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Definitions

An event log contains a historical record
of the steps taken in a business process.
An event log consists of traces, one for
each case, customer, order, etc. in the
process. A trace contains events, which
represent the steps (activities) that were
taken for a particular case, customer, or-
der, etc.

An example of an event log derived
from an insurance claim handling
process is [(receive claim, check diffi-
culty, decide claim, notify customer),
(receive claim, check difficulty, check
fraud, decide claim, notify customer)?].
This event log consists of 15 traces,
corresponding to 15 claims made in the
process. In 10 of these traces, the claim
was received, its difficulty assessed, the
claim was decided and the customer was
notified.

A process model describes the be-
haviour that can happen in a process.
Typically, it is represented as a Petri

net Reisigl (1992) or a BPMN model
(OMG).

A Petri net consists of places, which
denote the states the system can be in,
and transitions, which denote the state
changes of the system. For instance,
Figure [I] shows an example of a Petri
net. This net starts with a foken in place
p1. Firing transition a removes the token
from p; and puts tokens in pp and ps3.
This denotes the execution of the activ-
ity a in the process. Then, transitions
b and c¢ can fire independently, each
consuming the token of p, or p3 and
producing a token in p4 or ps. Next,
the silent transition ¢ fires and puts a
token in pg. As t is a silent transition,
no corresponding activity is executed in
the process. Finally, either e or f can be
fired, putting a token in p7 and ending
the process.

A workflow net is a Petri net with an
initial place (without incoming arcs), a
final place (without outgoing arcs) and
every place and transition lying on a path
between these places. The behaviour of



Fig. 1 Example of a Petri net.

a workflow net is clear: a token is put
in the initial place, and every sequence
of transitions firings that leads to a token
in the final place and nowhere else, is a
trace of the behaviour of the net.

A workflow net is sound if the net is
free of deadlocks, unexecutable transi-
tions and other anomalies [van der Aalst
(2016). A workflow net is relaxed sound
if there is a sequence of transition firings
that lead to a token in the final place and
nowhere else.

Automated Process Discovery

Organisations nowadays store consider-
able amounts of data: in many business
processes such as for booking a flight,
lodging an insurance claim or hiring a
new employee, every step is supported
and recorded by an information system.
From these information systems, event
logs can be extracted, which contain the
steps that were taken for a particular cus-
tomer, booking, claim, etc. Process min-
ing aims to derive information and in-
sights from these event logs.

Many process mining techniques
depend on the availability of a process
model. Process models can be elicited
by hand, however this can be a tedious
and error-prone task. Instead, if event
logs are available, these can be used to
discover a process model automatically.
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In this chapter, the research field of
algorithms that automatically discover
process models from event logs is de-
scribed. First, quality criteria for models
are discussed, and how algorithms
might have to tradeoff between them.
Second, process discovery algorithms
are discussed briefly.

Quality Criteria & Tradeoffs

The quality of a discovered model can be
assessed using several concepts: whether
it possesses clear semantics, whether it is
simple, how well it represents the event
log and how well it represents the pro-
cess.

Semantics & Soundness

As a first quality criterion, the behaviour
described by the model should be clear.
That is, it should be clear which traces
the model can produce. If the returned
model is a Petri net or a BPMN model,
this model should be free of deadlocks,
unexecutable transitions and other
anomalies (it should be sound |van der
Aalst (2016)). While unsound nets can
be useful for manual analysis, they
should be used with care in automated
analyses as, for instance, conformance
checking techniques might give unre-
liable answers or simply not work on
unsound nets. At a bare minimum, con-
formance checking techniques such as
alignments |Adriansyah| (2014) require
relaxed sound models.
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Simplicity

Second, given two models, all other
things equal, the simplest model is
usually the best of the two (a principle
known as Occam’s razor). That is, a
model should be as understandable as
possible, for instance sma

Log Quality

Third, one can consider the quality of
a discovered model with respect to the
event log from which it was discovered,
to assess whether the model represents
the available information correctly.
Typically, besides simplicity, three qual-
ity dimensions are considered: fitness,
precision and generalisation. Fitness
expresses the part of the event log that is
captured in the behaviour of the process
model. Precision expresses the part
of the behaviour of the model that is
seen in the event log. Generalisation
expresses what part of future behaviour
will be likely present in the model.
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Fig. 2 A process model with low fitness, high
precision, low generalisation and high simplic-
ity w.r.t. L.

