the administrative step in the middle is often skipped for ur-
gent cases. However, the Service Commencement to Treating Clin Seen edge
was a new insight to the expert, while Service Commencement to Edip Date

may again indicate a recording issue. For the third pair, we compared time on
ramp being less than one minute (F1) vs 1 to 105 minutes (F2), shown in Fig. 7.
The first observation is that the colours indicate large process-based stochastic
differences, as several edges are of teal and yellow colours. These findings suggest
both differences that can be explained by differences in the nature of the clinical
presentations and their journey through the ED as well as differences related to
data recording processes, which may be important in performance reporting.

From our discussion, it is clear that PVC as part of P2CM, based on the alpha
attributes Primary Diagnosis and Time on Ramp, can be effective in showing
the stochastic process-based differences between different patient groups.

5.3 Discussion

P2CM presented in this paper takes a single event log as input and provides
results between cohorts within that event log. P2CM hence allows comparative
analysis of process-based differences (DO1). P2CM is also a stochastic-aware
technique (DO2). The key steps of alpha attribute selection and identifying com-
parable sub-logs and in-depth comparison, which are stochastic to a larger extent
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than the original PCM, make P2CM stochastic-aware. In the future, P2CM could
be extended in the data pre-processing and scoping analysis steps with explicit
consideration of the stochastic perspective. Furthermore, P2CM provides auto-
mated techniques that guide users into choosing alpha attributes and comparable
sub-logs, and visualises stochastic differences between processes to guide analysts
in finding differences or commonalities between cohorts of a process, thus taking
a step towards satisfaction of guiding users with automated recommendations
(DO3). In the future, it would be interesting to extend automation by refining
the comparable sub-logs identification step using heuristics or machine learning
to guide analysts further towards potentially notable differences.

The techniques introduced in this paper as part of P2CM use concepts from
existing stochastic-aware techniques, but differ in key ways. In [6], an event
log is split along trace attribute values to find their values with the largest in-
fluence on stochastic behaviour. Our approach extends it with a full method,
non-categorical attributes and a visualisation of the actual differences. Finally,
we provide several automated techniques that assist analysts in selecting or cre-
ating one or more alpha attributes. Suitable pairs of sub-logs to compare are
selected in phase 3, however [5] emphasises the need to use similar processes.
We extend the method with a stochastic-aware approach that guides analysts in
choosing similar and dissimilar pairs of sub-logs for comparison. Furthermore,
our approach does not require the discovery of process models to perform this se-
lection, which inherently involves certain well-known trade-offs [32]. The process
comparison methods in phase 4 of [5] and literature do not focus on the stochas-
tic perspective. We provide a new process discovery technique/visualisation that
highlights differences in stochastic behaviour between two sub-logs.

The experiments can be reproduced using the scripts available at https:

//github.com/asadTariq666/BPM-Alpha-Attribute-Selection. The Sepsis
data is publicly available, while the MIMIC data is semi-publicly available [31].
For legal/privacy reasons, the data of the Princess Alexandra Hospital cannot
be shared.

Several limitations of this work are noted. As the author team applied P2CM
themselves, it was not possible to evaluate the ease of use of P2CM objectively:
future research is needed to assess this aspect. Second, the experiment covered
treatment (Sepsis) and emergency care (MIMIC, PAH), and we see no factors
that would prevent applying P2CM to other areas of healthcare. In order to gen-
eralise the application of P2CM to other domains, it is important that such cases
have attributes, or, more in general, sub-processes that can sensibly be compared
with one another. In case these sub-processes are already known to domain ex-
perts, P2CM might be applicable partially (identifying comparable sub-logs &
VPC). Another limitation is that the ordinal encoding used for categorical and
boolean attributes may impose an order that can impact k-means clustering.
Future research could explore alternative encoding methods like word2vec or
one-hot encoding to preserve semantic meaning without introducing implicit or-
der.

https://github.com/asadTariq666/BPM-Alpha-Attribute-Selection
https://github.com/asadTariq666/BPM-Alpha-Attribute-Selection
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6 Conclusion

In health processes, optimisation ideas may be derivable from the comparison
of similar but differing processes. In this paper, we applied a design science ap-
proach to introduce a method, the Probabilistic Process Comparison Method
(P2CM), to satisfy the design objectives of (i) allowing for comparative anal-
ysis of process-based differences in cohorts of a single process, (ii) considering
the stochastic perspective of behaviour, and (iii) guiding users with automated
recommendations derived from data. We showed that P2CM adheres to (i) and
(iii), while (ii) is satisfied by the combination of the techniques used in P2CM: in
all changed steps, the stochastic perspective is taken into account: most insights
obtained were of a stochastic nature, and would have been missed by tech-
niques unaware of the stochastic perspective. Following open-science principles,
method and analysis techniques are available to the community and two publicly
accessible datasets were used to ensure the reproducibility of our findings.

As further future work, the concepts of process cubes [12] may be applied
to expand P2CM to use the structure between attributes to further reason
about (hierarchical) relations between attributes, and guide users towards sub-
processes with notable differences.
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