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Abstract—Many organisations now seek to analyse and im-
prove their processes using event logs from various IT systems
supporting their operations. Process mining aims to obtain
insights from such process data, using process discovery, con-
formance checking and performance measures. While many
commercial process mining tools feature user-friendly directly
follows-based process maps, they typically do not offer a way
to assess the quality of the model, leaving users with potentially
unreliable insights, which could lead to the wrong conclusion
being drawn from these insights. In contrast, academic tools
typically provide verifiable results, but are often difficult to
use and understand for stakeholders, sometimes overgeneralising
behaviour to fit more extensive process model formalisms. In
this paper, we bridge this well-known gap between commercial
and academic tools by combining sound process discovery,
conformance checking and performance capabilities with user-
friendly directly follows-based process models. We implemented
these techniques in a new process mining tool and applied them to
analyse several business processes in a Queensland Government
department. We discovered sound directly follows-based process
models from their logs, compared them with prescribed models
and analysed the performance of these processes. In particu-
lar, our conformance checking techniques allowed to pinpoint
deviations between prescribed processes and actual recorded
behaviour. The outcomes of this case study are now being used
to document, review, improve and automate processes.

I. INTRODUCTION

Organisations store large amounts of data nowadays,
recorded from process executions in workflow systems, web
applications or tracking technologies. From such transaction
data (e.g., purchase order, customer journey, insurance claim,
travel booking), an event log can be generated that captures the
process steps executed for a trace. Process mining techniques
and tools aim to derive meaningful information from such
recorded event logs [1].

A typical first step in a process mining study is to auto-
matically discover a process model from an event log, that
shows the process steps (activities) that were performed and
their order. Such a process model can then be used to com-
pute performance measures, and identify bottlenecks and staff
workload. Thus, it is imperative that a process model reflects
the ‘reality’ found in an event log as much as it can. In many
cases, process discovery techniques make trade-offs between
the four quality dimensions of fitness, precision, simplicity and
generalisation. One way to measure the deviations between
the log and a discovered model is by performing conformance
checking analysis.
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Fig. 1. Excerpt of a directly follows-based model.

Academic process mining tools typically use modelling
formalisms with well-defined semantics, such as Petri nets,
BPMN models and process trees, and support complex con-
structs such as concurrency, interleaving and inclusive choices.
These semantics and constructs make them suitable for com-
plex processes, but reduce simplicity [2]. For rather simple
business processes, traditional process discovery techniques
might need to overgeneralise in order to fit their represen-
tational bias [3] or return models with deadlocks or other
anomalies (unsound models) [4].

In contrast, many commercial process mining tools exist
that typically discover process models in the form of di-
rectly follows-based process maps. That is, their visualisations
show which activities can follow one another directly. These
commercial tools also project time and frequency based per-
formance measures such as execution times, wait times and
average or maximum activity counts on these maps. Due to the
simplicity of these maps and the interactive filtering options
offered by these commercial tools, these tools have captured
a large market share1.

Unfortunately, those same characteristics can make the
interpretation of these maps and the related performance
measures inaccurate. Some of these limitations are illustrated
in Figure 1. Figure 1 shows an example of a directly follows-
based model that has been filtered: cases start at the top of the
model and progress down through activities to the circle at the
bottom. As a result of filtering, the semantics of this model are
not clear, as there is no way to reach the end circle from the
two bottom-most blue activities, and the numbers, indicating
how often each activity and edge has been executed, seem
to be inaccurate, as 29000 cases start and only 14500 end.

1See https://www.gartner.com/doc/3870291/market-guide-process-mining

https://www.gartner.com/doc/3870291/market-guide-process-mining


Without a clear understanding of the effects of filtering on
such numbers, it is easy to draw the wrong conclusions from
filtered models.

Conformance checking analysis on directly follows-based
models can benefit the stakeholders in evaluating the quality of
discovered models. However, although conformance checking
has been part of academic process mining tools for some
time, support in commercial tools is rather sparse to date.
Furthermore, none of the mentioned commercial tools allows
the manual import of a process map, for instance representing
an authoritative model, against which the behaviour in the log
can be compared.