To illustrate these quality measures,
consider the following event log L:
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Figure [2| contains a possible process
model for L, which supports only a
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single trace. This model has a poor
fitness, as many traces of L are not
part of its behaviour. However, it has
a high precision, as the single trace it
represents was seen in L. Compared to
the event log, this model is not very
informative.

An extreme model is shown in Fig-
ure [3] This model is a so-called flower
model, as it allows for all behaviour con-
sisting of a, b, ¢ and d, giving it a low
fitness and high precision. Even though
this model is simple and certainly gener-
alises, it is completely useless as it does
not provide any information besides the
presence of a-d in the process.

Fig. 3 A process model (“flower model”) with
high fitness, low precision, high generalisation
and high simplicity w.r.t. L.

On the other end of the spectrum is
the trace model, shown in Figure@ This
model simply lists all traces of L, thereby
achieving perfect fitness and precision.
However, this model does not generalise
the behaviour in the event log, that is, it
only shows the traces that were seen in
L, and does not provide any extra infor-
mation.

As a final model, we consider the
model shown in Figure [5] This model
has a high fitness, precision, generalisa-

,tion and simplicity. However, the model

still does not score perfect as the last
trace of L, (a,b,c), is not captured by
this model, which lowers fitness a bit.
Furthermore, precision is not perfect as
the trace (a,b,c,b,c,d,b) is possible in
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Fig. 4 A process model (“trace model”) with high fitness, high precision, low generalisation and

low simplicity w.r.t. L.

the model but did not appear in L, which
lowers precision.

0
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Fig. 5 A process model with high fitness, high

precision, high generalisation and high simplic-
ity w.r.t. L.

The models shown for L illustrate that
process discovery algorithms might have
to tradeoff and strike a balance between
quality criteria. For some event logs, a
model scoring high on all log-quality
measures and simplicity might not ex-
ist Buijs et all (2012b). The necessary
balance might depend on the use case
at hand. For instance, manual analysis
where the “main flow” of a process is
sought might require the omittance of
the last trace of L from the model, yield-
ing a simple and precise model. How-
ever, for auditing purposes, one might
opt for a perfectly fitting model by in-
cluding this last trace of L in the be-
haviour of the model.

Process Quality

A downside of measuring the quality of
a model with respect to the event log
is that an event log contains only ex-
amples of behaviour of an (unknown)
business process rather than the full be-
haviour, and that the log might contain
traces that do not correspond to the busi-
ness process (noisy traces). Therefore,
one can also consider how it compares to
the process from which the event log was
recorded. In the ideal case, the behaviour
of the process is rediscovered by a dis-
covery algorithm. That is, the behaviour
(language) of the model is the same as
the behaviour of the process.

As the business process is assumed to
be unknown, whether an algorithm can
find a model that is behaviourally equiv-
alent to the process (rediscoverability)
is a formal property of the algorithm.
Without rediscoverability, an algorithm
is unable to find a model equivalent to
the process, which makes the algorithm
rather unsuitable to study this process.

Rediscoverability is typically proven
using assumptions on the process and the
event log, for instance that it is repre-
sentible as a model in the formalism of
the algorithm (Petri nets, BPMN), and
for instance that the event log contains
enough information and does not contain
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too much noise, as well as assumptions
on the process.

Process Discovery Algorithms

In this section, a selection of process
discovery algorithms is discussed. For
each algorithm, the algorithmic idea is
described briefly, as well as some gen-
eral advantages and disadvantages, and
where it can be downloaded.

For benchmarks and a more exhaus-
tive overview, please refer to [Augusto
et all (2017b) (algorithms after 2012)
and Weerdt et al| (2012) (algorithms
before 2012). Not all algorithms can be
benchmarked reliably; the selection here
contains all benchmarked algorithms
of |/Augusto et al| (2017b).

Several of these algorithms are
available in the ProM framework |van
Dongen et all (2005), which is avail-
able for download from http:
//www.promtools.org, or
in the Apromore suite |[Rosa et al
(2011), which can be accessed
viahttp://apromore.orgd.

