
Causal Reasoning over Control-Flow Decisions
in Process Models

Sander J.J. Leemans1[0000−0002−5201−7125] and Niek Tax2[0000−0001−7239−5206]

1 Queensland University of Technology, Brisbane, Australia
2 Meta, London, United Kingdom

s.leemans@qut.edu.au, niek@fb.com

Abstract Process mining aims to provide analysts with insights, such
that business processes supported by information systems can be im-
proved. Traditionally, insights from process mining projects and tech-
niques have been associational rather than causal, thus only describing
the current state of the process, without predictive capabilities over ef-
fects of hypothetical process changes, which inherently limits business
process optimisation efforts. In this paper, we introduce causal analysis
for control-flow decisions taken during the execution of process models:
using an event log and the structure of a process model, we (i) extract
the set of decision points in the process, (ii) apply a causal discovery
approach to obtain a collection of causal graphs that are consistent with
the observations in the event log, (iii) extract ordered pairs of decision
points between which a causal connection can be ruled out based on
the temporal ordering that is implied by the process model specification,
and use these to narrow down the set of possible causal graphs. This
technique addresses the problem of mining dependencies, which has long
been a challenge in the process discovery field. The technique has been
implemented in the Visual Miner as part of the ProM framework. We
illustrate the technique using examples and demonstrate its applicability
on real-life logs.

Keywords: Process mining · causal discovery · intra-model dependen-
cies · long-distance dependencies

1 Introduction

Process mining aims to gain insights into business processes of organisations from
event data recorded in information systems. Typical process mining projects aim
to gain such insights such that the process can subsequently be improved, for
instance to reduce cost, reduce cycle time or increase efficiency. Gaining insights
into business processes can be supported by several automated process mining
techniques, such as the discovery of a process model from recorded event data,
the study of conformance checking and the projection of data such as costs,
performance information and other data on process models. Using such enriched
process models, process mining techniques have been developed that recommend
interventions or optimal pathways through the process for ongoing cases by
predicting process outcomes.

2 Sander J.J. Leemans et al.

a

b

c

d

e

p1

p2

(a) Deterministic dependencies.

a

b

c

d

e

0.6

0.7

(b) Probabilistic dependencies.

Figure 1: A Petri net with dependencies.

Typical process mining techniques are inherently associational , that is, they
merely describe or visualise the data and cannot be used to reason in retrospect
(i.e. counterfactual) or to identify causes of identified phenomena. For instance,
a negative association between identified fraud cases and the performed thor-
ough checks earlier in a process does not suffice to conclude that the number of
identified fraud cases can be lowered by performing more thorough checks earlier
in the process. Similarly, a positive association between the sales of ice cream
and deaths by drowning does not suffice to conclude that deaths by drowning
can be prevented by lowering the sales of ice cream. Thus, such associational
insights have limited value in assisting redesigns of the process.

Causal reasoning has been leveraged to, for instance, predict the influence of
trace-based interventions on cycle time [4], to influence the likelihood of a given
outcome [3], and to explain why a certain negative outcome was achieved in a
particular trace [22]. However, none of these causal process mining techniques
are tailored towards process discovery, make the connection to (long-distance)
dependencies, or in any way leverage process models.

An often overlooked aspect of process models is dependencies: the dependence
of decisions in the process on earlier decisions. For instance, the Petri net in
fig. 1a contains two long-distance dependencies: d can only be executed if a was
executed earlier in the process and e can only be executed if b was executed earlier
in the process. As d cannot be executed without a having been executed, this is
a deterministic dependency, enforced by places p1 and p2. Rather, in this paper,
we consider probabilistic dependencies. For instance, the Petri net in fig. 1b is
annotated with long-distance dependencies indicating that after execution of a,
the probability of executing d is 60%, while after execution of b, this probability
is 30%. Obviously, Petri nets can only capture deterministic dependencies. For
process discovery, we argue that we might still want to visualise probabilistic
dependencies to the process analyst as long as these dependencies are causal.

In this paper, we aim to identify causal relationships among decision points
in the process. The motivation behind these causal relationships includes the
following use cases:

Informing process interventions and design. If activity d in fig. 1b affects
the business positively (e.g., a purchase of a certain product) while e represents a
negative outcome (e.g., ending the process without a purchase), then it is useful
to know whether the decision between a and b has a causal effect on the decision
between d and e. If this relation is causal, then information about this causal

Causal Reasoning over Control-Flow Decisions in Process Models 3

O1

O2 O3 O4

(a) Visualisation of a process tree.

O5
O6

O7 O8

(b) DFM.

Figure 2: Two models of the BPI Challenge 2012 log - O activities. Red circles
indicate option sets.

relation could influence process participants’ decisions as well as process redesign
efforts, e.g. by preferring a over b.

Discovering long-distance dependencies in process models. The control
flow perspective of process models is inherently causal: the execution of a trans-
ition may enable other transitions and is thus, according to the model, causal.
For instance, in fig. 1a, executing a has a causal influence on whether d is ex-
ecuted later on in the process. It is thus natural to extend the model with only
causal probabilistic dependencies.

We introduce a method to study causal control-flow dependencies in process
models. Using this causal knowledge, control-flow decisions in processes that
could be leveraged to influence the decision can be identified. To this end, given
a process model and an event log, our technique derives the causal structure of
decision points in the model, after which causal reasoning is applied to provide
analysts with insights into the causal dependencies in a process. The method
has been implemented and we evaluate it using synthetic and real-life examples,
and we demonstrate its applicability on real-life logs.