This paper bridges the gap between current directly follows-
based maps produced by commercial tools and well-founded
but complex process models generated by academic tools.
We show how a directly follows-based process mining tool
can support process discovery with well-defined semantics,
conformance checking and reliable performance measures.
We present a case study where this tool has been used to
analyse multiple processes from a Queensland Government
department. It is our hope that these findings will inspire
commercial tools to adopt a similar notion in future release of
these tools.

In particular, this paper contributes:
• A definition of directly follows models (DFMs), their

semantics and their soundness;
• The application of conformance checking to DFMs;
• A new way to discover DFMs by filtering infrequent

behaviour while guaranteeing soundness and a minimum
fitness level;

• A description of reliable performance measures for
DFMs;

• A user-friendly implementation (tool) that includes pro-
cess discovery, conformance checking and performance
measures for DFMs; and

• A case study in which we applied conformance checking
and performance measures to (hand-made and discov-
ered) directly follows models and event logs from a
Queensland Government department.

We discuss related work in Section II and introduce basic
concepts in Section III. In Section IV we discuss how DFMs
can be discovered from event logs, in Section V how standard
conformance checking techniques can be applied and their re-
sults visualised, and in Section VI how performance measures
can be computed reliably. In Section VII, we describe the
case study performed at the Queensland Government, and we
conclude the paper in Section VIII.

II. RELATED WORK

This section briefly summarises recent work on process
model formalisms, process mining tools, types of process min-
ing analysis (such as conformance checking and performance
analysis) and case studies.

a) Process Model Formalisms: In [2], three drivers for
directly follows-based models in commercial tools are given:

simplicity (Petri nets or BPMN models with too many gate-
ways are considered un-interpretable), vagueness (ability to
express relationships that cannot be interpreted in a precise
manner), and scalability (ability to handle logs with millions
of events interactively).

The most basic process modelling notation is a transition
system which consists of states and transitions between states
that correspond to activities being executed. All atomic (i.e.
steps do not take time) business processes, such as the higher-
level Petri nets [5], some BPMN models [6], process trees [3]
and Declare models [7], can be expressed as transition sys-
tems.

Directly follows models (DFMs) are variants of transitions
systems and lie in between transition systems and higher-
level languages: while in a transition system the execution
of an activity is atomic, in DFMs this takes time. However,
in contrast to the higher-level languages, DFMs do not sup-
port concurrency. Furthermore, there is a difference in focus
between transition systems and DFMs: while DFMs focus on
the ordering of activities, transition systems focus on the state
of a process.

BPMN is a standard that provides both graphical represen-
tations and execution semantics for processes. BPMN supports
many advanced behaviour features such as concurrency, event
handling and hierarchy and has found significant adoption by
industry, but its complexity means that it requires training for
stakeholders to be correctly understood.

While in [2] a new hybrid process modelling concept is
proposed that combines formal (Petri nets) with informal
(“sure” and “unsure”) parts, our approach aims to illustrate
the possibilities for directly follows-based models as used
by commercial tools. That is, we keep the simplicity and
address the vagueness by providing formal semantics for
DFMs, defining soundness and provide reliable performance
measures, although scalability might suffer from our use of
alignments (see Section III).

b) Process Mining Techniques and Tools: In this paper,
we consider three types of process mining techniques: process
discovery (discovering a process model from an event log),
conformance checking (comparing a process model with an
event log) and performance measuring.

Discovering directly-follows models, while simple, will of-
ten produce large models, so many directly follows-based dis-
covery tools attempt to reduce complexity through abstraction
and aggregation. For instance, Heuristic Miner [8] removes
behavioural relations based on occurrence frequency. Fuzzy
Miner [9] similarly removes directly follows relations based
on several heuristics, but supports abstraction by grouping
activities in addition. Both approaches, however, can produce
unsound models, as they remove behaviour that could be
necessary to reach the end state of the process, thus potentially
leaving the semantics of the produced models unclear.

