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Abstract. Business process management (BPM) aims to support changes and
innovations in organizations’ processes. Process mining complements BPM with
methods, techniques, and tools that provide insights based on observed executions
of business processes recorded in event logs of information systems. State-of-the-
art discovery and conformance techniques completely ignore or only implicitly
consider the information about the likelihood of processes, which is readily avail-
able in event logs, even though such stochastic information is necessary for simu-
lation, prediction and recommendation in models. Furthermore, stochastic infor-
mation can provide business analysts with further actionable insights on frequent
and rare conformance issues.
In this paper, we propose precision and recall conformance measures based on the
notion of entropy of stochastic automata that are capable of quantifying, and thus
differentiating, frequent and rare deviations between an event log and a process
model. The feasibility of using the proposed precision and recall measures in in-
dustrial settings is demonstrated by an evaluation over several real-world datasets
supported by our open-source implementation.

Keywords: process mining, information theory, stochastic conformance checking, en-
tropy, precision, recall, fitness.

1 Introduction

A business process is an orchestration of activities and resources in an organisation,
aiming to achieve a business objective. Business process management (BPM) is an
interdisciplinary field that studies concepts and methods that support and improve the
way business processes are designed, performed, and analyzed in organizations, with
the ultimate goal of reducing their costs, execution times, and failure rates through
incremental changes and radical innovations [1, 2]. Research in BPM has resulted in a
range of methods, tools and techniques for identifying, designing, enacting, monitoring
and innovating operational business processes [3, 4].

Process mining aims to discover, monitor and improve real-world processes using
the knowledge accumulated in event logs produced by modern information systems [5],



where an event log is a collection of traces, each representing executed events of a
customer, order, claim, etc. traversing the business process. As multiple traces might
share the same sequence of steps through the process, event logs are inherently stochas-
tic: by accumulating information about business process executions observed over ex-
tended periods of time, event logs encode the true likelihood of executing the various
sequences of steps through the process. This knowledge about the frequencies attached
to real-world processes is invaluable for business process redesign and analysis prac-
tices [6], as it can inform flexible performance management [7] and generation of novel
business models and processes, both incremental [8] and radical [9, 10]. For instance,
consider the following event logs, each consisting of 2 distinct traces, with 1,000 traces
in total:

L1 = [⟨x-ray, treat⟩999,
⟨MRI, treat⟩1]

vs
L2 = [⟨x-ray, treat⟩1,

⟨MRI, treat⟩999]

Even though these event logs consist of the same distinct traces, they are very different.
In L1, the ⟨MRI, treat⟩ trace is the exception, while in L2 it is the rule, which likely will
influence optimisation strategies.

Some examples of advanced uses of process mining are prediction, recommendation
and simulation. In a running trace, using a process model, prediction techniques aim to
estimate certain properties of the trace’s future steps towards completion, for instance
its outcome, its risk of being delayed, its cost, etc. Based on these predictions, rec-
ommendation techniques automatically suggest mitigation or optimisation steps for the
future of the trace. As different paths through the process model might lead to different
properties, prediction and recommendation techniques inherently need to be aware of
the stochastic perspective of the process model.

In process optimisation projects, simulation can be used to measure the impact of
proposed process changes before they are implemented, and thus before the imple-
mentation costs are incurred. That is, several process models with proposed changes
are simulated and key performance indicators (for instance, throughput, trace duration
characteristics, etc.) are measured, such that a favourable model can be chosen. Key
performance indicators such as throughput and trace duration largely depend on the
paths taken through the model and, hence, the outcome of the simulations depends on
the stochastic perspective of the model.

Even though simulation, prediction and recommendation depend heavily on the sto-
chastic perspective of process models (stochastic process models), few techniques have
been proposed to construct such models automatically (stochastic process discovery
techniques) [11]. Typically, the stochastic perspective is constructed by hand as an ex-
tension of an existing process model.

However, to truly treat the stochastic perspective of process models as a first-class cit-
izen, it is also necessary to evaluate it. That is, the stochastic perspectives, as modelled
manually or discovered by stochastic discovery techniques, might differ substantially
from the stochastic perspective of the event log. Thus, stochastic process models risk
not being true representations of the actual real-life business process and predictions,
recommendations and simulations might return misleading results [12]. Few techniques
have been proposed that can be used to verify or assess the quality of stochastic process



models with respect to event logs, that is, to perform stochastic conformance check-
ing [13], however with the limitation of not supporting loops.

