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Abstract—Process mining techniques aim to derive knowledge
of the execution of processes, by means of automated analysis
of behaviour recorded in event logs. A well-known challenge in
process mining is to strike an adequate balance between the
behavioural quality of a discovered model compared to the event
log and the model’s complexity as perceived by stakeholders. At
the same time, events typically contain multiple attributes related
to parts of the process at different levels of abstraction, which are
often ignored by existing process mining techniques, resulting in
either highly complex and/or incomprehensible process mining
results. This paper addresses this problem by extending process
mining to use event-level attributes readily available in event
logs. We introduce (1) the concept of multi-level logs and
generalise existing hierarchical process models, which support
multiple modelling formalisms and notions of activities in a single
model, (2) a framework, instantiation and implementation for
process discovery of hierarchical models, and (3) a corresponding
conformance checking technique. The resulting framework has
been implemented as a plug-in of the open-source process mining
framework ProM, and has been evaluated qualitatively and
quantitatively using multiple real-life event logs.

Index Terms—Process mining, process model complexity, pro-
cess discovery, hierarchical process models, multi-level event logs

I. INTRODUCTION

Process mining [1] techniques are concerned with deriving
process-based insights from historical records of business
operations recorded in information system event logs. Two
often-used categories of process mining techniques are process
discovery [5] and conformance checking [8]. Process discovery
aims to extract understandable and representative process mod-
els from event logs in order for stakeholders to uncover the real
behaviour of their business processes. Many process discovery
algorithms exist; each focusing on generating process models
with a certain level of quality, expressed using the dimensions
of fitness, precision, simplicity and generalisation [1]. A well-
known challenge for any process discovery technique is to
strike the right balance between the behavioural quality of
a discovered model with respect to the event log and the
model’s complexity as perceived by stakeholders. Applying
most existing process discovery techniques on real-life event
logs results either in detailed highly complex and incom-
prehensible models (due to high numbers of activities and
complex behaviour) or abstract and simple but behaviourally

inaccurate models (due to leaving out or adding behaviour
with respect to the log).

Despite advances made in process discovery, the under-
standability of the discovered models is often compromised
when dealing with complex processes. The reasons for obtain-
ing such complex models are plentiful, e.g., noise is inherently
present in logs. Furthermore, often, the abstraction level at
which the event attributes are recorded is often much lower
than which one ideally models a business process at [39].
At the same time, this problem can be alleviated by using
hierarchical process models as a primary process repres-
entation [28]. A hierarchical process model is characterised
by hierarchy of levels, each of which captures a particular
granularity of the process. Then, each step in the process
constitutes a step in potentially multiple levels of the hierarchy,
which inherently leads to the notion of multi-level behaviour.
For instance, the following multi-level trace represents a hos-
pitalisation: the first four events denote a stay at the intensive
care (level 1), during which the patient was intubated (level
2), which consisted of intubation, ventilation and extubation
(level 3). Afterwards, the patient was deregistered from the IC
and transfered to a ward.
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Existing discovery techniques assume process steps are rep-
resented by a single attribute (e.g., concept:name), thus
logs such as our example (e.g. [17]) would yield either high-
level models containing lots of loops (level 1) or overly
spaghetti-like complex models (level 3). As we will show in
Section VI, real-life event logs readily contain many more such
attributes. By considering multiple attributes, “hierarchical
decomposition plays a central role for organising processes
in an understandable way and for refining coarse-granular
towards a fine-granular representation” [26]. Our evaluation
illustrates this: Figure 4f illustrates that complex models can
be made simpler by splitting them up in hierarchical parts.

The use of hierarchy to improve the understandability of
process models is well established [3], [4], [28], [33], [36], and
recent techniques have been proposed that abstract attributes
in event logs: see [39] for a literature review.
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Figure 1: Context of the MLM framework.

In this paper, we introduce the concept of multi-level
information in event logs, and propose hierarchical discov-
ery and conformance checking techniques that can use this
information. Existing hierarchical discovery techniques either
do not consider multi-level information, are limited to 2
layers of hierarchy or are tied to specific combinations of
model formalisms [25], [34], [36] (different types of behaviour
may require different modelling concepts, e.g. declarative and
imperative formalisms [12]). We introduce a framework for
hierarchical process discovery that explicitly takes multi-level
information into account and is limited in neither layers nor
formalisms. This Multi-Level Miner (MLM) framework takes
as input a standard event log and a multi-level classifier (which
indicates the attributes involved and their order), then recurs-
ively abstracts groups of events, applies existing discovery
techniques and splits the event log accordingly, to output a
hierarchical process model (see Figure 1). As such, MLM can
be regarded as a standardisation effort for event logs that
either inherently describe multi-level process information or
that contain derived multi-level process information.

We instantiate an algorithm using MLM and introduce a
conformance checking technique to compare multi-level logs
and hierarchical models. Then, we evaluate MLM with respect
to existing discovery techniques, which shows that MLM can
discover models with quality on par with existing techniques,
while being arguably simpler to understand for users.