Discovery algorithms typically generate process models
of higher-level process model formalisms, containing high-
level process models with constructs such as concurrency,
inclusive choices and interleaving. However, some algorithms



may return unsound models (α [1], Split Miner [4], BPMN
miner [10], Fodina [11]), require considerable computations
times (Evolutionary Tree Miner [12]) or overgeneralise be-
haviour (Inductive Miner [3]). Furthermore, some techniques
generalise transition systems to higher-level process mod-
els [13], [14].

Commercial process mining tools, such as Fluxicon Disco
(FD) [15], Celonis Process Explorer (CPE), ProcessGold (PG)
and myInvenio (MI) 2, typically generate directly follows-
based “models”. Also the academic Fuzzy Miner (FM) [9]
and other approaches [16] focus on directly follows-based
models. In order to reduce the complexity of models, these
tools seem to filter based on edges (FD, FM, CPE) and/or
traces (CPE, PG), which may lead to models with soundness
issues (see Section IV). The models are simplistic and do not
capture concurrency. However, they can be interpreted easily
by domain experts and are thus more easily accepted by users.

In this paper, we define soundness for DFMs and introduce
a discovery technique that guarantees DFM-soundness.

c) Conformance Checking and Enhancement Techniques:
Conformance checking techniques provide ways to compare
behaviour in event logs with behaviour described by process
models, which can be either discovered or created manually.
As the expressiveness of a process modelling language has
a direct effect on the simplicity of models and analysis ca-
pabilities, conformance checking techniques are mostly based
on process models represented as a Petri net or process tree.
Alignments [17], [7], explained in Section III, can be used to
identify deviating behaviour. Existing work on conformance
checking using directly follows process models has been
limited to rule based, outlier (low-frequency behaviour) based
or graph-based approaches (as in MI), in which the user has to
find visual differences across multiple models. CPE supports
conformance checking, however in a disjoint component: it
supports a different syntax (BPMN), discovery technique and
concepts, and might yield unintuitive results3.

Process enhancement techniques derive additional informa-
tion such as performance data using a process model and
an aligned event log, see for instance [18], [19], [20]. In
Section VI, we will show that existing tools might yield
unintuitive performance results.

Our approach highlights deviations between log and model
based on alignments and provides reliable performance metrics
by projecting alignments onto directly-follows models.

d) Case Studies: Process mining techniques have been
used in a number of process mining case studies in various
domains such as insurance [18], healthcare [21] education [22]
and government services [23]. In a number of such case stud-
ies, comparing the performance of different process variants is
one of the key activities. When such comparative performance
analysis is conducted on directly follows maps without careful
attention paid to the abstractions made to the underlying

2See https://www.celonis.com/, https://processgold.com/en/, https://www.
my-invenio.com/

3See https://community.celonis.com/t/unexpected-results-in-conformance-
checking/1183.

process models, the results are not comparable and reliable.
Our approach realigns the log with the abstracted model,
making the performance measures reliable and comparable.

III. PRELIMINARIES

a) Event Logs: An event log is a collection of traces,
each consisting of the process steps to be executed. We refer to
the steps as activities and their execution in a trace as activity
instances. Each activity instance might traverse a certain life
cycle. In this paper, we assume a simple cycle of an optional
start and a completion. That is, each trace is a sequence of
events, which represent the life cycle transitions of activity
instances. For instance, [〈as, ac, bc, cs, cc〉, 〈as, ac, cs, cc, bc〉]
is an event log consisting of two traces: in the first trace,
first an instance of the activity a started, then it completed,
then an instance of b completed (the start of this instance of b
was not recorded) and finally c was started and completed. We
assume that in each trace, each start event has a corresponding
completion event, but that completion events do not need a
corresponding start event. We chose this asymmetry as the
event logs we encountered in practice typically contain com-
pletion events but rarely contain start events [24]. Similarly, a
language is a set of traces, and the empty trace is denoted by
ε.