This paper is organised as follows: section 2 introduces a motivating example;
section 3 discusses related work; section 4 introduces existing concepts; section 5
introduces our method; section 6 evaluates it and section 7 concludes the paper.

2 Motivating Example

As an example, we study the choices made in a loan application process (BPI
Challenge 2012 - O_ activities). To this log, we applied a discovery technique to
obtain a process tree (see fig. 2a). This model has four decisions points (option
sets), labelled o1-o4. Option sets o1 and o2 form a loop: the options of o2
entail either exiting the loop or doing it again, and o1 is part of that loop. For
every time a trace traverses the loop, a decision must be made on o1 and o2.
Thus, each trace might have multiple choices corresponding to the option sets
o1 and o2. That is, the option sets that are part of the loop can be unfolded
into choices. We formalise option sets and choices in Section 5.1.

4 Sander J.J. Leemans et al.

Table 1: Some probabilistic dependencies of the model in fig. 2a.
(a) O1 vs. O1 (unfolding 2)
χ2 = 642, p < 0.00001

o cancelled skip

o cancelled 278 462
skip 698 0

(b) O1 vs. O2
χ2 = 129, p < 0.00001

[loop redo] [loop exit]

o cancelled 740 1222
skip 698 2355

(c) O1 vs. O2 (unfolding 2)
χ2 = 0.58, p = 0.45

[loop redo] [loop exit]

o cancelled 205 535
skip 206 492

To study probabilistic dependencies, Table 1 shows how often certain de-
cisions appeared together. If in the first unfolding of o1, o_cancelled is chosen,
then in o3, o_sent_back is chosen 406 times (21%), while o_sent_back is
skipped 1556 times (79%). However, if o_cancelled is skipped in the first unfold-
ing of o1, then in o3, o_sent_back is executed 2568 times (84%) and skipped
485 times (16%). With a Benjamini-Hochberg correction [2] for the 14 tests per-
formed (assuming at most 2 unfoldings), a χ2 test confirms that this difference
is statistically significant. Yet, this is insufficient information for stakeholders
to decide how to best decrease the relative number of loan applications that
are sent back (o3), since this is not yet shown to be a causal relation. In the
remainder of this paper, we study these two models as running examples.

3 Related Work

Long-Distance Dependencies. Many discovery techniques explicitly support
long-distance dependencies, including the Flexible Heuristics Miner [32], Fod-
ina [5], some variants of the α algorithm [33], the ILP algorithm [34] and De-
clare [19]. Most of these techniques apply a threshold to decide on the presence
of a long-distance dependency and thus still produce deterministic dependen-
cies, or only include long-distance dependencies if they do not violate fitness at
all (e.g. ILP), thus all produce only deterministic dependencies. An exception
is [27], which considers probabilistic dependencies through association rules in
one particular Petri net structure (though not causal). Thus, while deterministic
dependencies in models have been studied (e.g. ILP, HM, Fodina), to the best
of our knowledge, causal dependencies have not.

Some discovery techniques are limited by their representational bias in repres-
enting long-distance dependencies. For instance, process trees cannot represent
long-distance dependencies due to their block structure [13]. As the state of dir-
ectly follows-based models consists only of the last executed state, these models
cannot represent long-distance dependencies either [9,16]. BPMN models can
represent a limited set of long-distance dependencies, due to a lack of an explicit
state and a waiting-less semantics.
Prediction. Given an enriched process model, several approaches have been
proposed that aim to predict certain aspects of ongoing cases, such as the like-
lihood of undesirable events [6], timeliness [29,12,10], the next executed activ-
ity [30], the utilisation of resources [20] or in general event data [7]. While a
recent approach [11] uses counterfactual reasoning to explain predictions, these
approaches to prediction do not provide information on intervention (what-if),
for which a causal approach is necessary,
Causal Analysis in Process Mining. Causal inference has been used to de-
termine the influence of process steps on the outcomes of ongoing traces [24], and

Causal Reasoning over Control-Flow Decisions in Process Models 5

to maximise the likelihood of a desirable outcome for a running case [3]. Similar
approaches have been proposed to decrease service time [21] or cycle time [4] of a
case, or the root causes of performance issues [26]. Counterfactual reasoning has
been applied to process mining as well, to explain why an undesirable outcome
was achieved for a particular case [22]; a diversified range of potential scenarios
is presented to the analyst.

Bayesian network structure learning from event logs is proposed in [28,29].
Bayesian networks can in principle be causal models if their structure coincides
with the structure of the causal graph, however, the Bayesian networks in [28,29]
are not causal, as they focus on optimising the structure for predictive accuracy
rather than on attempting to find causal relations.

To the best of our knowledge, only two causal approaches in process mining
advocate the use of a process model: [17] uses Structural Causal Models to answer
what-if questions by quantifying the improvement of proposed process changes;
[17] mentions a broad range of causal principles, including using the structure
of process models. Both techniques however provide no guidance or detail on
how to apply these, and do not consider the causal dependencies between model
choices. Similarly, [23] proposes root-cause analysis and mentions the potential
use of process models, but does not detail how process models can be leveraged.

More generally, while existing work in the area of causality in process mining
focuses on identifying or quantifying causal effects on process outcomes or pro-
cess performance, this work, in contrast, focuses on causal effects of control-flow
decisions on other control-flow decisions later in the process. Thereby, this work
is positioned at the intersection of causal inference and process discovery, rather
than at the intersection of causal inference and business process improvement.

