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Abstract. In this work, we explore an approach to process discovery
that is based on combining several existing process discovery algorithms.
We focus on algorithms that generate process models in the process tree
notation, which are sound by design. The main components of our pro-
posed process discovery approach are the Inductive Miner, the Evolution-
ary Tree Miner, the Local Process Model Miner and a new bottom-up
recursive technique. We conjecture that the combination of these process
discovery algorithms can mitigate some of the weaknesses of the individ-
ual algorithms. In cases where the Inductive Miner results in overgen-
eralizing process models, the Evolutionary Tree Miner can often mine
much more precise models. At the other hand, while the Evolutionary
Tree Miner is computationally expensive, running it only on parts of the
log that the Inductive Miner is not able to represent with a precise model
fragment can considerably limit the search space size of the Evolutionary
Tree Miner. Local Process Models and bottom-up recursion aid the Evo-
lutionary Tree Miner further by instantiating it with frequent process
model fragments. We evaluate our approaches on a collection of real-life
event logs and find that it does combine the advantages of the miners
and in some cases surpasses other discovery techniques.

Keywords: Process mining · process discovery · boosting · process trees ·
bottom-up recursion.

1 Introduction

Process Mining [1] is a scientific discipline that bridges the gap between process
analytics and data analysis, and focuses on the analysis of event data logged
during the execution of a business process. Events contain information on what
was done, by whom, for whom, where, when, etc. Such event data is often readily
available from information systems such as Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM) or Business Process Management
(BPM) systems. Process discovery, which plays a prominent role in process min-
ing, is the task of automatically generating a process model that accurately de-
scribes a business process based on such event data. Many process discovery tech-
niques have been developed over the last decade (e.g. [3,5,6,7,12,13,16,17,32]),
producing process models in various forms, such as Petri nets [26], process trees
[6] and Business Process Model and Notation (BPMN) models [27].



In the research field of Machine Learning, it has long been studied how to
combine multiple predictive models into a single combined model. This so-called
ensemble learning gained traction when Schapire [28] showed that a strong clas-
sifier could be generated by combining a collection of weak classifiers through a
procedure he called boosting. In later years, many different approaches have been
developed to combine several predictors into a single more accurate predictor,
including bagging [4], stacking [31] and Bayesian model averaging [14].

Dahari et al. [7] recently explored combining multiple process discovery ap-
proaches to obtain a single process model. The model that they obtain is based
on multiple process models that originate from the Inductive Miner infrequent
(IMi) [17] with different parameter settings of the algorithm. In this work, we
take this idea one step further by exploring the combination of multiple process
discovery algorithms to jointly discover a single process model, thereby bringing
some of the ideas of ensemble learning to the field of process mining.

We focus on process discovery algorithms that generate process models in one
consistent process representation, namely the process tree [6], in order to enable
combining the results of discovery approaches. Three existing process discovery
algorithms that generate process models in process tree notation are the Induc-
tive Miner (IM) [16,17], the Evolutionary Tree Miner (ETM) [6] and the Local
Process Model (LPM) Miner [29]. The Inductive Miner algorithm is a computa-
tionally very fast algorithm, however, the process models that it generates often
allow for too much behaviour (i.e., they are imprecise) when it is applied to
event logs that originate from highly variable or unstructured processes. The
ETM uses a genetic algorithm to find a process tree that optimises multiple
quality criteria for process models and it can, therefore, find more precise mod-
els from logs of unstructured processes. However, finding a high-quality process
model with the ETM can be time-consuming when the process or the event log
is large or complex. Our combination of process discovery algorithms, Indulpet
Miner (IN), aims to combine the strengths of four process discovery techniques:
Inductive Miner, Local Process Models, the Evolutionary Tree Miner and a new
bottom-up recursive technique (BUR). First, we apply IM on the parts that it
can describe precisely. Second, we use the LPM Miner and BUR to mine local
patterns of process behaviour that we use as a starting point for the ETM, which
prevents that the genetic search of the ETM has to start from scratch. Third,
we only apply the ETM locally for the remaining parts.

The remainder of this paper is structured as follows: in Section 2 we discuss
related research. In Section 3 we introduce basic concepts and notation that we
use throughout the later sections of the paper. In Section 4 we introduce the In-
dulpet Miner, our novel mining approach. Section 5 evaluates the Indulpet Miner
and compares it to existing techniques. Finally, Section 6 concludes the work.

2 Related Work

Several process discovery techniques have been proposed before. We briefly dis-
cuss the ones most relevant for this paper; for a more elaborate overview, please



refer to [1]. Evoluationary Tree Miner, Inductive Miner and the Local Process
Models technique will be described in Section 4.

The Split Miner [3] is a process discovery algorithm that extracts a set of di-
rectly follows relations from the event log and, from these relations, mines a pro-
cess model using several heuristics. The Split Miner is often able to discover more
precise process models than the Inductive Miner. Split Miner guarantees that
the discovered process models are free of deadlocks, however, unlike soundness-
guaranteeing algorithms, Split Miner does not guarantee that the final state of
the model can be reached (no weak soundness).

Dahari et al. [7] recently developed the Fusion Miner, which is related to the
Indulpet Miner in the sense that it mines several process trees and combines
them into a single process model. However, the process trees that are combined
by the Fusion Miner are restricted to those that are generated by the Inductive
Miner infrequent (IMf) [17], while the Indulpet Miner combines process trees
that originate from multiple algorithms, thereby making use of the strengths of
different algorithms.