b) Petri Nets: A Petri net is a graph consisting of places
that can contain tokens, the presence of tokens determines the
state of the net, as well as transitions which change the state of
the net by consuming and producing tokens from/to connected
places [5] and emitting an associated activity by firing. In a
workflow (Petri) net, there is a single place without incoming
(source) and a single place without outgoing (sink) transitions,
and each place and transition is on a directed path between
these two places. A workflow net is sound if all its transitions
can be fired, and from each reachable state the end state
(having the only token in the net in the sink) is reachable [1].

c) Alignments: An alignment is a combination of a trace
and a path through the model that produces that trace. If
the trace cannot be produced by the model, then a flawless
combination is not possible. Two types of deviations exist:
skipping events in the trace (a log move) or skipping activities
in the model (a model move) [17]. An alignment is optimal
if it has the least cost of all possible alignments, which is
typically chosen to be the number of deviations.

For instance, consider the DFM shown in Figure 2 and the
trace 〈as, ac, cs, cc〉. Then an optimal alignment is:

log as ac cs cc -
model as ac - - bc

The first two moves are synchronous, while the third and fourth
moves are log moves on c, and the last move is a model move
on b.

d) Directly Follows Models: Syntactically, a directly
follows model (DFM) is a directed graph in which the nodes
are annotated with either an activity, start or end:

https://www.celonis.com/
https://processgold.com/en/
https://www.my-invenio.com/
https://www.my-invenio.com/
https://community.celonis.com/t/unexpected-results-in-conformance-checking/1183
https://community.celonis.com/t/unexpected-results-in-conformance-checking/1183
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Fig. 2. Example of a directly follows model (DFM).

Definition 1 (Directly follows model - syntax). Given an
alphabet Σ such that start /∈ Σ and end /∈ Σ, a di-
rectly follows model is a directed graph (N,E), such that
N : Σ∪{start, end} is a set of nodes and E : N ×N is a set
of edges. Additionally, start has no incoming and end has no
outgoing edges: ¬∃n(n, start) ∈ E and ¬∃n(end, n) ∈ E.

Semantically, the language of a DFM consists of all traces
that can be obtained by starting in the start-node and walking
along the edges, adding events for each activity encountered, to
the end-node. Similar to event logs, a start event is optional
while a completion event is mandatory for each activity to
ensure the activity is actually executed.

Definition 2 (Directly follows model - semantics). Let D =
(N,E) be a DFM. Then, the language of D (L(D)) is
{〈a1s, a1c, . . . ans, anc〉 | a1 . . . an ∈ N ∧ (start, a1) ∈ E ∧
∀1≤i<n(ai, ai+1) ∈ E∧(an, end) ∈ E} ∪ {ε | (start, end) ∈
E}, where all the s-events are optional.

For instance, Figure 2 shows a graphical represen-
tation of a DFM. The language of this DFM is
{ε, 〈as, ac, as, ac〉, 〈as, ac, bs, bc〉, 〈cs, cc, bs, bc〉}.

Notice that the DFM formalism supports both the empty
trace ({ε}) as well as the empty language (∅). However,
concurrency is not supported by DFMs. For instance, there is
no DFM that can represent the trace 〈as, bs, bc, ac〉, as DFMs
inherently cannot represent concurrency.

IV. DF-PROCESS DISCOVERY

Many commercial and some academic tools offer DFM-
discovery, however they might produce unsound models. In
this section, we first define soundness for DFMs, after which
we introduce a discovery method that results in sound DFMs
and offers a user-chooseable fitness guarantee.

A. Soundness

As stated in [1], unsound workflow nets might be useful
for limited manual human analysis, but issues such as un-
executable activities, livelocks and deadlocks challenge both
human and in particular automatic analysis.