In classical (non-stochastic) conformance checking, typically four dimensions are
considered to compare a log to a (non-stochastic) process model: (1) fitness, which
expresses the part of behaviour of the event log that is supported by the model, (2) pre-
cision, which expresses the part of the model’s behaviour that is also in the event log, (3)
generalisation, which expresses the likelihood that future behaviour is captured in the
model, and (4) simplicity, which expresses whether the model expresses its behaviour
in a clear and concise way [14, 15]. However, in these existing measures the stochastic
perspective of models is not taken into account, and thus they are not suitable to fully
evaluate models for, e.g., prediction, recommendation and simulation.

For instance, in [16], we reported on a project with a major German health insurance
company that aimed to analyse and simplify about 4,000 of their stochastic process
models captured using the EPC notation annotated with probabilities of taking various
decisions. The insurer relied on these stochastic models to estimate the number of em-
ployees to hire to enact all the operational processes in a calendar year. Given logs of
executed processes at the end of the year, the measures proposed in this paper can be
used to assess the correctness of the estimates. In Section 4, we further illustrate the
applicability of our measures in this scenario.

In this paper, we lift two quality measures used in process mining, namely fitness and
precision, to consider the stochastic perspectives of event logs (which are inherently
stochastic due to the multiplicities of traces occurring) and stochastic process models.
That is, we propose two stochastic conformance checking measures, which compare an
event log to a stochastic process model. The measures consider both log and model as
stochastic automata, and compare the entropy [17] of these automata with the entropy
of a third automaton that represents the conjunctive stochastic behaviour of the log and
the model. While the measures support any stochastic process model whose behaviour
can be represented in a finite stochastic deterministic automaton (see Section 2), we
illustrate and implemented the measures for Stochastic Petri nets (see Section 2). Con-
cretely, this paper contributes:
○ Stochastic-aware recall and precision conformance measures for event logs and

process models grounded in the entropy of stochastic languages [17, 18];
○ Eight properties for stochastic-aware conformance measures that aim at establish-

ing the usefulness of measures that satisfy them;
○ A publicly available implementation of the proposed conformance measures; and
○ An evaluation that demonstrates the applicability and feasibility of the measures in

real-life industrial settings.
The remainder of the paper is structured as follows: The next section introduces no-
tions used to support subsequent discussions. Section 3 presents our stochastic-aware
precision and recall measures. After that, the measures are evaluated in Section 4, and
related work is discussed in Section 5. Finally, Section 6 concludes the paper.

2 Stochastic Languages, Petri nets & Automata

This section introduces notions used in the discussions in the subsequent sections.



Let Σ be an alphabet of activities, then Σ∗ is the set of all possible sequences of
activities (traces) over Σ. Let ε denote the empty trace. A language ⊆ Σ∗ is a, possibly
infinite, set of traces.

Definition 1 (Stochastic language). A stochastic language L is a function L∶Σ∗ →
[0,1], denoting a probability for each trace, such that ∑t∈Σ∗ L(t) = 1.

An event log is a multiset of traces. For instance, the event log Le = [ε, ⟨a⟩2, ⟨a, a⟩4,
⟨a, a, a⟩, ⟨a, a, a, a⟩2] consists of 10 traces. Its corresponding stochastic language is
[ε0.1, ⟨a⟩0.2, ⟨a, a⟩0.4, ⟨a, a, a⟩0.1, ⟨a, a, a, a⟩0.2] and its corresponding language is {ε,
⟨a⟩, ⟨a, a⟩, ⟨a, a, a⟩, ⟨a, a, a, a⟩}.

Definition 2 (Stochastic deterministic finite automaton, adapted from [18]). A stochas-
tic deterministic finite automaton (SDFA) is a tuple (S,Σ, δ, p, s0), where S is a set
of states, Σ is an alphabet of activities, δ ∶ S × Σ → S is a transition function,
p ∶ S ×Σ → [0,1] is a probability function, and s0 ∈ S is the initial state.

The probability to terminate in a particular state s is denoted by p(s, λ), λ ∉ Σ, and is
equal to 1 −∑a∈Σ p(s, a). Consequently, for each state, the probabilities of leaving the
state or terminating at it should sum to 1, i.e., ∀s ∈ S ∶ p(s, λ) +∑a∈Σ p(s, a) = 1.

0.1 2/9 4/7 1/3 1
a 0.9 a 7/9 a 3/7 a 2/3

(a) SDFA of log Le = ⌊ε, ⟨a⟩2, ⟨a, a⟩4, ⟨a, a, a⟩, ⟨a, a, a, a⟩2⌋.
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(b) An SPN Se.
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(c) SDFA of Se.