Mannhardt et al. [24] proposed a combined approach based on Local Process
Models (LPMs) and the Inductive Miner (IM), thereby closely linking to the
Indulpet Miner. This approach first uses LPMs to abstract the event log to
a different event log where the events are on a higher level of granularity, then
applies the IM to this higher level log, and replaces the high-level activities in the
discovered model with the LPM patterns to obtain a model on the granularity
level of the original log. In this work, we propose to start with IM, thereby
reducing the application of the more computationally expensive LPM miner to
fragments of the log where the IM fails to find a satisfactory result, while in
the solution proposed by Mannhardt et al. [24] the LPM miner always needs to
process the full log. Furthermore, this work incorporates the Evolutionary Tree
Miner (ETM) and a novel bottom-up recursion (BUR) strategy.

3 Preliminaries

Given an alphabet of activities Σ containing all the basic process steps, Σ∗ de-
notes the set of all sequences over Σ and σ = 〈a1, a2, . . . , an〉 denotes a sequence
of length n, with |σ|=n. 〈〉 denotes the empty sequence and σ1·σ2 is the con-
catenation of sequences σ1 and σ2. A multiset (or bag) over X is a function
B : X → N which we write as [aw1

1 , aw2
2 , . . . , awnn ], where for 1 ≤ i ≤ n we have

ai ∈ Σ and wi ∈ N+. The set of all multisets over X is denoted with B(X).
An event log is a multiset of traces that denote process executions. For in-

stance, the log [〈a, b, c〉, 〈b, d〉2] consists of one trace that consists of activity a
followed by b and c, plus two traces of b followed by d.

A directly follows graph is an abstraction of an event log or a language.
The nodes are the activities of the log or language, while the directed edges
denote whether in the log or language, an activity may be directly followed by
another activity. For instance, the directly follows graph of our example log is

a b c d .



Fig. 1: An example of a labeled Petri net. This labeled Petri net has a block
structure which is denoted by the filled regions. (obtained from [18]).

A frequently used process-model notation is the Petri-nets notation [26]. A
Petri net is a directed bipartite graph consisting of places (depicted as circles)
and transitions (depicted as rectangles), connected by arcs. Transitions represent
activities, while places represent the enabling conditions of transitions. A special
label τ is used to represent invisible transitions (depicted as narrow rectangles),
which are only used for routing purposes and not recorded in the execution log.

In a labelled Petri net, labels are assigned to transitions to indicate the type
of activity that they model.

A state of a Petri net is defined by its marking, and it is often useful to
consider a Petri net in combination with an initial marking and a set of possible
final markings. This allows us to define the language accepted by the Petri net
as a set of sequences of activities (L). We refer to a Petri net with an initial and
a set of final states as an accepting Petri net.

A process tree [6] is an abstract representation of a block-structured hier-
archical process model, in which the leaves represent the activities and the op-
erators describe how their children are to be combined. τ denotes the activity
(leaf) whose execution is not visible in the event log. We consider four opera-
tors: ×, →, ∧ and 	 (⊕ denotes any process tree operator). × describes the
exclusive choice between its children, → the sequential composition and ∧ the
parallel composition. The first child of a loop 	 is the body of the loop; all
other children are redo children. First, the body must be executed, followed
by zero or more iterations of a redo child and the body; after each iteration,
execution can stop. Fig. 1 shows the Petri net corresponding to the process
tree→(×(∧(a, b), c),×(	(→(d, e), f), g)). Process trees can be straightforwardly
translated to Petri nets, and these translated nets are inherently sound.

Notation-wise, let t be a trace and let A be a set of activities, then t|A refers
to a projected trace containing only the events of t of which the activities are
in A. Notice that this projected trace may be empty. Similarly, for a log L, L|A
denotes a log consisting of the traces of L projected on A.

In an alignment procedure, an event log and a process model, which can be
a normative or a descriptive, are compared. That is, for each trace of the log,
a matching execution path through the model is searched for. This matching
path might deviate from both the log, by skipping events, and the model, by



skipping activities. A matching with the lowest number of skips is referred to as
an optimal alignment. For instance, an optimal alignment of the trace 〈a, b, c〉

and the process tree →(×(∧(a, b), c),×(	(→(d, e), f), g)) is:
trace a b c -

model a b - g

4 Indulpet Miner

Indulpet Miner (IN) aims to combine the strengths of four process discovery tech-
niques: Inductive Miner (IM), Local Process Models (LPM), the Evolutionary
Tree Miner (ETM) and a new bottom-up recursive technique (BUR). We il-
lustrate IN using Figure 2: starting with a full event log (2a), as a first step,
Inductive Miner is applied, which tries to discover some structure in the event
log and splits it accordingly into sub-logs, until it is unable to find structure in
the sub-logs (2b). We start with the Inductive Miner since it is the only process
tree algorithm that guarantees fitness, and hence, in situations where this miner
manages to find a precise model, no further work is needed. This step increases
the number of event logs but decreases their complexity.

Second, the new bottom-up recursive technique (BUR) is applied (2c). Where
IM aims to find the highest-level structure in the log (starting with the root of
the process tree), BUR aims to find lowest-level structure in the log (starting
with individual activities and combining these into subtrees). The combination
of IM and BUR is applied exhaustively until the event logs cannot be reduced
in complexity anymore.

Third, LPM is applied to gather candidate local process models, which serve
as starting seeds for ETM. That is, rather than starting from an arbitrary popu-
lation of models, ETM begins its iterations using the local process models as its
population. Initializing the ETM with an initial population of LPMs reduces the
search space of the ETM, thereby improving computational efficiency. Finally,
the ETM is applied to obtain a complete process tree (2d).