In short, the contributions of this paper are:
‚ A conceptual model and definition of multi-level logs,

and definitions of generalised hierarchical models;
‚ An implemented, instantiated, extensible model discovery

framework (MLM) that considers multi-level information;
‚ A corresponding conformance checking technique.
The remainder of the paper is organised as follows. Sec-

tion II discusses related work. Section III introduces our
multi-level languages and hierarchical process models, while
Section IV presents how we discover them and Section V
discusses how to check their conformance. Section VI presents
key findings from our evaluations with multiple real-life event
logs, and we discuss limitations in Section VII. Section VIII
concludes the paper.

II. RELATED WORK & BACKGROUND

In this section, we discuss related work and concepts of
process modelling formalisms, process discovery techniques,
single- and multi-formalism hierarchical models, and tech-
niques that identify multi-level structures in logs.

From an abstract point of view, a process model describes
behaviour as a possibly infinite set of traces, a language, over
the transitions present in the model. For instance, directly

follows models/transition systems use arcs to express which
transitions can be executed after each transition [24]. Process
trees are a hierarchy of nodes (with transitions as leaves), each
combining the languages of its sub-nodes [20]. BPMN models
express complex behaviour using advanced gateways and
exception handling events [9]. Declarative models explicitly
express constraints over pairs of transitions [35]. Finally, a
Petri net describes behaviour through occurrences of trans-
itions that consume tokens from states (places) and produce
tokens on places [29]. We assume the reader to be familiar
with the basic principles of the most commonly used process
mining formalisms; see [1] for an introduction.

Process modelling formalisms that support hierarchy in-
clude process trees [20], BPMN [9], declarative languages [33]
and fuzzy models [15]. Our definition (Section III) generalises
over these formalisms by providing a multi-formalism hier-
archy, and establishes their multi-level semantics.

A plethora of non-hierarchical discovery techniques has
been proposed. For a detailed overview of these techniques,
please refer to [1], [5]. The approach of this paper can use
any discovery technique to improve on the simplicity and
understandability of the discovered models at any level, by
using multi-level information from the event log.

Techniques that identify or create levels in event logs
include clustering activities based on correlations [16], identi-
fying stages [30], [9], or constructing taxonomies [14]. For
a recent literature review, see [39]. Using these techniques,
multi-level information can be added to event logs, which can
be used as input (levels) for the MLM framework. No tech-
nique that explicitly uses this information has been proposed.

Next, we discuss approaches that aim to discover hierarch-
ical models. In [20], process trees are discovered by splitting
the event log recursively into smaller parts; the hierarchy
bears no meaning (as in [37]). This is combined with other
techniques in [22], where a hierarchy is obtained by combining
discovery techniques: where one discovery technique gives up,
another is started in a hierarchical way. In [19], hierarchy is
used to express recursion, derived from inherently hierarchical
software stack traces, using process trees. In [9], [10], first
events are clustered, after which for each cluster BPMN
models are discovered in a hierarchical way. Similarly, in [33],
text mining is applied to identify related activity labels, which
are consecutively collapsed in the event log and used to
discover a hierarchical declarative process model. Finally, the
Fuzzy Miner [15] dynamically groups activities based on their
already-discovered relation with other activities, and thereby
implicitly induces a hierarchy.

None of the aforementioned techniques explicitly takes
multi-level information into account, i.e., even though the
techniques allow us to derive a model comprising a hierarchy,
the primary input is still of a “flat” nature. Moreover, none of
the techniques is able to combine multiple process modelling
formalisms, i.e., allow us to pick the most suitable modelling
formalism for a specific level within the process.

Hybrid models combine multiple modelling formalisms
to reduce complexity, in particular they use declarative and
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imperative parts. In hybrid models, a transition can contain a
sub-model of a different formalism. To define the semantics of
hybrid models, the open-world assumption, trace termination
and concurrency in atomic languages (such as Petri net)
need particular attention [35]. While in hybrid models only
a lowest-level transition generates an event, the formalism
introduced in this paper generalises over this approach by
adding support for multi-level events. Discovery techniques
for hybrid models were proposed in [25], [34], [36]. Neither of
these approaches consider multi-level information in event logs
and the last two are limited to 2 layers, as they specifically aim
to combine declarative models as sub-models of imperative
models. This paper generalises these techniques by combining
multiple formalisms without limiting the number of layers.
Furthermore, we specifically use multi-level information in the
event log to control the creation of hierarchical levels whereas
previous works derive this information using e.g. clustering.

Finally, artefact-centric process mining considers the rela-
tion between multiple process/case notions [31], [13], such
as orders, products and packages. This notion differs from
multi-level as we assume that one level is fully contained
in another, where artefact-centric assumes no such relation.
Similarly, multi-dimensional process mining [38] does not
consider hierarchies in a single process model.

III. MULTI-LEVEL EVENT LOGS AND HIERARCHICAL
MODELS

In an information system, an event e represents the occur-
rence of an activity. We generalise this to each event having
several activities, at different levels of abstraction.