Fig. 1. Examples of an event log and a Stochastic Petri net, and their corresponding stochastic
deterministic finite automata. For convenience, the numbers in the states denote the probability
of termination.

The stochastic languages that can be represented by SDFAs are called stochastic de-
terministic regular languages [18]. For instance, all event logs can be represented by
SDFAs (we included a translation in an accompanying technical report [19]). Figure 1a
shows the SDFA of our example event log Le. Notice that SDFAs do not inherit all
the properties of deterministic finite automata. For instance, SDFAs are not closed un-
der union, that is, the union of two stochastic languages represented by SDFAs is not
necessarily expressible by an SDFA [20]. Therefore, we did not attempt to find valid
reduction strategies for SDFAs, but leave this as future work.

Definition 3 (Petri net). A Petri net (PN) is a tuple (P,T,A,M0, l) in which P is a
set of places, T is a set of transitions (T ∩ P = ∅), A ⊆ (P × T ) ∪ (T × P ) is an arc



relation, M0 (multiset over P ) is the initial marking and l∶T → Σ is a partial labelling
function.

A marking is a multiset over P , capturing the state of the net by indicating tokens on
the places in P . A transition t ∈ T is enabled in a marking M if for each place p′ such
that (p′, t) ∈ A it holds that p′ ∈M . If t fires, then all these places p′ are removed from
M , and to each p′′ such that (t, p′′) ∈ A a token is added to the new marking, and if l(t)
exists, it indicates this activity l(t) being executed. A path in a Petri net is an alternating
sequence of markings and transitions such that the markings can be traversed by firing
the immediately preceding transitions, and such that in the last marking no transition is
enabled. The trace corresponding to a path is the sequence of transitions projected to
activities using l, excluding transitions that are not mapped by l. The language of the
net is the set of all possible traces for which there exist corresponding paths in the net.

A stochastic Petri net (SPN) is a Petri net that expresses a stochastic language. Sev-
eral ways to enrich a Petri net with stochastic information have been proposed (refer
to [21] for an overview). The techniques presented in this paper apply to any type of
SPN that can be translated to an SDFA. Nevertheless, for illustrative purposes, we con-
sider a type of SPN in which transitions are annotated with weights:

Definition 4 (Stochastic Petri net). A Stochastic Petri net (SPN) is a tuple (P,T,A,
M0, l,w) such that (P,T,A,M0, l) is a Petri net and w∶T → R+ is a function that
assigns weights to transitions.

Given a marking M , the probability that an enabled transition t fires in M , denoted
by p(M, t), is proportional to t’s weight compared to the weight of all enabled transi-
tions: p(M, t) = w(t)/∑t′ enabled inM w(t′). Then, the probability of a path consisting
of transitions t1 . . . tn and markings M0 . . .Mn in an SPN is the product of the transi-
tions’ probabilities: Π1≤i≤np(Mi, ti). The probability of a trace in an SPN is the sum
of the probablities over all paths that induce the trace, and the stochastic language of an
SPN is the collection of all the traces induced by all the paths in the SPN (and all other
traces having probability 0). Figure 1b shows an example of an SPN Se.

If an SPN can be translated to an SDFA, then the SPN must have a finite state space
(which still might include loops), and its stochastic perspective needs to be describable
by an SDFA. For instance, Figure 1c shows the SDFA of SPN Se in Figure 1b. We
characterise the class of SPNs that express stochastic regular languages and discuss
some particularities that arise when translating SPNs to SDFAs in an accompanying
technical report [19].

3 Stochastic-Aware Conformance Checking

This section presents our new technique for stochastic-aware precision and recall mea-
sures, which computes these measures by considering the SDFAs of an event log and
a stochastic process model. It first creates a projection of both SDFAs to obtain the be-
haviour that is common to both. Then, precision and recall are obtained by considering
the entropy of the SDFAs and their projections.



Our technique can be applied to any stochastic process modelling formalism, as long
as the stochastic language of a model can be expressed as an SDFA. We first introduce
the projection, second we describe how we compute entropy, and finally we explain
how we compute precision and recall. We then discuss practical considerations of our
implementation of the measures, and introduce desirable properties for stochastic con-
formance checking measures.
Projection. A projection of two SDFAs L and M , denoted by P(L,M), is an SDFA
that contains the behaviour that is present in both L and M . For non-stochastic deter-
ministic finite automata, there are well-known algorithms to establish a projection [22].1

These algorithms typically construct synchronous walks in both automata, taking a step
only when it is allowed in both L and M . We use a similar strategy: whenever both
automata are able to take a step, this step is added to the projection. The probability of
such a step is the probability of the corresponding step in L.