Using these steps, the low-hanging fruit of well-structured behaviour is cap-
tured by Inductive Miner and the bottom-up recursive method, thereby minimiz-
ing the heavy lifting that has to be performed by the Evolutionary Tree Miner.

In this section, we describe each of the steps of Indulpet Miner. We first
describe the three existing techniques Inductive Miner, Evolutionary Tree Miner
and Local Process Models in more detail. Second, we introduce the new bottom-
up recursive technique. We finish with the pseudo code of IN and a description
of its implementation.

4.1 Inductive Miner

Inductive Miner (IM) applies a recursive divide-and-conquer approach to pro-
cess discovery, using four distinct steps [16]. That is, first the “most important”
behaviour in the event log is identified, consisting of a process tree operator (×,
→, ∧, 	) and a proper division of the activities in the event log (a cut, denoted
as (⊕, S1, . . . Sn) for operator ⊕ and sets of activities S1 . . .Sn). The operator is
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Fig. 2: An illustration of Indulpet Miner applying several steps to obtain a pro-
cess tree from an event log.

recorded as the root of the resulting process tree. Second, the cut found is used to
split the event log into smaller sub-logs. Third, IM recurses on each sub-log until
a base case is encountered, for instance, a log containing only a single activity,
which is returned as a process tree leaf. Finally, if IM cannot find a cut, a fall-
through is returned that overestimates the behaviour of the event log to be able
to continue the recursion. For instance, if a particular activity occurs precisely
once in each trace, then this activity is filtered out of the event log, the recursion
continues, and the activity is put in parallel with the resulting process tree. As a
last resort, IM will return a flower model that represents all behaviour over the
activities in the event log, thereby guaranteeing fitness. In practice, on event logs
of loosely structured processes, this last-resort fall-through of IM may cause a de-
crease in precision. With the Indulpet Miner, we aim to improve the fall-through
of the Inductive Miner, by adding a more involved approach that combines sev-
eral other process discovery techniques to the original fall-through strategies.

Due to its flexibility, several variants of IM have been proposed, in particu-
lar to handle noise and infrequent behaviour (IMf) [17] and to handle lifecycle
information (IMlc) [19], and even their combination (IMflc) [19], which we use
in Indulpet Miner3.

Indulpet Miner uses all four steps of IMflc, and the cut selection, recursion
and base case steps are used without change. If no cut can be found, before
trying the default fall-throughs of IM and possibly overgeneralising, Indulpet
first attempts to apply bottom-up recursion and, if that is successful, recurse
further using IM. Second, if bottom-up recursion is not successful, Indulpet will
apply LPM mining and finally the ETM. Should these not return a result, for

3 Lifecycle information handling capabilities are necessary for Indulpet as the bottom-
up recursion might insert such information in the event log, even if it was not present
in the input event log.



instance when running out of a user-chosen time limit, the original fall-throughs
of IM are applied to ensure that a process tree is returned at all times.

4.2 Evolutionary Tree Miner

The Evolutionary Tree Miner (ETM) [6] is a technique that applies a genetic
search approach to process discovery: it starts with a population of process mod-
els and repeatedly evaluates, selects and mutates the models in the population
to optimise it towards a set of chosen quality criteria. In each iteration, the
models in the population are evaluated, and only the best-performing models
are selected and considered further. The mutation steps of ETM are mutation
and crossover. Crossover combines the well-performing parts of multiple mod-
els, while mutation replaces the ill-performing parts with random variations. To
guarantee that all models can, eventually, be considered, a certain degree of
randomness is inserted into the selection and mutation steps.

As ETM limits itself to process tree models, soundness is guaranteed. Fur-
thermore, the Evolutionary Tree Miner can optimise for any log- or model-based
quality criterion imaginable, and any process-tree construct, including duplicate
activities, can be discovered. However, ETM is computationally expensive, which
can be addressed by providing an initial population of models to give ETM a
head start. In Indulpet Miner, we use the results of LPM mining for this pur-
pose. Furthermore, to decrease the amount of work to be performed by ETM,
Indulpet Miner reduces the size and complexity of the event log by a bottom-up
recursion technique before calling ETM.

4.3 Local Process Models

Local Process Models (LPMs) [29] are process models that describe frequent but
partial behaviour. That is, they model only a subset of the activities that were
seen in the event log. An iterative expansion procedure is used to generate a
ranked collection of LPMs. The iterative expansion procedure of LPM is often
bounded to a maximum number of expansion steps (in practice often to 4 steps),
as the expansion procedure is a combinatorial problem of which the size depends
on the number of activities in the event log as well as the maximum number of
activities in the LPMs that are mined.

LPM keeps a set of process trees, LPM , starting by considering a single
activity from Σ, for instance LPM 1 = a. In each expansion step, the process
trees in the set that occur often enough in the log, that is, their support exceeds
some threshold, are expanded into larger trees. That is, an arbitrary activity is
replaced with a sub-process tree containing that activity. For instance, one of
the possible expansions of a is →(a, b), thereby creating LPM 2 = →(a, b) as
an expansion of LPM 1. This procedure is repeated for every possible expansion
using the operators ×, →, ∧ and 	. For instance, →(a, b) could be expanded
into LPM 3 = →(a,∧(b, c)), which is an expansion of LPM 2. The expansion
procedure is guided by several heuristics and monotonicity properties [29], and
ends at a certain user-chosen number of activities (for instance, 4).



All trees in the set that meet the given support threshold are returned. In
Indulpet Miner, these returned trees serve as inputs to the ETM step.