The algorithms are discussed in
three stages: firstly, algorithms that
do not support concurrency, secondly
algorithms that guarantee soundness and
thirdly the remaining algorithms.

Directly Follows-Based
Techniques

As a first set, techniques based on the
directly follows relations are discussed.
The section starts with an explana-
tion of directly follows graphs, after
which some tools that use this concept

5

are listed and the limitations of such
techniques are discussed.

In a directly follows graph, the nodes
represent the activities of the event log,
and the edges represent that an activity
is directly followed by another activity
in the event log. Numbers on the edges
indicate how often this happened. Addi-
tionally, a start and an end node denote
the events with which traces in the event
log start or end. For instance, Figure [6]
shows the directly follows graph for our
event log L.
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Fig. 6 Directly follows graph of event log L.

For more complicated processes, a
directly follows graph might get uncom-
prehensibly complicated. Therefore,
discovery techniques typically filter
the directly follows graph, for instance
by removing little-occurring edges.
Commercial techniques that filter and
show directly follows graphs include
Fluxicon Disco |[Fluxicon| (2017), Celo-
nis Process Mining |Celonis| (2017)) and
ProcessGold Enterprise Platform [Pro-
cessGold  (2017). Another strategy
to reduce complexity, applied by the
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Fuzzy Miner |Giinther and van der Aalst
(2007), is to cluster similar activities
into groups, thereby providing capabili-
ties to zoom in on details of the process
(by clustering less), or to abstract to the
main flow of the process by clustering
more.

While these graphs are intuitive,
it can be challenging to distinguish
repetitive and concurrent behaviour,
as both manifest as edges forth- and
back between activities. For instance,
in Figure @ it seems that b, ¢ and d
can be executed repeatedly, while in
the log L this never happened for d. In
contrast, it also seems that b, ¢ and d
are concurrent, while in L, b and c¢ are
always executed repeatedly. Due to this,
directly follows graphs tend to have a
low precision and high generalisation:
in our example, almost any sequence of
b, c and d is included.

Nevertheless, directly follows-based
techniques are often used to get a first
idea of the process behind an event log.

Soundness-Guaranteeing
Algorithms

Soundness is a prerequisite for further
automated or machine-assisted analysis
of business process models. In this
section, soundness or relaxed soundness
guaranteeing algorithms are discussed.

Evolutionary Tree Miner

To address the issue of soundness, the
Evolutionary Tree Miner (ETM) [Buijs
et al| (2012a) discovers process trees. A
process tree is an abstract hierarchical
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view of a workflow net and is inherently
sound.

ETM first constructs an initial pop-
ulation of models; randomly or from
other sources. Second, some models are
selected based on fitness, precision, gen-
eralisation and simplicity with respect
to the event log. Third, the selected
models are smart-randomly mutated.
This process of selection and mutation
is repeated until a satisfactory model is
found, or until time runs out.

ETM is flexible as both the selection
and the stopping criteria can be adjusted
to the use case at hand; one can prioritise
(combinations of) quality criteria. How-
ever, due to the repeated evaluation of
models, on large event logs of complex
processes, stopping criteria might force a
user to make the decision between speed
and quality.

Inductive Miner Family

The Inductive Miner (IM) family of
process discovery algorithms, like the
Evolutionary Tree Miner, discovers pro-
cess trees to guarantee that all models
that are discovered are sound. The IM
algorithms apply a recursive strategy:
first, the “most important” behaviour
of the event log is identified (such as
sequence, exclusive choice, concur-
rency, loop, etc.). Second, the event
log is split in several parts, and these
steps are repeated until a base case is
encountered (such as a log consisting of
a single activity). If no “most important”
behaviour can be identified, then the
algorithms try to continue the recursion
by generalising the behaviour in the log,
in the worst case ultimately ending in a
flower model.
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Besides a basic IM |Leemans et al
(2013a), algorithms exist that focus on
filtering noise [Leemans et all (2013b),
handling incomplete behaviour (when
the event log misses crucial informa-
tion of the process) Leemans et al
(2014a), handling lifecycle information
of events (if the log contains informa-
tion of e.g. when activities started and
ended) [Leemans et al| (2015), discov-
ering challenging constructs such as
inclusive choice and silent steps Lee-
mans| (2017), and handling very large
logs and complex processes [Leemans
et al (2016), all available in the ProM
framework.