For instance, consider the two SDFAs shown in figures 1a and 1c. Their projections
are shown in figures 2a and 2b. Notice that if from a particular state an outgoing edge
is removed, then the probability of this edge is added to the termination probability at
that state.

0.1 2/9 4/7 1/3 1
a 0.9 a 7/9 a 3/7 a 2/3

(a) Projection P(Le, Se) using the probabilities of the log.

0.2 0.5 0.5 0.5 1
a 0.8 a 0.5 a 0.5 a 0.5

(b) Projection P(Se, Le) using the probabilities of the model.

Fig. 2. Projections of the SDFAs shown in Figure 1.

Entropy. Intuitively, the entropy of an SDFA describes the number of yes/no questions
(bits) that would on average be required to guess an unknown random trace supported
by the SDFA. For any stochastic language L, the entropy H can be defined as follows,
using a convention that 0 log 0 = 0, cf. [17]:

H(L) = − ∑
t∈Σ∗

p(t ∈ L) log2 p(t ∈ L). (1)

As Σ∗ is infinite, H cannot be computed by iterating over Σ∗. Therefore, we compute
the entropy using a procedure adapted from [18]. Given an SDFA A = (S,Σ, δ, p, s0)
that describes a stochastic language, the entropy of the stochastic language of A is:

H(A) = − ∑
δ(s,a)

csp(s, a) log2 p(s, a) −∑
s∈S

csp(s, λ) log2 p(s, λ), (2)

where each state s ∈ S uses a constant cs, which can be obtained iteratively [18]:
1 For non-stochastic DFAs, a projection is often called a conjunction. We do not use this term

here to avoid confusion with the “stochastic” conjunction of two SDFAs, as this “stochastic”
conjunction may not necessarily yield an SDFA again.



c0s = 0 (3)

ct+1s =
⎛
⎝ ∑
δ(s′,a)=s

cts′ ⋅ p(s′, a)
⎞
⎠
+
⎧⎪⎪⎨⎪⎪⎩

1 s = s0
0 s ≠ s0

(4)

For instance, for the automaton shown in Figure 1c, the iterative steps are as follows:
c0 = [0,0], c1 = [1,0], c2 = [1, c10 ⋅ 0.8 + c11 ⋅ 0.5] = [1,0.8], c3 = [1, c20 ⋅ 0.8 + c21 ⋅ 0.5] =
[1,1.2], c4 = [1,1.4], c5 = [1,1.5], c6 = [1,1.55], c7 = [1,1.575], . . . c = [1,1.6] and
H = −(c00.8 log2 0.8+c10.5 log2 0.5) ≈ 1.05. This method converges deterministically
to the correct value [18].
Computing Precision & Recall. Finally, to compute precision and recall for a log
L and a model M (both translated to SDFAs), our technique uses the entropy of the
projection P and compares it to the entropy of L and M :

recall(L,M) = H(P(L,M))
H(L)

precision(L,M) = H(P(M,L))
H(M)

(5)

For these measures to work, the entropy of the log and the model cannot be 0. Further-
more, in an accompanying technical report [19] we show that H(P) is always lower
than both H(L) and H(M), thus our measures return values between 0 and 1.

For our example log Le and model Se (Figure 1), recall is 1 and precision is 0.914.
Practical Considerations. Next, we discuss some practical considerations that accom-
pany our new measures, and additional steps to increase their applicability, using the
overview shown in Figure 3.

SPN M M ′ M ′′

compute entropy
and measures

(Eq. (5))

log L L′ L′′

to SDFA (1) remove p(s, a) = 0 (2) add λ edges

to SDFA (1) remove p(s, a) = 0 (2) add λ edges

Fig. 3. Overview of the steps taken to increase the applicability of our measures.

Step (1): Eq. (2) requires that every edge in the two input SDFAs has a non-zero
probability, as log 0 is undefined (i.e., if δ(s, a) = b then p(s, a) > 0). This is easily
ensured using a pre-processing step on the SDFAs, which filters out these edges.

Step (2): Model and log cannot have zero entropies, i.e., they must contain more
than one trace with non-zero probability (be determininstic). In our implementation, we
pre-process each SDFA before projecting and measuring entropy: from each terminat-
ing state s, we add one step out of s with a small probability λ towards a fresh state.
This transition has a fresh label, and this label is reused for the pre-processing of both
SDFAs. This influences entropy in both SDFAs, but only by 0 ∼ 0.15 entropy.