4 Preliminaries

In this section, we introduce existing concepts and notations.
A multiset is a function from a set of elements Σ to the natural numbers,

indicating how often each element appears in the multiset. For instance, [a2, b7].
For a multiset M , [. | .] denotes multiset composition, such that [a | a ∈M] = M .

A trace is a sequence of events, representing the activities executed for a
particular case in a process. An event log is a multiset of traces. For instance,
[〈a, b, c〉2, 〈a, d〉3] represents a log with 5 traces, of which 2 traces have 3 activ-
ities. The empty trace is denoted with ε; the set of all logs is L.
M is the set of all process models (regardless of formalism). A directly fol-

lows model (DFM) is a directed graph consisting of transitions T and edges E,
such that start /∈ T and end /∈ T . A DFM expresses a set of traces as each
trace starts in start and moves over the edges to end, executing the activities
annotated on the transitions along the path. See [16] for a full formal definition.
Figure 2b shows an example of a DFM, which supports the trace 〈o_selected,
o_cancelled〉 amongst other traces.

A process tree is a block-structured process model, defined recursively [13].
Each node in the tree describes a language; a leaf a ∈ Σ describes the singleton
language of its activity, a silent leaf τ) describes the language with the empty
trace {ε} and a node describes a combination of the behaviour of its sub-trees

6 Sander J.J. Leemans et al.

using an operator⊕. In this paper, we consider six n-ary operators: the sequential
composition 7→, exclusive choice ×, inclusive choice ∨, interleaved↔, concurrent
∧, and 	; where 	(T1, T2, T3) combines three sub-trees as an always-executed
body T1, and then a choice between executing T2 followed by T1 and back to
the same choice, or exiting the loop by executing T3. For a formal definition,
please refer to [13]. As an example, fig. 2a shows a visualisation of the process
tree 7→(∧(o sent, 	(7→(o selected, ∧(o created, ×(τ , o cancelled))), τ , τ)), ×(τ ,
o sent back), ×(τ , o accepted, o declined)).

A structural causal model [18] over a set of variables V is a system of equations
of the form vi = fi(pa(vi), Ui) for all vi ∈ V , where pa(vi) denotes the set
of variables that directly determine the value of vi (i.e., the parents), and Ui

represents errors that might arise as a result of either true randomness (i.e., a
coin flip) or residual errors due to omitted variables. A causal graph [18] of a
set of variables V is a directed acyclic graph consisting of nodes V and edges
E = {(vi, vj) ∈ V ×V | vi ∈ pa(vj)}, i.e., the causal graph denotes the structural
form of the structural causal model without specifying the functional form. We
write vi → vj for (vi, vj) ∈ E, representing that vi has a causal effect on vj .
Furthermore, we write vi −− vj for vi → vj ∨ vi ← vj .

Random variables X and Y are conditionally independent given a set of
random variables Z, denoted X ⊥⊥ Y | Z, if and only if P (X | Y,Z) = P (X | Z),
i.e., given that we already know Z, knowing additionally Y provides no addition
information about X, and vice versa3. When Z = ∅, i.e., P (X | Y) = P (X), X
and Y are marginally independent, denoted X ⊥⊥ Y .

A causal graphG on variables V and a probability distribution P (v1, . . . , v|V |)
satisfies the causal Markov condition if and only if ∀vi,vj∈V,vi 6=vj

⇒ vi ⊥⊥ vj |pa(vi),
i.e. each variable is independent of all its non-descendants given its parents G.

A path on a causal graph G = (V,E) is a sequence of distinct vertices
〈v1, . . . vn〉 such that ∀1≤i<nvi −− vi+1. A directed path is a path such that ∀1≤i<n

vi → vi+1. A vertex vi on a path 〈v1, . . . vn〉 is called (i) a chain if vi−1 → vi →
vi+1 or vi−1 ← vi ← vi+1; (ii) a collider if vi−1 → vi ← vi+1 (i.e., vi is a common
effect of its neighbours); and (iii) a confounder if vi−1 ← vi → vi+1 (i.e., vi is a
common cause of its neighbours).

A path p in causal graph G is d-separated [8,18] by Z ⊆ V if and only if
either p contains a chain vi−1 → vi → vi+1 or confounder vi−1 ← vi → vi+1

such that vi ∈ Z, or p contains a collider vi−1 → vi ← vi+1 such that vi /∈ Z
and no descendent of vi is in Z. A set Z ⊆ V is said to d-separate X ⊆ V from
Y ⊆ V if and only if Z d-separates every path from a node in X to a node in Y .

For example, in causal graph G1 = v1 ← v2 → v3, set {v2} d-separates
{v1} from {v3}, while set Z = ∅ does not. In contrast, in causal graph G2 =
v4 → v5 ← v6, ∅ d-separates {v1} from {v3}, while set {v2} does not. While
d-separation is a property of sets of nodes in a causal graph, it has a direct
link with conditional independence: if X ⊆ V is d-separated from Y ⊆ V given
Z ⊆ V in causal graph G, then X ⊥⊥ Y | Z in every probability distribution that
satisfies the causal Markov condition with respect to G. For example, in example

3 By symmetry, also P (Y | X,Z) = P (Y | Z)

Causal Reasoning over Control-Flow Decisions in Process Models 7

UBCG

log

model
binary
UBCG

choice data causal graph regression
MVPC

Figure 3: Overview of our method.

causal graph G1, imagine that v2 represents age, while v1 and v3 respectively
represent the presence of arthritis and cardiovascular disease, two common age-
related diseases. Now, {v2} d-separates {v1} from {v3}, which means that in all
probability distributions that satisfy the causal Markov condition w.r.t. G1 it
must be the case that the presence of arthritis and of cardiovascular disease are
independent once the age is known.