4.4 Bottom-up Recursion

Inductive Miner recurses in a top-down fashion, that is, it looks for the ‘largest’
behaviour in an event log and uses this behaviour to split the log into multiple
smaller sublogs. In this section, we propose a novel approach, bottom-up recur-
sion (BUR), that looks for the ‘smallest’ behaviour in an event log and uses this
behaviour to reduce the complexity of the event log. BUR applies four steps:
first a partial cut (⊕, A,B) is identified, consisting of a process tree operator ⊕
and two sets of activities A,B4. Intuitively, a partial cut (⊕, A,B) denotes that
⊕(MA,MB) has been identified as being a subtree of the resulting process tree,
where MA and MB are process trees representing the choices between the activ-
ities of A and B respectively: MA = ×(a1, . . . an),MB = ×(b1, . . . bm). Second,
this partial cut is used to collapse the event log: the activities of the partial cut
are replaced by a dummy activity in each trace of the log. Third, BUR recurses
and a process tree is returned. Fourth, in the resulting process tree, the dummy
activity is replaced with a subtree corresponding to the partial cut.

For instance, let L = [〈a, b, d〉, 〈a, d, b〉] be an event log. BUR could identify
the partial cut (→, {a}, {b}). Next, L is collapsed by replacing a and b with a
dummy activity y: L′ = [〈ys, yc, d〉, 〈ys, d, yc〉]. Then, L′ is recursed on and, as
y and d overlap in time, a process tree ∧(y, d) results. As a final step, BUR re-
places y with a subtree representing the partial cut, and the final model becomes
∧(→(a, b), d).

In the remainder of this section, we first define partial cuts formally and show
how they can be identified. Second, we explain the log collapsing.

Partial Cuts and Detecting them. A partial cut (⊕, A,B) consists of an
operator ⊕ and two sets of activities A and B:

Definition 1 (Partial cut). Let Σ be an alphabet, ⊕ 6= × be a process tree
operator and A, B be sets of activities such that A ∪B ⊆ Σ. Then, (⊕, A,B) is
a partial cut of Σ.

Notice that every binary cut of Inductive Miner is also a partial
cut. Intuitively, a partial cut (⊕, {A1, . . . Am}, {B1, . . . Bn}) means that
⊕(×(A1, . . . Am),×(B1, . . . Bn))is a subtree of the to-be discovered model. That
is, ⊕ defines the relation between the set of activities A and B, while the relation
between the activities within sets A and B is defined by ×. Therefore, partial
cuts do not need to consider ×-operators: we limit ourselves to →, ∧ and 	.

We formalise this intuition in fitting partial cuts: a partial cut is fitting if
and only if, in each trace, the tree corresponding to the partial cut is executed
zero or more times, that is, it is never violated:

4 For simplicity, we use only binary partial cuts in this paper. The definitions extend
to n-ary partial cuts and this does not change the expressivity of the method [18].



Definition 2 (Fitting partial cut). Let Σ be an alphabet, let L be an event
log over Σ and let C = (⊕, A,B) = (⊕, {A1, . . . Am}, {B1, . . . Bn}) be a partial
cut. Then, C is a fitting partial cut if each trace in the log follows the semantics
of the partial cut:
L|A∪B ⊆ L( 	

⊕

×

Bn. . .B1

×

Am. . .A1

τ

)

Notice that this definition gives another reason not to consider ×-operators
in partial cuts: a partial cut (×, {a}, {b}) would always fit and thus not express
any new information.

In Indulpet Miner, BUR exhaustively considers all partial cuts to find one
that is fitting. As soon as a fitting partial cut is found, BUR continues as de-
scribed before.

It is rather expensive to test whether a given partial cut is fitting, as this
requires a pass over the entire event log. To limit the number of times that this
time-consuming step has to be performed, we identified some necessary, though
not sufficient, conditions that a partial cut has to satisfy in order to be fitting.
Thus, BUR uses these conditions to prune the search space of partial cuts.

For these conditions, and for the remainder of this paper, we assume that
the partial cut is disjoint and non-empty, i.e. A ∩B = ∅, A 6= ∅ and B 6= ∅.

Lemma 3 (Necessary conditions for fitting partial cuts). Let Σ be an
alphabet, L be an event log over Σ and C = (⊕, A,B) be a partial cut such that
C fits L, A ∩B = ∅ and A,B 6= ∅. Then:

1. Within the sets of activities, there are no connections in the directly follows
graph:
∀X∈{A,B}∀a,b∈X∧a6=ba 6� b

2. Between the sets of activities, the directly follows graph exhibits an “ap-
proved” pattern, depending on the operator ⊕. Let a ∈ A and b ∈ B:

⊕ =→ There is a directly follows relation between a and b: a� b.
⊕ = ∧ A directly follows relation is present in both directions: a� b ∧ b� a.
⊕ = 	 A directly follows relation is present in both directions: a� b ∧ b� a.
3. For each pair of activities in A,B in relation to each other activity, the di-

rectly follows graph exhibits an “approved” pattern, depending on the operator
⊕. Let a ∈ A, b ∈ B and c ∈ Σ \ (A ∪B):

⊕ =→ a b

c

a b

c

a b

c

a b

c

a b

c

⊕ = ∧ a b

c

a b

c

a b

c

a b

c



⊕ = 	 a b

c

a b

c

a b

c

a b

c

a b

c

4. Let x be an activity, then x is a projected start activity if ∃t∈L|A∪B t =
〈x, . . .〉. Then, for ⊕ = ∧, both a and b must be projected start activities.
Then, for ⊕ = 	, a must be both a projected start activity and b must not.
(a symmetric requirement holds for projected end activities)

The proof of this lemma follows from inspection of the semantics of partial cuts.
We show that the conditions of the lemma are not sufficient to conclude that
a partial cut is fitting by means of a counterexample: consider the event log
L1 = [〈a, b, c, b〉, 〈c, a, c〉] and the partial cut C1 = (→, a, b). The directly follows

graph of L1 is a c b . The partial cut C1 satisfies all conditions of

Lemma 3, but does not fit L1, as, for instance, the second trace of L1 projected
on a and b yields 〈a〉, which violates the partial cut, as this cut indicates that
after each a there should be a b.