In [18], it is shown that Equation (4) converges for SDFAs as long as from each state
it is possible to eventually terminate. This corresponds with our definition of stochastic
languages (Definition 1), which requires that the sum of probabilities over all traces
should be 1. In case an SDFA has a livelock which can be reached with non-zero prob-
ability, the probabilities of its traces do not sum to 1 and hence such an SDFA has no



stochastic language. This is inherently satisfied by event logs, and ensured with a check
in our implementation of the translation of SPNs to SDFAs.

Empty event logs or stochastic process models that do not support any traces do not
describe stochastic languages and are hence not supported by our technique. This is a
common restriction in process mining: sound workflow nets and process trees have the
same limitation and cannot express the empty language either.
Implementation. The proposed measures have been implemented as a plug-in of the
ProM framework [23]: “Compute relative entropy of a log and a stochastic Petri net”.
The measures themselves are deterministic. However, due to the order in which transi-
tions are read from a Petri net and double-precision arithmetic, small differences might
occur between runs.
Properties of Stochastic Precision and Recall. A measure that is not known to satisfy
any property can be considered to return “magic” numbers. In [12, 14, 15, 24], sev-
eral properties for classical conformance measures are proposed. Next, we adapt some
existing properties to the realm of stochastic-aware measures, introduce new stochastic-
specific properties, and justify that our measures indeed possess these properties.

P1 A stochastic-aware conformance measure should be deterministic;

P2 A stochastic-aware conformance measure should depend on the stochastic lan-
guages of logs and models and not on their representations;

Properties P1 and P2 hold for our conformance-aware precision and recall measures, as
both the projection and the entropy are computed using deterministic procedures with
only stochastic languages as inputs.

P3 Stochastic-aware conformance measures should return values greater than or equal
to 0 and less than or equal to 1;

Our precision and recall measures satisfy Property P3: as shown in an accompanying
technical report [19]. A conformance value of 1 signifies a perfect conformance, which
for the stochastic-aware measures can be instantiated as follows:

P4 If an event log and a model express the same stochastic language, then they should
have a perfect stochastic-aware precision, i.e., a precision of 1;

P5 If an event log and a model express the same stochastic language, then they should
have a perfect stochastic-aware recall, i.e., a recall of 1;

Properties P4 and P5 hold for our precision and recall measures, because if the log and
model express the same stochastic language, then the projection will have the same
stochastic language as well. Then, the entropy of all three stochastic languages is obvi-
ously equal, hence the numerator and denominator in Eq. (5) are equal.

P6 If a log L1 assigns to each trace from a model M a higher probability than another
log L2, then the precision of L1 should be higher than of L2:
If∀t∈Σ∗M(t) > 0⇒ (L1(t) ≥ L2(t)) then precision(L1,M) ≥ precision(L2,M);
Furthermore, if there is a trace of M in L1 and not in L2, then the precision of L1

should be strictly higher than of L2:
If ∀t∈Σ∗M(t) > 0⇒ L1(t) ≥ L2(t) and ∃t∈Σ∗M(t) > 0 ∧ L1(t) > 0 ∧ L2(t) = 0,
then precision(L1,M) > precision(L2,M);



P7 If a model M1 assigns to each trace from an event log L a higher probability than
another model M2, then the recall of M1 should be higher than of M2:
If ∀t∈Σ∗L(t) > 0⇒M1(t) ≥M2(t) then recall(L,M1) ≥ recall(L,M2);
Furthermore, if there is a trace of L in M1 and not in M2, then the recall of M1

should be strictly higher than of M2:
If ∀t∈Σ∗L(t) > 0⇒M1(t) ≥M2(t) and ∃t∈Σ∗L(t) > 0 ∧M1(t) > 0 ∧M2(t) = 0,
then recall(L,M1) > recall(L,M2);

The first parts of P6 and P7 hold for our measures: for recall (resp. precision), the
projection P (L,M1) is a super-graph of the projection P (L,M2), and as for recall
(resp. precision) all the probabilities are derived from L (resp M ), the probabilities on
the edges common to these SDFAs are equivalent. Then, the properties follow using
reasoning similar to P3. The second part of the properties then holds by extension.

Finally, similar to the precision and recall measures in information retrieval, we argue
that stochastic-aware precision should be equal to recall with the arguments flipped:

P8 Given two stochastic languagesA andB and stochastic-aware precision (precision)
and recall (recall ) measures, it should hold that precision(A,B) = recall(B,A).