Causal graphs that imply the same set of conditional independence rela-
tions, i.e., graphs that have the same set of d-separation properties, are Markov
equivalent, and the set of all Markov equivalent causal graphs is a Markov equi-
valence class (MEC). In the case of two variables, graphs v1 → v2 and v1 ← v2
are Markov equivalent, as the set of condition independence relations that both
graphs imply is ∅. Markov equivalent causal graphs cannot be distinguished
purely based on observational data. Causal discovery algorithms aim to recon-
struct the causal graph from observational data, however these algorithms can
thus merely identify the correct MEC of possible causal graphs [18].

5 Our Method

Our method consists of five steps, illustrated in fig. 3, that combine the inform-
ation available in a process model and an event log. First, we obtain an upper
bound on the causal graph (UBCG) that consists of all causal edges that are
possible according to the process model. Second, we extract the choices made
in the traces of the event log to obtain a data set of made choices (section 5.2).
Third, we apply a causal discovery technique to obtain the MEC that is consist-
ent with this choice data set. Fourth, in section 5.3 we combine the MEC with
the UBCG, i.e., we shrink the MEC to contain only causal graphs that do not
contradict the process model. Often, this MEC is a single causal graph. Finally,
we estimate the size of the causal effects using this causal graph and a standard
application of regression with backdoor adjustment [18].

5.1 Upper-Bound Causal Graphs

Given a process model, an upper-bound causal graph (UBCG) is a causal graph
that contains all causal edges that do not violate the model. In this section, we
describe how a UBCG can be computed for any DFM or process tree. The nodes
of a causal graph indicate choices in the model. As causal graphs conceptually do
not support loops – every choice in a causal graph can be made at most once –,
if a model-choice is encountered multiple times in a trace, it must be represented
multiple times in a causal graph. Thus, while the nodes of causal graphs differ
slightly between DFMs and process trees, they both contain unfolding identifiers.

Directly Follows Models.

8 Sander J.J. Leemans et al.

For DFMs, we use both the DFM and an event log for the construction
of the UBCG. In constructing the UBCG, for each event it must be decided
whether the event enters the “next” unfolding. We aim to minimise the number
of unfoldings, as to minimise the number of nodes in the causal graph and to
maximise the amount of information per node.

Intuitively, our starting point is the set of not-unfolded choices in the model.
Our strategy is to create a total order of these choices: whenever the sequence
of choices in a trace in the log goes backwards in this total order, we enter a
new unfolding. Thus, our aim is to create a total order that minimises the total
number of such backward steps.

We first create a non-unfolded-choice graph (nucg). To this end, each trace
t of a log L is transformed using a function choicesTrace that takes a trace and
a model, and returns the sequence of choices in the trace corresponding to the
model. Such a function could be implemented using alignments [1]. Then, an
edge is added between every pair of encountered options:

nucg(L,M) = [(oi, oj) | 〈. . . oi . . . oj . . .〉 = choicesTrace(t,M) ∧ t ∈ L] (1)

For instance, fig. 4a shows the nucg of the DFM of fig. 2b.
Next, we create a total order of choices (nucto) by repeatedly greedily adding

choices with the least incoming edges: ((2))

nucto(L,M) = nucto′(nucg(L,M), 1, {o | o ∈ choicesTrace(t,M) ∧ t ∈ L})

nucto′(G, r,O) =

{
{o→ r} if |O| = 1

nucto′(G, r + 1, O \ {o}) ∪ {o→ r} otherwise

with o = argmin
o∈O

∑
o′∈O∧o6=o′

G((o′, o)) (2)

For instance, fig. 4b shows the total order for our example of fig. 2b.
Then, the UBCG function ubcg takes a log and a model and returns a set

of edges between choices. Intuitively, in a UBCG there is an edge between two
choices if there is a potential causal relation between the source and target of
the edge. In the context of a DFM, two choices can only have influenced one
another if they appeared consecutively in a trace in the log. Thus, we add all
such edges. To avoid cycles, whenever an edge goes backwards in the total order
nucto, we increase the unfolding identifier u (3).

ubcg(L,M) =
⋃
t∈L

ubcg′(〈 〉, choicesTrace(t),nucto(L,M), 1)

ubcg′(tc, 〈 〉, R, u) = ∅
ubcg′(〈 〉, 〈o〉 · to, R, u) = ubcg′(〈(o, 〈u〉)〉, to, R, u)

ubcg′(tc · 〈c〉, 〈o〉 · to, R, u) = {(c′, c′′) | c′ ∈ tc · 〈c〉} ∪ ubcg′(tc · 〈c, c′′〉, to, R, u′)
with c′′ = (o, 〈u′〉)

and u′ =

{
u if R(oc) < R(o), c = (oc, tx)

u+ 1 otherwise
(3)

Causal Reasoning over Control-Flow Decisions in Process Models 9

(a) Non-unfolded choice graph. (b) Total order. (c) UBCG (k = 2).

Figure 4: Constructing a UBCG from the DFM in fig. 2b.