To handle noise, the fitness requirement of Definition 2 can be relaxed. That
is, BUR searches for the partial cut with the highest fitness, as long as the
fitness (measured as the fraction of traces that adhere to the partial cut) reaches
a certain user-chosen threshold.

Log Collapsing As the second step, given a partial cut, BUR collapses the
event log, depending on the operator ⊕ of the cut.

In LPM [24], a similar step is performed (“log abstraction”). However, the
LPM collapsing procedure is computationally much more expensive due to the
need to use alignments in order to obtain fitness and precision measures, which
BUR does not need in this step.

In BUR, any activity that is not part of the partial cut is ignored. Let y be
a fresh activity that does not appear in the log. Then, every execution instance
of the partial cut is replaced with an execution instance of y. That is, the first
event of each instance is replaced with ystart, the last event with ycomplete, and
all other events of the activities in the partial cut in between are removed. In
case the partial log is not fitting, non-fitting events are removed.

For instance for (→, {a}, {b}): 〈a, b, c, a, b, a, b〉 is collapsed into
〈ystart, ycomplete, c, ystart, ycomplete, ystart, ycomplete〉. As another ex-
ample, for (	, {a}, {b}): 〈a, b, c, a, c, a, b, a, b, a〉 is collapsed into
〈ystart, c, ycomplete, c, ystart, ycomplete〉.

Example of BUR. Let L1 be {〈a, b〉, 〈b, a〉, 〈a, b, c, d, a, b〉, 〈b, a, c, d, b, a〉}. Its
directly follows graph is a b

cd

.

– The partial cut (∧, {a}, {c}) does not preserve fitness, with as a counterex-
ample the trace 〈a, b〉, as this trace contains a but not c;



– The partial cut (	, {a}, {c}) preserves fitness, but the directly follows graph
does not contain the required edge c� a;

– The partial cut (∧, {a}, {b}) preserves fitness and has an approved directly
follows pattern;

– The partial cut (→, {c}, {d}) preserves fitness and has an approved directly
follows pattern;

Arbitrarily choose the partial cut (∧, {a}, {b}) and merge L1 using this cut and
the fresh activity e: L2 = {〈es, ec〉, 〈es, ec〉, 〈es, ec, c, d, es, ec〉, 〈es, ec, c, d, es, ec〉}.

On L2, the algorithm recurses. Its directly follows graph is e d c .

– The partial cut (∧, {e}, {c}) does not preserve fitness, with as a counterex-
ample the trace 〈es, ec〉, as e appears but c does not.

– The partial cut (	, {e}, {c}) preserves fitness, but the directly follows graph
does not contain the edge c� e, so an approved pattern is not present;

– The partial cut (→, {c}, {d}) preserves fitness and has an approved directly
follows pattern;

Choose the partial cut (→, {c}, {d}) and merge L2 using this cut and the fresh
activity f : L3 = {〈es, ec〉, 〈es, ec〉, 〈es, ec, fs, fc, es, ec〉, 〈es, ec, fs, fc, es, ec〉}. On

L3, BUR recurses and obtains the directly follows graph e f .

– The partial cut (∧, {e}, {f}) does not preserve fitness, with as a counterex-
ample the trace 〈es, ec〉;

– The partial cut (	, {f}, {e}) does not preserve fitness, with as a counterex-
ample the trace 〈es, ec〉;

– The partial cut (	, {e}, {f}) preserves fitness and has an approved directly
follows pattern;

Thus, choose the partial cut (	, {e}, {f}) and construct a process tree top-
down by replacing the introduced fresh activities with process trees corre-
sponding to their partial cuts: 	(e, f) to 	(∧(a, b), f) and as the final result
	(∧(a, b),→(c, d)).

Complexity and Rediscoverability. All possible partial cuts are explored,
and the first one that is encountered that satisfies Definition 2 is returned. The
number of possible partial cuts is O(22

|Σ|
), all of which need to be considered.

The properties of Lemma 3 are applied for each partial cut to minimise the
time spent per partial cut. If a property fails, the partial cut is discarded. If all
properties of Lemma 3 hold, the fitness of the partial cut with respect to the
event log is measured to find the best-fitting partial cut. In practice, this last
step is rarely called.

Acknowledging these run-time considerations, BUR could be used as a stand-
alone process discovery algorithm for smaller logs. Such an algorithm would
be able to distinguish all process trees consisting of the four operators ×, →,



∧ and 	 (but excluding τ leaves). In particular, so-called short loops can be
handled, which have been shown to pose difficulties for discovery algorithms
such as the IM and the α-algorithm [1]. For instance, ∧(	(a, b),	(c, d)) can be
distinguished from 	(∧(a, c),∧(b, d)), even though these two trees have the same
directly follows graph.