In existing directly follows-based tools, a DFM is con-
structed, after which edges are filtered out based on a user-
chosen parameter to reduce the complexity of the model.
However, this may lead to soundness issues, as illustrated
in Figure 1, which shows a DFM-like model. In this model,
from the two middle-bottom activities, the end state cannot be
reached. Despite the visual suggestion, these activities cannot
be part of a trace that starts and ends properly, so the language
of the model remains unclear.

We define soundness for DFMs, and show the connection
between soundness of DFMs and soundness of workflow nets.

Definition 3 (DFM soundness). Let (N,E) be a DFM. Then,
the DFM is sound if every node ∈ N is on a path from start
to end:

∀x∈N∃a1...an∈Na1 = start ∧ an = end ∧ ∃aj = x

∧ ∀1≤i<n(ai, ai+1) ∈ E

As a consequence of this definition, the DFM without any
edges is not sound, as the start and end nodes are not on
a path as requested by the definition. This implies that a
sound DFM with the empty language does not exist, which
is analogous to workflow nets: a workflow net with the empty
language cannot be sound.

To further establish the link between sound DFMs and
sound workflow nets, we show that Definition 3 is sufficient
to translate a DFM to a sound workflow net:

Lemma 1. A sound DFM can be translated to a language-
equivalent sound workflow net.

We will prove this lemma in Section V-A.

B. Trace-Based DFM Discovery

In order to discover a DFM from an event log, as DFMs
do not support concurrency, first all start events need to be
removed from the traces. Then, a DFM can be obtained from
an event log straightforwardly by sequentially following the
events for traces in the log and adding arcs to the DFM
accordingly. However, for a typical real-life process, this yields
complex and unreadable DFMs.

Therefore, existing tools filter the DFM, either by removing
infrequent traces before discovery or infrequent edges after
discovery (next to removing activities). Tools that remove
edges do so using certain criteria, typically removing the least-
occurring edges. However, this strategy might yield unsound
DFMs, as shown in Figure 1, which, when translated to Petri
nets (Section V-A), might not result in sound workflow nets.

Tools that aim to filter infrequent behaviour by removing
traces from the event log have to figure out which traces
represent infrequent behaviour and should be removed. In
complex processes, many or all traces might occur rarely, thus
one needs to find the infrequent behaviour to decide which
traces to remove [25]. Trace-based DFM discovery combines
these two approaches:

1) First, a DFM is constructed by adding, for each trace,
nodes and edges accordingly, while keeping track of how
often each edge occurs in the log;

2) Second, the least frequent edges of the DFM are se-
lected;

3) Third, all traces that use the selected edge are removed
from the event log;

4) This procedure is repeated until a user-chosen threshold
of removed traces is about to be exceeded. That is, the
user-chosen threshold indicates how many traces will at
most be filtered from the DFM.

Consequently, the DFM returned fits at least threshold of
the traces in the event log (if only completion events are



considered), which is a guarantee not offered by other process
discovery techniques.

V. DF-CONFORMANCE CHECKING

Conformance checking techniques compare an event log
with a process model, which can be constructed either man-
ually (to indicate prescriptive behaviour) or by process dis-
covery techniques. The state-of-the-art technique to perform
detailed conformance checking is to compute alignments on
sound Petri nets (see Section III). In this section, we describe
how alignments can be applied to DFMs and how the results
can be visualised on DFMs, in order to show them in DF-based
[commercial] tools. That is, we first describe how DFMs can
be translated to Petri nets, and that sound DFMs yield sound
workflow nets. Second, we introduce directly follows-specific
alignment visualisation concepts.