To limit the size of the UBCG, the unfoldings can be maximised using a
parameter k, which stops processing a trace if it reaches k unfoldings – processing
the remainder of the trace remains future work.

In our example, the UBCG truncated to 2 unfoldings is shown in fig. 4c.
Process Trees. For process trees, it is trivial to decide when the “next” un-
folding starts – with each execution of the second child of a loop –, thus we can
construct the UBCG directly.

First, we describe the choices in a process tree recursively. • The silent and
activity nodes τ and a ∈ Σ do not possess any choices. (4) • The sequence,
concurrent and interleaved operators do not add any choices (5). • The exclusive
choice operator adds a choice between its children (6). • For each execution of
an inclusive choice node, at least one child must be executed. Thus, there is
one choice – which child to execute first – and another choice for each child –
whether that child is executed as a non-first child (7). • For each execution of
a loop node, a different choice is made – to proceed with the redo T2 or to exit
using T3 (8). As loops can be arbitrarily nested, the unfolding identifier is a
sequence of integers indicating the unfolding number of each encountered loop
node. While a loop node thus describes a sequence of potentially infinitely many
choices, every event log has finitely many finite traces. Therefore, we introduce
a parameter k which indicates the times a loop node must be unfolded. In the
following, I is initially 〈 〉.

cs(τ, I) = cs(a, I) = ∅ (4)

cs(⊕(T1, . . . Tn), I) =
⋃

1≤i≤n

cs(Ti, I) for ⊕ ∈ {7→,∧,↔} (5)

cs(×(T1, . . . Tn), I) =
⋃

1≤i≤n

cs(Ti, I) ∪ {(T1, . . . Tn, I)} (6)

cs(∨(T1, . . . Tn), I) = {({Tl|1 ≤ l ≤ n}, I)} ∪ {(Ti,¬Ti, I) | 1 ≤ i ≤ n} (7)

cs((T1, T2, T3), I) =
⋃

1≤j≤k

⋃
1≤i≤3

cs(Ti, I · 〈j〉) ∪
⋃

1≤j≤k

{(T2, T3, I · 〈j〉)} (8)

Then, we can define the UBCG as a function ubcg, which produces a set
of directed edges between (unfolded) choices of a process tree. • Intuitively,
concurrency nodes do not induce any relation between their sub-trees: concurrent
sub-trees are independent by definition, thus the choices in sub-trees cannot have
causal relations with one another either. (10) • For exclusive choice, the choices
made in its sub-trees depend on the choice made to select a sub-tree to execute.

10 Sander J.J. Leemans et al.

choices in
T1

non-first choice to
execute T1 or not

choices in
T2

first choice to execute
T1, T2 or T3

non-first choice to
execute T2 or not

choices in
T3

non-first choice to
execute T3 or not

Figure 5: An UBCG of the execution of an inclusive choice ∨(T1, T2, T3).

As the sub-trees themselves are mutually exclusive, the choices in these sub-trees
cannot have causal relations with one another. (11) • For sequence nodes, the
choices in each sub-tree may causally depend on all choices in sub-trees before
the current sub-tree. (12) Initially, I is 〈 〉.

ubcg(τ, I) = ubcg(a, I) = ∅ (9)

ubcg(⊕(T1, . . . Tn), I) =
⋃

1≤i≤n

ubcg(Ti, I) for ⊕ ∈ {∧,↔} (10)

ubcg(×(T1, . . . Tn), I) =
⋃

1≤i≤n

ubcg(Ti, I) ∪ ({(T1, . . . Tn, I)} × cs(Ti, I))

(11)

ubcg(7→(T1, . . . Tn), I) =
⋃

1≤i≤n

ubcg(Ti, I) ∪
⋃

1≤i<j≤n

(cs(Ti, I)× cs(Tj , I))

(12)

• To construct the UBCG of an inclusive choice node, we may assume that first
a choice is made to execute a child, after which choices are made whether the
remaining children are executed. Thus, all subsequent choices may depend on
this first choice (14). Second, the choices within a child might also depend on the
choice whether to execute that child (15). Figure 5 illustrates this for 3 children.

ubcg(∨(T1, . . . Tn), I) =
⋃

1≤i≤n

ubcg(Ti, I) ∪ (13)

{({T1, . . . Tn}, I)} ×
⋃

1≤i≤n

{({Ti,¬Ti}, I)} ∪ cs(Ti, I) ∪

(14)⋃
1≤i≤n

{(Ti,¬Ti, I)} × cs(Ti, I) (15)

• The causal relations of a loop node consist of the relations of its sub-trees (16),
relations within an unfolding of the loop (17)-(21) (see fig. 6a) and relations

Causal Reasoning over Control-Flow Decisions in Process Models 11

choices in body T1
choice between
T2 and T3

choices in redo T2

choices in exit T3(17)

(20)

(21)

(18)

(19)

(a) Intra-unfolding.

choices in body T1
choice between
T2 and T3

choices in redo T2

choices in exit T3

choices in body T1
choice between
T2 and T3

choices in redo T2

choices in exit T3

(22)(22)

unfolding 1

unfolding 2

(b) Inter-unfolding.