4.5 Indulpet: Algorithm & Implementation

To summarise, Indulpet Miner applies the following steps:

function Indulpet(log L)
if IMflc finds a base case b in L then return b end if
if IMflc finds a cut c of operator ⊕ in L then

L1 . . . Ln ← split L using c
return ⊕(Indulpet(L1), . . . Indulpet(Ln))

end if
if BUR finds a partial cut c = (⊕, {Q1, . . . Qq}, {R1, . . . Rr}) in L then

L′ ← collapse L using c and a fresh activity a′

T ′ ← Indulpet(L′)
return T with all a′’s replaced by ⊕(×(Q1, . . . Qq),×(R1, . . . Rr))

end if
X ← LPM(L)
if M ← ETM(L, X) then return M end if
return the first fallthrough of IMflc that applies

end function

Please note that Indulpet adheres to the IM framework, thus all guarantees
and proofs provided for the IM framework apply [15]. The proof obligations for
fitness do not hold due to the ETM step, thus fitness is not guaranteed. However,
rediscoverability holds for Indulpet, that is, the ability to rediscover the language
of a system-model underlying the event log, while making some assumptions on
the class of the system-model and the event log [15, Theorem 6.43].

Indulpet Miner has been implemented as a plug-in of the ProM frame-
work [11] and is distributed in the package manager of ProM 6.8. Given the
high complexity of bottom-up recursion (there are O(22

n

) possible partial cuts
that all need to be considered), a time limit of 10 minutes is applied for this
step. Furthermore, the ETM step is time-limited to 10 minutes as well. Both
time limits can be overridden by a user. Please note that both steps can be
called many times, thus Indulpet might take longer than the set time limit.

5 Evaluation

Several process discovery techniques have been proposed, and in this section,
we compare Indulpet Miner to existing discovery techniques. In particular, we
aim to answer two questions: 1) does Indulpet Miner strike a new balance in
log-quality criteria compared to existing techniques, and 2) does Indulpet Miner
combine the advantages of Inductive Miner, Local Process Models, bottom-up
recursion and the Evolutionary Tree Miner?



To perform this evaluation, we applied the discovery algorithms to several
real-life event logs. The real-life event logs that were included are described in
Table 1. We perform our measures using 3-fold cross-validation, in which each
log is split into three buckets. That is, each trace is put in one of the three
buckets randomly. Each combination of two buckets is used for discovery, while
one bucket is used for evaluation.

To address the randomness of some algorithms (Indulpet, Evolutionary Tree
Miner), we repeat the 3-fold validation ten times. That is, for each real-life log,
each algorithm is applied 30 times in total, yielding 30 models.

All models are translated to accepting Petri nets (to reduce the impact of this
translation on the results, models were structurally reduced after the transla-
tion), and fitness is measured using alignments [2]. For most event logs, precision
is measured using ETC [25] (as the procedure from process tree via accepting
Petri net to alignment and ETC is not deterministic, it was applied 5 times
for each model). For the bpic15 events logs, computing the alignments proved
too time- and memory consuming and we evaluated fitness and precision using
Projected Conformance Checking (PCC) [21]. As we are interested in the trade-
offs between quality criteria, we do not report on the f-score. Furthermore, the
number of places, transitions, and arcs in the accepting Petri nets is reported as
simplicity and we verified the boundedness of models using the LoLa tool [30].

All existing discovery techniques that guarantee soundness and of which an
implementation is publicly available were included: Evolutionary Tree Miner
(ETM) [6] and Inductive Miner - infrequent (IMf) [17]. Furthermore, we added
Split Miner (SM) [3], which guarantees models without deadlocks, though nei-
ther weak soundness nor boundedness. Finally, a baseline flower model (F) was
included, which is a model that supports all behaviour over all activities seen
in the event log. It would be interesting to include the Fusion Miner [7] and the
approach of [24] as well, however both techniques lack an implementation that
is compatible with the ProM framework, therefore disallowing the application of
evaluation measures provided by ProM such as ETC, PCC, simplicity measures,
and soundness checking.

Reproducibility. All event logs are publicly available, and the source code we
used to run these experiments is available at https://svn.win.tue.nl/repos/
prom/Packages/SanderLeemans/Trunk/.

5.1 Results & Discussion

The results of the evaluation are shown in Table 2. Some results could not be ob-
tained and have been denoted with exclamation marks: ETM ran out of memory
or ran for multiple days, while SM returned unbounded models that could not
be measured by either alignment-based or PCC conformance checking measures.

Run time. Table 2 shows indicative run times, given as log10, such that 1 is
one second, 2 is hundred seconds, etc. These results suggest that IN is faster
than ETM, while IMf is faster than IN, both by several orders of magnitude.

https://svn.win.tue.nl/repos/prom/Packages/SanderLeemans/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/SanderLeemans/Trunk/


events traces activities

bpic12 BPI Challenge 2012 [8]: a mortgage application-
to-approval process in a Dutch financial institute.

262,200 13,087 36

bpic15 BPI Challenge 2015 [9]: a building-permit
approval process in five Dutch municipalities.

52,217 1199 395
44,354 832 410
59,681 1409 383
47,293 1053 356
59,083 1156 389

bpic18 BPI Challenge 2018 [10]: an agricultural
grant-application process of the European Union.
There are eight logs in this data set, each
representing a sub-process for a particular
document.

161,296 43,808 7
46,669 29,297 6

293,245 15,260 20
569,209 29,059 16
197,717 5,485 15
132,963 14,750 10
984,613 43,809 24
128,554 43,802 6

rtf Road Traffic Fines [22]: a process of collecting
road traffic fines by an Italian government.