Several IM-algorithms guarantee to
return a model that perfectly fits the
event log, and all algorithms are capable
of rediscovering the process, assuming
that the process can be described as a
process tree (with some other restric-
tions, such as no duplicated activities)
and assuming that the event log contains
“enough” information. However, due
to the focus on fitness, precision tends
to be lower on event logs of highly
unstructured processes.

All Inductive Miner algorithms are
available as plug-ins of the ProM frame-
work, and some as plug-ins of the Apro-
more framework. Furthermore, the plug-
in Inductive visual Miner |Leemans et al
(2014b) provides an interactive way to
apply these algorithms and perform con-
formance checking.

An algorithm that uses a similar re-
cursive strategy, but lets constructs com-
pete with one another is the Constructs
Competition Miner Redlich et al| (2014)),
however its implementation has not been
published.

Structured Miner

The Structured Miner (STM) |Augusto
et all (2016) applies a different strat-
egy to obtain highly block-structured
models and to tradeoff the log quality
criteria. Instead of discovering block-
structured models directly, SM first
discovers BPMN models and, second,
structures these models. The models can
be obtained from any other discovery
technique, for instance Heuristics Miner
or Fodina, as these models need not
be sound. These models are translated
to BPMN, after which they are made
block-structured by shifting BPMN-
gateways in or out, thereby duplicating
activities.

STM benefits from the flexibility
of the used other discovery technique
to strike a flexible balance between
log-quality criteria and can guarantee
to return sound models. However, this
guarantee comes at the price of equiv-
alence (the model is changed, not just
restructured), simplicity (activities are
duplicated) and speed (the restructuring
is O(n")).

STM is available as both a ProM and
an Apromore plugin.

(Hybrid) Integer Linear
Programming Miner

The Integer Linear Programming Miner
(ILP) van der Werf et all (2009) con-
structs a Petri net, starting with all ac-
tivities as transitions and no places, such
that every activity can be arbitrarily ex-
ecuted. Second, it adds places using an
optimisation technique: a place is only
added if it does not remove any trace
of the event log from the behaviour of
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the model. Under this condition, the be-
haviour is restricted as much as possible.

ILP focusses on fitness and precision:
it guarantees to return a model that
fits the event log, and the most precise
model within its representational bias
(Petri nets, no duplicated activities).
However, the ILP miner does not
guarantee soundness, does not handle
noise and tends to return complex
models|Leemans| (2017)).

The first of these two have been
addressed in the HybridILPMiner \van
Zelst et al (2017), which performs
internal noise filtering. Furthermore,
it adjusts the optimisation step to
guarantee that the final marking is
always reachable, and, in some cases,
returns workflow nets, thereby achieving
relaxed soundness.

Declarative Techniques

Petri nets and BPMN models express
what can happen when executing the
model. In contrast, declarative mod-
els, such as Declare models, express
what cannot happen when executing
the model, thereby providing greater
flexibility in modelling. Declare miners
such as [Maggi et al| (2011); D1 Ciccio
et al (2016); [Ferilli et al (2016) dis-
cover the constraints of which Declare
models consist using several acceptance
criteria, in order to be able to balance
precision and fitness. However, using
such models in practice tends to be
challenging |Augusto et al|(2017b).
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Other Algorithms

Unsound models are unsuitable for
futher automated processing, however
might be useful for manual analysis. In
the remainder of this section, several
algorithms are discussed that do not
guarantee soundness.

a-Algorithms

The first process discovery algorithm
described was the o-algorithm [van der
Aalst et al (2004). The «a algorithm
considers the directly follows graph
and identifies three types of relations
between sets of activities from the
graph: sequence, concurrency and mu-
tual exclusivity. From these relations, a
Petri net is constructed by searching for
certain maximal patterns.