Property P8 holds for our measures by definition.

4 Evaluation

In this section, we evaluate the measures introduced in this paper. First, we investigate
whether the measures are true reflections of differences in stochastic languages. Second,
we show that the measures are feasible to compute on real-life event logs and stochastic
models. Third, we illustrate the practical relevance of our measures on a repository of
real-life industrial stochastic process models.
Real Reflections of Differences: Ranking of Synthetic Models. Consider an event log
L containing 6 distinct traces: [⟨a, b, c⟩10, ⟨a, c, b⟩15, ⟨a, d⟩30, ⟨a, d, e, d⟩20, ⟨a, d, e, d, e,
d⟩15, ⟨a, d, e, d, e, d, e, d⟩10]. In this example, we consider four different stochastic pro-
cess models (SPNs, see Figure 4) that a user might consider to represent this event
log and use to gain insights about the process that generated the event log. Model S1

was discovered by a stochastic process discovery technique [11] from L. Model S2 is
a manually created SPN that is similar to S1 but has different probabilities. That is, the
stochastic perspective differs. Model S3 enumerates L’s traces having corresponding
probabilities: a trace model. Model S4 represents all behaviour and is a flower model,
with probabilities derived from L based on the frequencies of the activities. Table 1
shows (fragments of) the stochastic languages of these models.

We applied the measures presented in this paper (S), the Earth Movers’ (EMSC) [13]
measure, as well as the non-stochastic alignment-based (A) [25] and projected (P) [26]
precision measures. The results are shown in Table 2 (recall of S is 1 for all models).

All measures, corresponding to intuition, consider the trace model S3 to be perfectly
representing the event log, and agree on the flower model S4 having the lowest preci-
sion. Second, intuitively, the probabilities that S1 attaches to the traces in L are closer
to those in L than the probabilities that S2 attaches to these traces. Thus, we would
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Fig. 4. Four Stochastic Petri nets that could represent our event log L.

Table 1. Stochastic languages of L and the SPNs in Figure 4 (p is probability).

trace p in L p in S1 p in S2 p in S3 p in S4

⟨a, b, c⟩ 0.1 0.1 0.32 0.1 0.000199
⟨a, c, b⟩ 0.15 0.15 0.48 0.15 0.000199
⟨a, d⟩ 0.3 0.36 0.05 0.3 0.016008
⟨a, d, e, d⟩ 0.2 0.19 0.03 0.2 0.000557
⟨a, d, e, d, e, d⟩ 0.15 0.1 0.03 0.15 0.000019
⟨a, d, e, d, e, d, e, d⟩ 0.1 0.05 0.02 0.1 0.000001
other traces 0 0.05 0.08 0 0.983017

argue that S1 represents L better than S2, which both stochastic conformance checking
measures confirm (S, EMSC). A and P do not see any difference between these models.
Finally, it is remarkable that EMSC’s values for S2 and S4 are very close, which may
be due to EMSC having to unfold the loop in the flower model, which is bounded and
brings the compared language falsely closer to L. Our measures support loops, which
is reflected in the low precision score for S4.

This illustrates that conformance techniques that are not stochastic-aware cannot
fully grasp the differences between the stochastic perspective in these process models.

Practical Feasibility. Next, we report on the feasibility of the proposed stochastic-
aware precision and recall measures. To this end, we applied a stochastic discovery tech-



Table 2. Stochastic measures compared to regular conformance checking techniques.

rank this paper (S) EMSC [13] alignment-based (A) [25] projected (P) [26]

1 S3 (1) S3 (1) S3 (1) S3 (1)
2 S1 (0.918) S1 (0.908)

S1, S2 (0.846) S1, S2 (0.934)3 S2 (0.834) S2 (0.570)
4 S4 (0.096) S4 (0.509) S4 (0.292) S4 (0.551)

nique proposed in [11] to 13 publicly available real-life event logs2 to obtain stochastic
block-structured Petri nets.3 We then measured the precision and recall values for the
event logs and the corresponding discovered nets, as well as the times spent to compute
them. The code used to run the evaluation is publicly available.4 The machine used to
compute the measures had an E5-1620 CPU with 32GB RAM.