A. Translation to Petri Nets

In Definition 2, we defined the language semantics of
DFMs. To enable the easy use of DFMs in other process
mining tools, we provide a translation to standard Petri (work-
flow) nets. In this translation, each transition is modelled as
a combination of a start and a completion event, such that
performance measures can be computed. For a DFM (N,E),
the translated Petri net consists of:
• A place for each node ∈ N (this includes places belong-

ing to start and end);
• For each edge (s, t) ∈ E, a subgraph connecting the place

belonging to s to the place belonging to t. This subgraph
depends on whether t is end.
If t is end, then this subgraph is a silent transition
connecting s to t:

place of s place of t

If t is not end, then this subgraph executes ts and tc in
sequence, where ts is optional:

place of s

ts

tc
place of t

This last step ensures that start and completion events are
accounted for in the alignments, while keeping the start
events optional (as these are not always present).

For instance, Figure 3 shows the Petri net as translated from
the DFM in Figure 2. Given this translation procedure, we can
show that if a sound DFM is translated, a sound workflow net
is obtained:

Proof of Lemma 1. Consider the translation of Section V-A:
By the start- and end-nodes (Definition 1) and Definition 3,
the translated Petri net is a workflow net. As the translation
does not introduce transitions with multiple outgoing or in-
coming edges, the workflow net is 1-bounded (safe). Hence,
the translated workflow net is sound. Language equivalence
follows by construction of the translation. Hence, the translated
Petri net is a language-equivalent sound workflow net.

as

ac

cs

cc

as

ac

bs

bc

bs

bc

Fig. 3. Example of the DFM of Figure 2 translated to a Petri net.

Once a sound DFM has been translated into a workflow net,
any standard Petri net-based conformance checking technique
can be applied. For instance, fitness [17], [19], precision [26],
[19] and simplicity can be measured, which makes Trace-
Based DFM discovery a “full” discovery technique, which
could be compared with other process discovery techniques.
However, such a qualitative comparison is outside the scope
of this paper.

B. Alignment Visualisation
Using a Petri net and the event log, alignments can be

computed. Alignments have been visualised on Petri nets [17]
and process trees [20]. For DFMs, one could use the Petri net
alignment visualisation, however this would require users to
familiarise themselves with a new visualisation of their DFM.

Alignments result in two types of deviations: model moves
and log moves. We discuss the visualisation of both types
of deviation in more detail. Model moves are visualised with
an edge bypassing a node in the model, indicating that an
event should have been executed according to the model, but
it was not seen in a trace of the event log. For instance,
consider the DFM of Figure 2 and the trace 〈as, ac〉. Then, an

optimal alignment is
log as ac -
model as ac ac

, which can be

visualised as follows on the DFM:
a

bc

a•

•

Log moves indicate that an event appeared in the log while
it was not allowed at that point by the model. We identified
five positions on which a log move can occur, and we illustrate
them using the following DFM as shown in Figure 4a.
(1) At the start of a trace, which we visualise by a loop on
the start node. For instance, the trace 〈lc, as, ac, bs, bc〉 yields
an alignment that is visualised in Figure 4b.
(2) During execution of a, which we visualise by a loop on a.
For instance, the trace 〈as, lc, ac, bs, bc〉 yields an alignment
that is visualised in Figure 4c.
(3) In between the executions of a and b, which we visualise
by a loop on the edge from a to b. For instance, the trace
〈as, ac, lc, bs, bc〉 yields an alignment that is visualised in
Figure 4d.
(4) In between two executions of a, which we visualise by
a loop on the model’s loop on a. For instance, the trace



a b

(a) the DFM.

a b

(b)

a b

(c)

a b•

(d)

a b

•
(e)

a b

(f)
Fig. 4. A DFM and log move positions on it.

〈as, ac, lc, as, ac, bs, bc〉 yields an alignment that is visualised
in Figure 4e.
(5) At the end of a trace, which we visualise by a loop on the
end node. For instance, the trace 〈as, ac, bs, bc, lc〉 yields an
alignment that is visualised in Figure 4f.

By construction, each model or log move corresponds to
one of these types.

VI. DF-PERFORMANCE MEASURES

Another perspective that is often used in process mining is
the performance perspective. DFMs enable the computation of
most commonly used performance indicators, such as service
time, waiting time and sojourn time [27]. In addition, the time
elapsed and remaining in a case can be of interest:

. . . as ac bs bc . . .
elapsed time
waiting time
service time
sojourn time

remaining time

Synchronisation time [1] is not defined on DFMs, as DFMs
cannot represent concurrent activities.