Figure 6: UBCG of 	(T1, T2, T3). Double edges indicate that every choice in the
source of the edge is connected to every choice in the target of the edge.

between subsequent unfoldings (22) (see fig. 6b).

ubcg((T1, T2, T3), I) =
⋃

1≤j≤k

⋃
1≤i≤3

ubcg(Ti, I · 〈j〉) ∪ (16)

⋃
1≤j≤k

(cs(T1, I · 〈j〉)× {(T2, T3, I · 〈j〉)}) ∪ (17)

(cs(T1, I · 〈j〉)× cs(T2, I · 〈j〉)) ∪ (18)

(cs(T1, I · 〈j〉)× cs(T3, I · 〈j〉)) ∪ (19)

({(T2, T3, I · 〈j〉)} × cs(T2, I · 〈j〉)) ∪ (20)

({(T2, T3, I · 〈j〉)} × cs(T3, I · 〈j〉)) ∪ (21)⋃
1≤j<j′≤k

⋃
1≤i′≤3

(cs(T1, I · 〈j〉)× cs(Ti′ , I · 〈j′〉)) ∪

(cs(T2, I · 〈j〉)× cs(Ti′ , I · 〈j′〉)) ∪
({(T2, T3, I · 〈j〉)} × cs(Ti′ , I · 〈j′〉)) (22)

The parameter k can be chosen per node as to cover the longest unfolding
of a loop in any trace of the log minus one, as the last unfolding always exits
the loop. As some causal discovery techniques are exponential in the number
of variables, a smaller k can be chosen. For example, fig. 7a shows the UBCG
derived from the process tree in fig. 2a with maximum unfolding k = 2 for all
nodes.
Binary UBCGs. The causal discovery technique we will use in section 5.3
requires binary choices. Therefore, we transform each n-ary choice into a set
of binary choices using one-hot encoding in a post-processing step. That is, a
choice between a, b and c is transformed into three choices: a vs. ¬a, b vs. ¬b
and c vs. ¬c. Figure 7b shows an example, where choice o4 has been split into

12 Sander J.J. Leemans et al.

o1o2

o1u1

o2u1 o3

o4

(a) UBCG.

o1o2

o1u1

o2u1 o3

o4s
o4a

o4d

(b) Binary UBCG.

o1o2

o1u1

o2u1 o3

o4s
o4a

o4d

(c) MVPC.

o1o2

o1u1

o2u1 o3

o4s
o4a

o4d

-0.624

0.111

(d) Causal graph.

Figure 7: Our method applied to a process tree (fig. 2a), with k = 2.

Table 2: Table of choice data of fig. 2a.

o1 o2 o1u1 o2u1 o3 o4a o4s o4d

〈o sent, o selected, o created, o accepted〉 true true - - false true false false
〈o selected, o created, o sent〉 true true - - false false true false

o4s(kip), o4a(ccepted) and o4d(eclined). The introduced binary choices have
no causal relation.

5.2 Choice Data

The next step is to create a table of the decisions made in the event log. In
this table, each row represents a trace, each column represents a choice from the
model, and each cell indicates which option was chosen. As decisions depend on
both model and log, we use alignments [1] to extract the decisions made for the
choices in each trace according to the model. That is, steps in the log that have
no equivalent in the model are ignored.

Certain choices are not encountered on certain paths through the process,
resulting in missing data in the choice data set. For instance, the process tree
model ×(a, 7→(b,×(c, d)) contains two decision points, however the trace 〈a〉
yields a for the first choice, but the second choice is not encountered. Another
source of missing data are loop executions. For instance, for the model in fig. 2a
and the UBCG in fig. 7a, an example choice data table is shown in table 2

5.3 Causal Discovery

One of the oldest causal discovery algorithms is PC [25], which is able to identify
the MEC under the assumption that there are no unobserved confounders. The
PC algorithm starts from a fully connected undirected graph over all variables,
and iteratively removes edges based on a series of statistical tests for conditional
independence. The resulting graph summarises the MEC by keeping both direc-
ted and undirected edges, where the undirected edges mean that an edge between
those nodes in either direction yields the same set of conditional independence
relations and thus could not be distinguished.

Most causal discovery algorithms are unable to deal with missing values in
the choice data. Therefore, we use the Missing Value PC (MVPC) algorithm [31],
which is an extension of the PC algorithm that is able to handle missing data.
If a value is missing, this is due to an earlier choice in the model, thus the cause

Causal Reasoning over Control-Flow Decisions in Process Models 13

Figure 8: Implementation of causal analysis in the Visual Miner.

of missing data is fully observed (Missing At Random (MAR)). This is a step
up from Missing Not At Random, for which MVPC is less precise.

We know from the UBCG that certain causal edges contradict the process
model. Therefore, we filter these edges from the MEC (considering undirected
edges as two directed edges). This modification makes the MVPC algorithm
process-aware, i.e., it leverages domain knowledge from the process model to
reduce the MEC of observationally equivalent causal graphs. This reduction
generally yields a single causal graph since the UBCG contains no undirected
edges.

Finally, we take the obtained causal graph and estimate the size of the causal
effect of each the edge in the causal graph. We estimate these causal effect sizes
using a regression with backdoor adjustment [18]. When estimating the causal
effect for an edge vi → vj in the causal graph, the backdoor adjustment achieves
d-separation between vi and vj for all paths between vi and vj other than the
direct causal path vi → vj . After this adjustment, the regression coefficient can
be given causal interpretation as the average treatment effect (ATE).

For example, fig. 7c shows the output of the MVPC step for our process tree
of fig. 2a. Combining this graph with UBCG yields the causal graph in fig. 7d.

6 Evaluation

Implementation. Our method has been implemented as a prototype in the
Visual Miner [15,16]: it shows the results of the analyses of this table in a tabular
format, as shown in fig. 8. Intermediate steps are available to developers; future
enhancements could include causal-graph editors and graph-based visualisations
of identified causal dependencies.