561,470 150,370 11

sps Sepsis [23]: a sepsis-treating process in a hospital 15,214 1,050 16

Table 1: Event logs used in the evaluation.

bpic12 bpic15-1 bpic15-2
f p s t f p s t f p s t

IMf 0.97±0.01 0.59±0.03 186.57±9.59 0 1.00±0.00 0.66±0.04 1286.07±149.54 1 0.99±0.00 0.76±0.04 1048.10±167.84 1
IN 0.36±0.07 0.88±0.05 116.30±30.52 3 0.78±0.01 0.97±0.01 91.50±54.38 3 0.74±0.01 0.96±0.01 114.10±23.71 3
ETM ! ! ! ! ! ! ! ! ! ! ! !
SM 0.96±0.00 0.68±0.00 239.00±0.00 1 ! ! 4715.20±8.88 2 ! ! 5077.27±10.28
F 1.00±0.00 0.11±0.00 85.00±0.00 -1 1.00±0.00 0.64±0.01 1145.30±20.02 -1 1.00±0.00 0.64±0.01 1172.70±24.44 -1

bpic15-3 bpic15-4 bpic15-5
f p s t f p s t f p s t

IMf 1.00±0.00 0.71±0.03 1201.63±133.03 1 0.99±0.00 0.75±0.03 1082.47±98.26 0 0.99±0.00 0.79±0.05 1108.60±141.55 1
IN 0.79±0.01 0.97±0.01 118.37±80.59 3 0.76±0.02 0.93±0.03 272.17±63.98 4 0.75±0.02 0.96±0.02 244.17±120.50 3
ETM ! ! ! ! ! ! ! ! ! ! ! !
SM ! ! 3995.47±8.96 ! ! 3882.73±5.00 2 ! ! 4730.20±11.38 2
F 1.00±0.00 0.66±0.01 1114.50±16.26 -1 1.00±0.00 0.65±0.02 1024.30±27.16 -1 1.00±0.00 0.65±0.02 1116.40±26.41 -1

bpic18-1 bpic18-2 bpic18-3
f p s t f p s t f p s t

IMf 1.00±0.00 0.95±0.02 54.87±0.73 -0 0.96±0.00 0.96±0.05 43.70±6.73 -1 0.93±0.00 0.53±0.01 74.77±1.28 1
IN 1.00±0.00 0.95±0.02 54.87±0.73 -0 0.96±0.00 0.96±0.05 43.70±6.73 -1 0.79±0.04 0.95±0.04 55.60±17.73 3
ETM 0.97±0.04 0.95±0.12 77.50±86.35 3 0.99±0.00 0.76±0.21 183.93±91.24 4 ! ! ! !
SM 1.00±0.00 0.97±0.03 59.00±0.00 1 1.00±0.00 0.95±0.02 90.00±0.00 1 1.00±0.00 0.67±0.01 291.00±0.00 1
F 1.00±0.00 0.32±0.00 30.00±0.00 -0 1.00±0.00 0.51±0.00 27.00±0.00 -1 1.00±0.00 0.14±0.00 68.90±0.55 -0

bpic18-4 bpic18-5 bpic18-6
f p s t f p s t f p s t

IMf 0.86±0.04 0.35±0.03 96.57±14.44 1 0.80±0.01 0.67±0.01 129.10±15.84 -0 0.97±0.00 0.55±0.02 73.83±2.74 -1
IN 0.61±0.19 0.83±0.27 71.97±50.49 4 0.78±0.01 0.69±0.05 164.00±43.89 2 0.97±0.00 0.55±0.02 73.83±2.74 -0
ETM ! ! ! ! ! ! ! ! ! ! ! !
SM 0.99±0.00 0.55±0.00 247.00±0.00 1 0.88±0.00 0.74±0.00 131.00±0.00 1 1.00±0.00 0.72±0.01 147.00±0.00 1
F 1.00±0.00 0.18±0.00 57.00±0.00 -0 1.00±0.00 0.15±0.00 54.00±0.00 -1 1.00±0.00 0.34±0.01 39.00±0.00 -1

bpic18-7 bpic18-8 rtf
f p s t f p s t f p s t

IMf 0.93±0.02 0.83±0.01 164.67±17.54 2 1.00±0.00 0.89±0.06 54.87±3.17 -0 0.98±0.00 0.79±0.04 97.97±4.78 1
IN 0.89±0.03 0.84±0.02 220.43±70.34 3 1.00±0.00 0.89±0.05 54.87±3.17 -0 0.98±0.00 0.79±0.02 96.50±7.00 2
ETM ! ! ! ! ! ! ! ! 0.89±0.08 0.68±0.27 117.93±85.12 3
SM 0.02±0.00 0.96±0.00 333.00±0.00 2 1.00±0.00 0.97±0.03 66.00±0.00 1 1.00±0.00 0.96±0.00 82.00±0.00 1
F 1.00±0.00 0.64±0.01 81.00±0.00 -0 1.00±0.00 0.41±0.01 27.00±0.00 -0 1.00±0.00 0.38±0.01 46.00±0.00 -0

sps
f p s t

IMf 0.91±0.02 0.41±0.06 140.23±13.85 -1
IN 0.91±0.02 0.43±0.05 122.43±8.66 2
ETM ! ! ! !
SM 0.76±0.00 0.73±0.01 138.00±0.00 0
F 1.00±0.00 0.21±0.00 61.00±0.00 -2

Table 2: Results of the evaluation. Fitness: f, precision: p, simplicity: s, time in
log10 seconds: t. The numbers are given as average ± sample standard deviation.