Many process mining tools provide performance measures.
However, measures can be unreliable without the use of sound
models and alignments. That is, existing approaches, while
removing edges from a directly follows-based model, also
remove the time that was associated with that edge from the
model. As a result of this, the times shown do not add up
correctly to overall case durations and times seem to disappear.

For instance, consider the directly follows-based mod-
els shown in Figure 5: these models are derived from
the same event log using different levels of filtering in
CPE. In these models, consider the path taken through
W_Completeren aanvraag-schedule via -start to
-complete. In the least-filtered model (Figure 5a), this
path takes more than 400 minutes. In a bit more filtered
model (Figure 5b), this path takes 88 minutes, while in the
most-filtered model (Figure 5c), it does not seem to take

(a) 36.6% activities filtering, 31.2% connections filtering.

(b) 27.7% activities filtering, 17.7% connections filtering.

(c) 22% activities filtering, 13.3% connections filtering.
Fig. 5. BPI Challenge 2012 log in CPE 4.4 at different levels of filtering.

any time. In fact, in the most-filtered model, seemingly the
majority of cases takes only 1 minute, which could lead
to the false conclusion that barely any time is spent in the
process. A further consideration found similar issues in the
other commercial process mining tools.

By using sound Petri nets and alignments to compute
performance measures, such issues can be avoided. For
instance, the time between -schedule and -start would
be added to the time between -schedule and -complete

if -start would be filtered out [27], [19], [20]. This
highlights the importance of reliable performance measures
and conformance checking, which could be of aid in
signalling that the path A_PARTLYSUBMITTED-complete

via A_PREACCEPTED-complete to W_Completeren

aanvraag-complete has been removed from the model by
filtering4.

Directly Follows visual Miner: To convey the concepts
of DFM discovery, conformance checking and performance
measuring, these concepts have been implemented in a new

4CPE possesses conformance checking capabilities, but not on its DFM.



tool, the Directly Follows visual Miner (DFvM). Given an
event log, DFvM first discovers a DFM, translates it to a
Petri net, aligns this net, visualises deviations and animates
the event log on the DFM, all without user interaction. Users
can change parameters, filter the log, change the visualisation,
etc., after which DFvM will recompute the necessary steps
automatically, enabling a truly exploratory approach to process
mining. Figure 7 shows DFvM, which is available as a plug-
in of the ProM framework [28] and shares its code base
with the Inductive visual Miner [20]. Additionally, the plug-
in Visualise deviations on Directly Follows Model allows for
easy comparison of a DFM model and an event log, that is,
this plug-in entails DFvM without the discovery parts but with
a given model.

VII. CASE STUDY AT THE QUEENSLAND GOVERNMENT

One of the motivators for this approach was a case study that
was performed with a major government organisation in Aus-
tralia. The organisation relies on an IT service management
system to automatically capture activities performed by oper-
ational teams. The case study focused on financial and human
resources processes support by this system. Documentation
for some of these processes existed and but for others only
outdated or no models existed. During each of the calendar
years, 2017 and 2018, the organisation instigated several
initiatives to improve the quality of their service performance.

The organisation had three objectives: i) to have complete
and up-to-date documentation of their processes, ii) to check
whether processes are executed correctly and iii) to identify
performance bottlenecks in their processes. To achieve these
objectives we extracted an event log for one month of opera-
tions covering four areas of operations with up to 53 distinct
workflows each. The log contained 142896 active cases of
which 80883 were completed and used in the analysis.

To achieve the first objective, the new approach was used
to mine direct-follows process models from the event log. As
all of the processes are sequential and do not contain concur-
rent tasks, direct-follows models appropriately document the
processes for which documentation was missing or outdated.