Illustration: Synthetic Example. We apply our method to a synthetic pro-
cess tree shown in fig. 9, and generate a log of 10 000 traces, while injecting the
causal dependencies of fig. 9a. For instance, a choice for a in ×(a, b) adds 0.4
to the probability of observing an h in ×(g, h). This example contains several
challenges: (i) missing values [by ×(y, .)]; (ii) nested dependencies [×(a, b) im-
pacts ×(g, h) and ×(c, d) impacts ×(e, f)]; (iii) indirect effects [×(a, b) impacts
×(g, h), which impacts ×(i, j)without direct effect]; and (iv) direct effect after
an indirect effect [×(k, l) is yet again impacted by ×(a, b)]. Choosing a synthetic
example with these edge cases demonstrates that our method can handle these
challenges.

Then, we apply our method, yielding a UBCG (fig. 9b), the result of MVPC
(fig. 9c), and the causal graph obtained by combining UBCG and MVPC (fig. 9d).
Finally, ordinary least square regressions with backdoor adjustments for the true
causal graph (fig. 9d) recovers estimates of the true causal effect s, up to sampling

14 Sander J.J. Leemans et al.

a
0.4−−→ h

a
0.4−−→ l

c
0.2−−→ e

g
0.3−−→ i

(a) Causal
effects.

×(a, b)
×(c, d)

×(e, f)

×(g, h)

×(i, j)
×(k, l)

×(y, .)

(b) UBCG.

×(a, b)
×(c, d)

×(e, f)

×(g, h)

×(i, j)
×(k, l)

×(y, .)

(c) MVPC result.

×(a, b)
×(c, d)

×(e, f)

×(g, h)

×(i, j)
×(k, l)

×(y, .)

0.204

0.406

0.298

0.402

(d) Causal graph.

Figure 9: Synthetic example×(y, 7→(×(a, b),×(c, d),×(e, f),×(g, h),×(i, j),×(k, l))).

Table 3: Results of the Applicability Experiment.
Log miner choices UBCG edges MVPC edges → (−−) causal graph edges run time (s) mean±std.dev

BPIC12-a DFMM 3 3 0 (6) 6 1.18±0.22
BPIC12-a IMf 4 6 0 (4) 4 0.59±0.13
BPIC12-o DFMM 42 594 7 (0) 4 1.29±0.23
BPIC12-o IMf 16 120 1 (5) 7 3.80±0.29
Roadfines DFMM 2 1 0 (0) 0 0.09±0.08
Roadfines IMf 8 27 2 (3) 5 7.80±0.69
Sepsis DFMM 288 23 776 not enough data for a particular edge
Sepsis IMf 148 5 485 0 (5) 5 74.52±3.63
BPIC17-o DFMM 2 1 0 (0) 0 0.04±0.07
BPIC17-o IMf 3 3 0 (4) 4 2.98±0.50

variation. Note that our method is successful in retrieving the structure of the
causal graph, despite the challenges.

Demonstration: Illustrative Example. Continuing from section 2 and fig. 2a,
our method identifies two causal relationships: the first occurrence of o1 skip-
ping o cancelled causes a reduction of the second occurrence of o1 executing
o cancelled by 0.624. Furthermore, executing the loop exactly two times (o2u1
exit) causes o sent back to be executed 0.111 more. This means that if the exe-
cution of o sent back is of concern (e.g., wasteful), the process can be optimised
by reducing the number of times the loop is executed exactly two times. Notice
that some of the associations identified in section 2 were in fact not causal.

Applicability: Real-Life Logs. To evaluate the practical applicability of our
method, we applied it to several real-life event logs published by the IEEE Task
Force on Process Mining, and models discovered by two miners: DFM Miner [16]
(DFMM) and Inductive Miner - infrequent [14] (IMf). We measured the number
of choices with log-bounded k, the edges in each of the graphs, and run time
to apply MVPC (repeated 25 times on an i9-9980HK CPU with 32GB RAM).
Table 3 shows the results; for one instance, the MVPC algorithm did not produce
a result as one particular edge had a constant choice. In all cases, the run time
of MVPC was in the order of a minute, which makes it faster than alignment
computations. We conclude that it is practically feasible to run our method on
real-life logs. Furthermore, at most 7 causal relations are identified, which seems
promising as to not overload analysts.

Discussion. Our method assumes that there are no unobserved confounders for
model decisions, which is a rather substantial assumption. While any technique
would need to make this assumption, potential bias could be reduced by using
more data from event logs. Future work could explore integrating trace or event
attributes in the choice graph. For trace attributes, this would require to pre-
cisely determine the moment in time when the attribute value became known,

Causal Reasoning over Control-Flow Decisions in Process Models 15

which might require domain expert knowledge. For causal analysis of choices,
the moment of choice matters: the models 7→(a,×(b, c)) and ×(7→(a, b), 7→(a, c))
have the same language, but their moments of choice are different. In the first
model a might have influenced the decision between b and c, but in the second
model this is not possible. Event logs do not provide information about choices,
so this cannot be verified using logs; our technique assumes that the given process
model is correct.