Table 3. Precision and recall values and times taken to compute them.

log traces events activities recall precision time (ms)

BPIC11 1,143 150,291 624 0.000 0.000 6,747,782
BPIC12 13,087 262,200 36 0.770 0.080 147,497
BPIC13-closed 1,487 6,660 7 0.677 0.888 22
BPIC13-open 7,554 65,533 13 1.000 0.605 11
BPIC13-incidents 819 2,351 5 1.000 0.630 13,427
BPIC15-1 to 5 discovery out of memory
BPIC17 31,509 1,202,267 66 0.111 0.011 2,919,223
Road Fines 150,370 561,470 11 0.772 0.497 245
Sepsis 1,050 15,214 16 0.939 0.109 3,210

Table 3 summarises the results. Some results could not be obtained: for the BPIC15
logs, the discovery technique ran out of memory, thus our measures could not be ap-
plied. For BPIC11, discovery returned a model in which all transitions were silent.
Hence, this model expressed the stochastic language [ε1] and thus recall and precision
are both 0, as the log did not have the empty trace. One could argue that our mea-
sures are strict as both the traces and their probabilities captured in the log and model
should match well for high scores. However, one could also argue that the tested discov-
ery technique is, apparently, unable to discover models that represent the likelihood of
traces in the event logs well, indicating the need for further research in such techniques.

The reported computation times show that the computation of the stochastic-aware
precision and recall measures is feasible on real-life logs, even on complex event logs
like BPIC11, taking at most two hours, but much less time for the other tested event
logs. Further analysis showed that for SDFAs with large cycles, Equation (4) might
need a quadratic number of steps (in the size of the state space S) to converge, and
that this is indeed the most expensive step of our measures. However, run time was not

2 The event logs are accessible via https://data.4tu.nl/repository/collection:event logs real.
3 The source code of the discovery technique is accesible via https://svn.win.tue.nl/repos/prom/

Packages/StochasticPetriNets/Trunk (svn revision 39823).
4 The source code used in the evaluation is accessible via https://svn.win.tue.nl/repos/prom/

Packages/StochasticAwareConformanceChecking/Trunk (revision 41855).

https://data.4tu.nl/repository/collection:event_logs_real
https://svn.win.tue.nl/repos/prom/Packages/StochasticPetriNets/Trunk
https://svn.win.tue.nl/repos/prom/Packages/StochasticPetriNets/Trunk
https://svn.win.tue.nl/repos/prom/Packages/StochasticAwareConformanceChecking/Trunk
https://svn.win.tue.nl/repos/prom/Packages/StochasticAwareConformanceChecking/Trunk


infeasible in our evaluation: at most two hours for the largest logs of most complex
procesess we tested, but generally much less. Nevertheless, as future work, this step
might be optimised using the SDFA’s structure.
Practical Usefulness: German Health Insurance Company. In this section, we demon-
strate the practical usefulness of our measures in the context of the case study with the
German health insurance company [16]. As the company used the hand-crafted stochas-
tic process models for resource planning, it is important that they do not describe the
same traces. Otherwise, there is a risk of double resource allocation and, consequently,
financial loss to the company. Due to a high number of models, i.e., approximately
4 000 models, manual analysis is intractable.5

0 0 0 0 0 0 0 0 1/2 1
a 1 b 1 c 1/2 d 1

d 1/2

e 1 f 1 g 1 i 1/2 h 1/2

h 1/2

0 0 0 0 0 0 0 0 1/2 1
a 1 b 1 c 1/2 d 1

d 1/2

e 1 f 1 g 1 i 1/2 j 1/2

j 1/2

Fig. 5. Two slightly different SDFAs from a German insurer. (h↔ j).

To identify models that describe identical (and frequent) traces, we performed their
pairwise comparisons using our stochastic-aware conformance measures. Models that
do not describe a proper stochastic language were discarded. Furthermore, only mod-
els with a single start node and a single end node were considered. This filtering step
resulted in the collection of 3 090 models. The average time of computing a stochastic
conformance measure between a pair of models using our tool, either precision or re-
call, was 69 ms. As a result, we discovered 48 pairs of distinct models that describe,
among others, some identical traces. Two anonymised models from the collection, for
which both stochastic recall and precision values are equal to 0.4, are shown in Figure 5.
Business analysts of the insurance company should assess these two models for poten-
tial double allocation of resources for support of the corresponding business operations.
As these models capture identical frequent traces, the analysts may further consider to
combine them into a single model.