To achieve the second objective, DFMs were automatically
constructed from Excel tables specifying the intended process
as lists of direct-follows-relations between process activities.
As existing approaches could not do conformance checking for
DFMs, we used the new approach to check and annotate the
constructed models with conformance information, as shown
in Figure 6. This example model shows several unexpected
transitions (red dashed lines) between activities which were
missing in the documentation and proved that the existing
documentation is not up-to-date.

The third objective was to identify performance bottlenecks
in the analysed processes. Existing approaches produced per-
formance data that was too complex without filtering and
became inconsistent on filtering. Instead, we used our mined
direct-follows models for the analysis. Figure 7 shows a model
with performance annotations (sojourn times). Activities are

Fig. 6. DFM annotated with conformance and frequency information; labels
are not intended to be readable.

Fig. 7. Screenshot of the Directly Follows visual Miner (DFvM) in ProM,
where animated tokens show cases flowing through the process. The DFM is
annotated with performance information (sojourn times).

drawn in red to indicate durations. For example, cases in-
volving interactions with external customers take significantly
longer.

The stakeholders were also interested in comparing cases
across various groupings such as request types, so annotated
models were generated for each workflow and each of these
groupings, resulting in a total of 4905 models. Data from these
models was aggregated and some high-impact workflows were
identified and analysed in more detail, and all the models were
handed over to the organisation for internal documentation.

At the time of writing the organisation’s business improve-
ment team is incorporating the analysis results in their review
of business process effectiveness and efficiency. When results
were presented, directly-follows models highlighted devia-
tions from documented process pathways. Further deviations
became apparent to business improvement team members
during the visual replays of some of the business process
models using DFvM in ProM. Team members discussed likely
explanations for such deviations including incorrect uses of
the IT service management system, data quality issues and
potential training issues. The business improvement team will
use the conformance checking results to identify and rectify
potential data processing errors and associated data quality
issues. The results also highlighted high-level processes with
long-running sub-processes. The business improvement team
will review each of these process and its sub-processes for
underlying causes. The business improvement team reviewed a
sample of the new process documentation generated by process



mining. The review highlighted that some process activities
require additional effort to increase documentation.

VIII. CONCLUSION

While many process mining tools exist, many commercial
tools lack conformance checking (quality of models cannot be
verified), their performance measures might be unreliable, and
academic tools lack the intuitiveness and simplicity of DFMs.

Our approach bridges this gap by showing how DFMs can
be discovered from event logs, while guaranteeing soundness
and a minimum fitness level chosen by the user. We introduced
a DFM-to-Petri-net translation, which is used to align the
model with a log. The alignment is then used to measure
the quality of a discovered model, identify and visualise
deviations, and provide reliable performance measures. Fur-
thermore, we highlighted issues in performance measures of
existing commercial process mining tools and showed that
alignment-based measures do not suffer from the same issues.

We implemented discovery, conformance checking and per-
formance measures based on DFMs in a process mining
tool that enables exploring event logs by repeated discovery,
conformance checking and filtering.

This tool was applied in a case study in the Queensland
Government. In this study, we discovered DFMs from event
logs, compared them to existing manually made DFMs and
analysed the performance of processes; the outcomes of this
study were used to document, review, improve and automate
processes. Overall, we showed that conformance checking
and reliable performance measures can be combined with
directly follows-based models and that such models can pro-
vide guarantees such as soundness or a minimum fitness
level. This tool demonstrates that conformance checking and
transparent performance measures can be offered in typical
process mining tools based on directly follows semantics. We
hope that commercial parties will adopt these ideas to enable
their customers to assess the quality of discovered models and
to better understand performance measures.

In future work, it would be interesting to evaluate how our
discovery technique compares to existing discovery techniques
that support advanced constructs. Furthermore, discovered
DFMs might be used as input to these techniques [29].
Furthermore, advanced infrequent behaviour filtering tech-
niques might improve results or provide different insights [25].
Finally, our conformance checking concepts might be used to
perform conformance checking on hybrid models [2].
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