7 Conclusion

Process mining aims to obtain insights from event logs, recorded from historic
executions of business processes in organisations. In this paper, we introduced a
causal method to study dependencies between choices within the control flow of
process models. This method first derives an upper bound causal graph (UBCG)
of choices in the model (for DFMs and process trees). Second, it transforms the
log to a tabular data structure representing the choices made in each trace. Third,
it applies an adjusted PC causal graph discovery algorithm, taking the UBCG
into account. Fourth, it applies causal regression to find the causal relations. We
illustrated the method and how it can be applied on an artificial and a real-life
example, and applied the method in practice on several real-life event logs.

As future work, UBCGs for Petri nets could be constructed leveraging com-
bined concepts of DFMs (markings/arbitrary loops) and process trees (concur-
rency). Furthermore, trace and event data can reveal additional confounding
factors. Finally, the causal analysis could be summarised over unfoldings and
projected on a model for easier analysis.

References

1. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: ACSD. pp. 57–66. IEEE (2011)

2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Royal Stat. Soc. 57(1), 289–300 (1995)

3. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process min-
ing meets causal machine learning: Discovering causal rules from event logs. In:
ICPM. pp. 129–136. IEEE (2020)

4. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive
process monitoring for cost-aware cycle time reduction. In: ICPM. pp. 96–103.
IEEE (2021)

5. vanden Broucke, S.K.L.M., Weerdt, J.D.: Fodina: A robust and flexible heuristic
process discovery technique. Decis. Support Syst. 100, 109–118 (2017)

6. Brunk, J., et al.: Cause vs. effect in context-sensitive prediction of business process
instances. Inf. Syst. 95, 101635 (2021)

7. Choueiri, A.C., Portela Santos, E.A.: Discovery of path-attribute dependency in
manufacturing environments: A process mining approach. JMS 61, 54–65 (2021)

8. Geiger, D., Verma, T., Pearl, J.: Identifying independence in bayesian networks.
Networks 20(5), 507–534 (1990)

9. Günther, C.W., Rozinat, A.: Disco: Discover your processes. In: BPM Demos.
vol. 940, pp. 40–44. CEUR-WS.org (2012)

10. Hompes, B.F.A., et al.: Discovering causal factors explaining business process per-
formance variation. In: CAiSE. LNCS, vol. 10253, pp. 177–192 (2017)

16 Sander J.J. Leemans et al.

11. Hsieh, C., Moreira, C., Ouyang, C.: Dice4el: Interpreting process predictions using
a milestone-aware counterfactual approach. In: ICPM. pp. 88–95. IEEE (2021)

12. Kamal, I.M., Bae, H., Utama, N.I., Yulim, C.: Data pixelization for predicting
completion time of events. Neurocomputing 374, 64–76 (2020)

13. Leemans, S.J.J., Fahland, D.: Information-preserving abstractions of event data in
process mining. Knowl. Inf. Syst. 62(3), 1143–1197 (2020)

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: BPM work-
shops. LNBIP, vol. 171, pp. 66–78 (2013)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and
deviations. In: BPM Workshops. LNBIP, vol. 202, pp. 304–316 (2014)

16. Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:
Exploration & a case study. In: ICPM. pp. 25–32. IEEE (2019)

17. Narendra, T., et al.: Counterfactual reasoning for process optimization using struc-
tural causal models. In: BPM Forum. LNBIP, vol. 360, pp. 91–106 (2019)

18. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge UP (2009)
19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for

loosely-structured processes. In: EDOC. pp. 287–300. IEEE (2007)
20. Peters, S., et al.: Fast and accurate quantitative business process analysis using

feature complete queueing models. Inf. Sys. 104, 101892 (2022)
21. Qafari, M.S., van der Aalst, W.M.P.: Root cause analysis in process mining using

structural equation models. In: BPM Workshops. LNBIP, vol. 397 (2020)
22. Qafari, M.S., van der Aalst, W.M.P.: Case level counterfactual reasoning in process

mining. In: CAiSE Forum. LNBIP, vol. 424, pp. 55–63 (2021)
23. Qafari, M.S., van der Aalst, W.M.P.: Feature recommendation for structural equa-

tion model discovery in process mining. CoRR abs/2108.07795 (2021)
24. Shoush, M., Dumas, M.: Prescriptive process monitoring under resource con-

straints: A causal inference approach. CoRR abs/2109.02894 (2021)
25. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd

edition. MIT Press (2000)
26. Stierle, M.: Exploring Cause-Effect Relationships in Process Analytics - Design,

Development and Evaluation of Comprehensible, Explainable and Context-Aware
Techniques. Phd thesis, FAU Erlangen-Nürnberg (2021)

27. Sun, H., Liu, W., Qi, L., Ren, X., Du, Y.: An algorithm for mining indirect depend-
encies from loop-choice-driven loop structure via petri nets. IEEE TSMC (2021)

28. Sutrisnowati, R.A., Bae, H., Park, J., Ha, B.: Learning bayesian network from
event logs using mutual information test. In: ICSOC. pp. 356–360. IEEE (2013)

29. Sutrisnowati, R.A., Bae, H., Song, M.: Bayesian network construction from event
log for lateness analysis in port logistics. Comput. Ind. Eng. 89, 53–66 (2015)

30. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence
modeling methods for next-element prediction. SoSyM 19(6), 1345–1365 (2020)

31. Tu, R., Zhang, C., Ackermann, P., Mohan, K., Kjellström, H., Zhang, K.: Causal
discovery in the presence of missing data. In: AISTATS. pp. 1762–1770 (2019)

32. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM.
pp. 310–317. IEEE (2011)

33. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)

34. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2018)

	Causal Reasoning over Control-Flow Decisions in Process Models