Comparing IN with SM yields mixed results: on some logs (e.g. bpic12, bpic15 1),
SM is faster, while on others (e.g. bpic18 1, bpic18 2) IN uses its top-down
recursion more and is faster, although the logs on which IN is faster tend to be the
smaller logs, where IN behaves as IMf. It is clear that IMf and SM are preferred
choices if a process model is to be obtained fast. Nevertheless, to put things in
perspective, the maximum run time of IN observed in this experiment was 5
hours, which suggests that IN is still feasible, even for large and complex logs.

Quality. For bpic12, IN achieves the simplest model (except baseline F) and
the highest precision, but fitness is significantly lower than the other algorithms.
On all bpic15 logs, IN consistently achieves the best simplicity (even surpassing
baseline F) and precision, with a lower fitness. On these logs, SM discovers very
complex unbounded models, which can be measured using neither alignments
nor the PCC framework.

The bpic18 logs differ much in complexity (6 to 24 activities) and show mixed
results: on bpic18 1 and bpic18 2, IN discovers the same models as IMf, with
their measures differing marginally from SM, though always being Pareto opti-
mal. On bpic18 3 and bpic18 4, all tested algorithms perform Pareto optimal. To
illustrate these models, four have been included in Figure 3: in the model by IMf,
some concurrent activities can be arbitrarily repeated, leading to a rather low
precision. The model by SM does not contain any concurrency and has a high
fitness. However, it is much less simple and precise than the other models. The
model by IN has a lower fitness, but a much higher precision and is very simple.
To provide some intuition: in the vast majority of traces in this log, the activities
“begin editing” and “finish editing” are alternating according to intuition: for
instance, only in 34 of the 29,059 traces, the trace ends after “begin editing”
rather than “finish editing”, and only 15,325 of the 295,621 executions of both
activities are repeated. The model by IMf only requires that after each “finish
editing” there must be a “begin editing”, the model by SM requires “begin edit-
ing” to be executed first, but afterwards no further constraint is posed on these
two activities, and the model by F does not express this constraint at all. Only
IN discovers this constraint correctly by duplicating the “begin editing” activity.

On bpic18 5, SM is the clear winner on all dimensions. Remarkably, on this
log IMf has a large standard deviation on simplicity, which, as IMf is deter-
ministic, indicates that the 3-fold procedure withheld useful information from
discovery. As the standard deviation of SM is much smaller, SM uses less infor-
mation from the event logs. On bpic18 6, IMf and IN discover the same models,
but SM achieves the highest fitness and precision, and F the best simplicity (all
models are Pareto optimal). On bpic18 7, IMf achieves the highest fitness, while
IN discovers models with slightly higher precision and lower fitness. The models
by SM have the highest precision, but a very low fitness, as the log contains
many activities that are repeated (so-called short loops), which SM does not
discover. On bpic18 8, all algorithms achieve perfect fitness, IN and IMf achieve
the best simplicity, and SM achieves the highest precision.



(a) Inductive Miner - infrequent (IMf). (b) Indulpet Miner (IN).

(c) Split Miner (SM). (d) Flower model (F).

Fig. 3: Results for bpic18-4 (“Geo parcel document”).

On rtf, SM discovers a model that is better on all measures than IMf, IN
and ETM. Finally, on sps, IN is Pareto-optimal over IMf, and SM achieves the
highest precision, at the cost of fitness and simplicity.

The results show that IN in many cases combines the advantages of its sub-
algorithms: the speed, feasibility and fitness of IMf with the precision of ETM.
However, it is difficult to appoint a clear winner: algorithms strike different
balances of log-quality criteria, and all routinely achieve Pareto optimality. Nev-
ertheless, we can conclude that Indulpet Miner can achieve a different balance in
log-quality criteria than the other tested techniques and might be a useful dis-
covery algorithm in the toolbox of analysts, depending on the use case at hand.

6 Conclusion & Future Work

We have presented a novel process discovery approach which combines several
existing process discovery algorithms that are based on process trees: the In-
ductive Miner (IM) [16], the Evolutionary Tree Miner (ETM) [6] and the Local
Process Model (LPM) miner [29]. Additionally, we have proposed a novel process
tree mining approach that is based on bottom-up recursion, which is too compu-
tationally complex to process a full event log but is useful as an element in the
Indulpet miner to find local structures of process behaviour. The Indulpet miner
is guaranteed to find sound process models, and we have shown on a collection
of real-life event logs that the Indulpet miner often provides a Pareto optimal,
yet different, trade-off between fitness, precision and simplicity compared to the
Inductive Miner and the Split Miner algorithms.

An interesting direction of future work would be to explore heuristic search
or other intelligent approaches to search the space of all possible cuts of the pro-
posed bottom-up recursion technique. This would enable the use of bottom-up
recursion as a process discovery technique by itself, rather than an element in



a hybrid mining approach, which is currently rendered infeasible by the com-
putational complexity of exploring the full space of bottom-up recursion cuts.
Another interesting direction for future work would be to make the ETM and
LPM approaches able to deal with lifecycle transitions, which would make the In-
dulpet Miner fully compatible with logs that have lifecycle transitions. In the case
of IM, there already exists a version that is able to handle lifecycles [20]. Making
the Indulpet Miner compatible with lifecycles amongst others makes it possible
to calculate more accurate process performance statistics on the process model.

Acknowledgement We thank Joos Buijs for his help in integrating the Evolution-
ary Tree Miner (ETM) with the Indulpet Miner, and Eric Verbeek for coming
up with its name.
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