5 Discussion and Related Work

A dozen of conformance checking measures have been proposed to date. For a compre-
hensive overview of the conformance checking field, we refer the reader to [5, 14, 27].
The vast majority of the existing conformance measures address nondeterministic mod-
els and logs. Nondeterminism, as a concept in computer science, was introduced in [28]
in the context of nondeterministic finite automata. Nondeterminism, as used in automata
theory, states that a choice of the next step in a computation does not necessarily de-
termine its future. This interpretation differs from the one employed in the context of

5 The models are not publicly available, as per the terms of the agreement with the company.



distributed systems, which says that there is no preference among the computations of a
system. As such, the latter interpretation provides an abstraction mechanism that allows
treating all the computations of a system as being equally good, or equally likely to be
induced by the system. Similar to nondeterminism, probabilities can be used to abstract
from unimportant or unknown aspects of a system. However, by associating different
probabilities with different computations of a system one can encode that certain com-
putations are more likely to be induced by the system than others [20]. In [12], van der
Aalst stressed the need to consider probabilities in conformance checking.

Some conformance checking techniques use stochastic elements, however without
targeting stochastic models. For instance, Hidden Markov Models (HMMs) have been
used to model business processes and to check conformance. In [29], recall and pre-
cision are computed by translating Petri nets and event logs to HMMs. However, the
stochastic perspective of HMMs is not used, as all the events in a particular state are
treated as being equally likely. Another limitation is that parallelism is not supported.

In [14], a precision measure and a recall measure were proposed for process min-
ing founded in the notion of the topological entropy of a regular language. In [14],
a framework for conformance checking approaches is proposed, which is instantiated
using cardinalities and entropy. The measures proposed in this paper can be seen as
extensions of the entropy-based technique for stochastic languages.

Alignments [30] search for a least-cost path through event log and model, thereby
being robust to slight deviations between traces. As recall takes the frequency of traces
into account, the stochastic perspective of logs is taken into account. However, alignment-
based precision measures [25] do not consider the stochastic perspective of the model.
Alignment-based precision measures might be extended to support stochastic process
models, for instance by searching for a most-likely path. Projected conformance check-
ing [26] addresses long run times of conformance checking techniques by projecting
behavior onto subsets of activities of a certain size. The measures presented in this pa-
per can be extended in a similar fashion. Generalised conformance checking [31] com-
pares an event log and model based on a given trust level for each, derived, for instance,
from identified data quality issues [32]. In stochastic conformance checking, one could
consider the probability attached to each trace in log and model to be an indication of
trust, yielding an alternative, possibly more fine-grained, view on their differences.

To the best of our knowledge, the Earth Movers’ Stochastic Conformance checking
technique [13] is the only stochastic conformance checking technique proposed today.
In this technique, the log and model’s stochastic languages are seen as distributions of
traces, and the Wasserstein metric is applied. While intuitive, it does not support infinite
languages (that is, models with loops), while our measure supports such languages. Fur-
thermore, our work contributes to the ongoing discussion on ideal conformance check-
ing measures by proposing properties that this measure should have [12, 14, 15, 24], by
extending these to the stochastic context.

Finally, to compare SDFAs, the Kullback-Leibler (KL) divergence [18] could be
used. However, KL-divergence does not exist if one SDFA supports a trace that the
other SDFA does not support, making it unsuitable for conformance checking purposes.



6 Conclusion

In process mining, the stochastic perspective of event logs and process models is es-
sential to inform process optimisation efforts and techniques, such as simulation, pre-
diction, recommendation, and to inform staffing decisions: without a stochastic per-
spective, efforts spent on optimisation are at risk of being spent on rare, exceptional
behavior, and lead to misinformed decisions.

In this paper, we contributed to making the stochastic perspective a first-class citizen
of process mining techniques, by introducing a stochastic-aware conformance checking
technique for two measures: fitness and precision. The proposed precision and recall
measures are applicable to an arbitrary event log and a model that describes a finite or
infinite number of traces using a finite number of reachable states. Eight desirable prop-
erties of stochastic conformance checking measures were identified, and the adherence
of our measures to these properties was shown.

An evaluation based on our publicly available implementation confirmed the feasi-
bility of using the measures in real-life industrial settings. We acknowledge that our
measures have limitations, which give rise to future work: Various notions of correct-
ness for process models, like boundedness or soundness, classify a process model that
can induce an infinite number of states as incorrect. However, as such models can ap-
pear in practice due to modelling errors, it is relevant to extend the proposes measures
to account for infinite-state models. Our measures address (to some extent) the problem
of partial trace matches [15]: common prefixes of traces are considered and contribute
to the measures, however common postfixes are not. Thus, a model and a log that have
their first activity different will be considered to be completely disjoint. This limitation
can be addressed by considering both the original SDFA and its edge-reversed version
during construction of the projection. Finally, our measures consider the stochastic per-
spective of either log or model, but not both. In future work, this could be addressed.
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