The « algorithm is provably Badouel
(2012) able to rediscover some pro-
cesses, assuming that the log contains
enough information and with restric-
tions on the process. In later versions,
several restrictions have been addressed,
such as: a) no short loops (activities can
follow one another directly; addressed
in a™ [de Medeiros et al| (2004)), b) no
long-distance dependencies (choices
later in the process depend on choices
made earlier; addressed in (Wen et al
(2006)), ¢) no non-free-choice con-
structs (transitions that share input
places have the same input places;
addressed in o™ [Wen et al (2007a)),
and d) no silent transitions (addressed
in of Wen et all (2010, [2007b) and in
o’ Guo et al (2015))). Furthermore,
a variant has been proposed, called
the Tsinghua-o¢ Wen et al (2009)), that
deals with non-atomic event logs. That
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is, event logs in which executions of
activities take time.

However, these algorithms guarantee
neither soundness nor perfect fitness nor
perfect precision, the algorithms cannot
handle noise and cannot handle incom-
pleteness. Furthermore, the o algorithms
might be less fast on complex event logs,
as typically they are exponential. There-
fore, the a-algorithms are not very suit-
able to be applied to real-life logs.

Little Thumb Weijters and van der
Aalst| (2003) extends the o algorithms
with noise-handling capabilities: instead
of considering binary activity relations,
these relations are derived probabilisti-
cally and then filtered according to a
user-set threshold.

Causal-Net Miners

The  Flexible  Heuristics = Miner
(FHM) |Weijters and Ribeiro| (2011)
uses the probabilistic activity relations
of Little Thumb and focuses on sound-
ness. To solve the issue of soundness,
FHM returns causal nets, a model
formalism in which it is defined that
non-sound parts of the model are not
part of the behaviour of the net.

The Fodina algorithm |vanden
Broucke and Weerdt (2017) extends
FHM with long-distance dependency
support and, in some cases, duplicate
activities. The Proximity miner Yahya
et all (2016) extends FHM by incorpo-
rating domain knowledge. For more
algorithms using causal nets, please
refer to [Weerdt et all (2012); [Augusto
et al (2017D)).

Even though causal nets are sound
by definition, they place the burden
of soundness checking on the inter-
preter/user of the net, and this still
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does not guarantee, for instance, that
every activity in the model can be
executed. Therefore, translating a causal
net to a Petri net or BPMN model for
further processing does not guarantee
soundness of the translated model.
FHM, Fodina (http://www.
processmining.be/fodina)
and Proximity Miner (https://
sourceforge.net/projects/
proxi-miner/) are all available
as ProM plug-ins and/or Apromore
plug-ins.

Split Miner

To strike a different balance in log-
quality criteria compared to IM that
favours fitness, while improving in speed
over ETM, Split Miner (SPM) |Augusto
et all (2017a) preprocesses the directly
follows graph before constructing a
BPMN model. In the preprocessing of
directly follows graphs, first, loops and
concurrency are identified and filtered
out. Second, the graph is filtered in an
optimisation step: each node must be on
a path from start to end, the total number
of edges is minimised, while the sum of
edge frequencies is maximised. Then,
splits and joins (BPMN gateways) are
inserted to construct a BPMN model.

SPM aims to improve over the pre-
cision of IM and the speed of ETM for
real-life event logs. The balance between
precision and fitness can be adjusted in
the directly follows-optimisation step,
which allows users to adjust the amount
of noise filtering. However, the returned
models are not guaranteed to be sound
(proper completion is not guaranteed),
and several OR-joins might be inserted,
which increases complexity.
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SPM is available as a plug-in of
Apromore and as a stand-alone tool
via https://doi.org/10.6084/
m9.figshare.5379190.v1.

Conclusion

Many process mining techniques require
a process model as a prerequisite.
From an event log, process discovery
algorithms aim to discover a process
model, this model preferably having
clear semantics, being sound, striking a
user-adjustable balance between fitness,
precision, generalisation and simplicity,
and having confidence that the model
represents the business process from
which the event log was recorded. Three
types of process discovery algorithms
were discussed: directly follows-based
techniques, soundness-guaranteeing
algorithms and other algorithms, all
targetting a subset of these quality
criteria.

In explorative process mining
projects, choosing a discovery algorithm
and its parameters is a matter of re-
peatedly trying soundness-guaranteeing
algorithms, evaluating their results using
conformance checking and adjusting
algorithm, parameters and event log
as new questions pop up |van Eck et al
(2015)).
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