Definition 1 (Multi-level language, log). Let Σ1...Σm be
alphabets of activities. Then, a multi-level event is a vector
pa1, . . . , amq with @1ďiďmai P Σi of values describing a pro-
cess step. A multi-level trace is a finite sequence of multi-level
events, a multi-level language is a collection of multi-level
traces and a multi-level log is a multi-level language with a
finite number of traces.

An example of a multi-level event is (Intensive Care, Intub-
ation, Extubate), which indicates that an activity ”extubate”
(removing an air pipe from a patient’s throat) was performed,
which is the final stage of a higher-level activity/procedure
”intubation”, which in turn is a step in an intensive care stay.
A multi-level trace in this example would be a patient being
admitted to the intensive care, and the corresponding multi-
level event log would be all intensive care stays recorded.

Every (standard) event log that contains multiple event
attributes can be transformed into a multi-level log by deciding
on the attributes that indicate the levels, and their order, using
a multi-level classifier, which is a list of classifiers, which are
lists of attributes (i.e. columns in a CSV file).

A hierarchical model combines process models of several
formalisms to hierarchically express a multi-level language.
We define hierarchical models recursively using a process
model M of any formalism:

a

1

a b

x

k

l

m

Figure 2: A multi-level process model, consisting of a Declare
model (top), a Petri net and a Directly Follows model.

Definition 2 (Hierarchical model - syntax). Let Σ be an
alphabet of activities. Then, a hierarchical model M is a pro-
cess model MpT1, . . . Tnq expressed over transitions T1 . . . Tn,
where a transition Ti is either: (1) an activity aPΣ; (2) a silent
step τRΣ; or (3) an annotated activity aM 1 in which aPΣ and
M 1 is a hierarchical model.

Figure 2 shows an example, consisting of a Declare model,
of which activity a is annotated with a sub-model (a Petri net),
and activity b is annotated with a directly follows model.

In the following definition, Y replaces a single execution
of a transition with the sub-model language of the transition,
while X exhaustively calls Y until all transitions have been
replaced:

Definition 3 (Hierarchical model - semantics). Let M be
a model over transitions T1 . . . Tn. Let ϕpMpT1, . . . Tnqq
be a function that returns the language of M in terms
of starts and completes of its transitions, that is, over
T1,s, T1,c, . . . Tn,s, Tn,c. Then, the multi-level language of M
is:

LpMq “ XpϕpMqq

XpLq “

#

XpY pLqq if DtPLDiTi,s P t
L otherwise

Y pLq “ tt1 | t P L

^ t “ t1 ¨ xTi,sy ¨ t2 ¨ xTi,cy ¨ t3 ^ Ti,c R t2

^ t1 P tt1u ‚ pLpTiq ‖ tt2uq ‚ tt3uu
Y tt1 P L |  DtPLDiTi,s P tu

Lpaq “ txpaqyu
Lpτq “ txyu

LpaM 1q “ txpae1q, . . . p
a
emqy | xe1, . . . emy P LpM

1qu

Where ‚ is the sequential cross product and ‖ is the
interleaving cross product [21].

For instance, the multi-level language of the model shown
in Figure 1 is txpaxq, p

b
l q, p

b
mqy, xp

a
xq, p

b
kq, p

b
mqyu.

Hierarchical models are defined for any formalism for
which ϕ can be defined, which entails the introduction of
true concurrency between transition executions (which can be
simulated in atomic Petri nets, process trees and directly follow
models; see Section V). The only requirement to this ϕ is that
for every trace generated, there is a bijective mapping of every
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Ti,s to/from a later following Ti,c. However, for declarative
models, other factors (e.g. the open-world assumption) need
to be considered [35].

In the remainder of this paper, for simplicity, we assume that
the hierarchy of a hierarchical model is of a consistent depth,
even though this is not required by our definitions (that is,
such models simply emit multi-level events of uneven sizes),
and we may omit the “multi-level” prefix where appropriate.

IV. DISCOVERING MULTI-LEVEL MODELS

In this section, we introduce the Multi-Level Miner (MLM)
framework. We first give its pseudocode and explain its key
steps, after which we give a specific algorithm implementing it,
and we sketch strategies in case extra information is available.

A. The Multi-Level Miner Framework

As input, MLM takes a multi-level language (which can be
obtained from an event log using a multi-level classifier) and
a list of discovery techniques D1 . . . Dm to be applied over
m levels of attributes.

Intuitively, MLM first prepares the event log by abstracting
groups of events to the current level l, then applies a dis-
covery technique, and finally recurses on the transitions of
the discovered model, replacing each transition with a process
model of the next level. Thus, the framework uses two key
functions that algorithms implementing the framework must
provide for each level l P t1 . . .mu: event group abstraction
Pl and log splitting Sl. The event group abstraction function
Pl aims to remove repetition from traces. For instance, a
“flat” discovery technique would falsely consider the trace
xa, b, by to contain a repetition of b. However, these bs indicate
lower level steps, rather than a repetition of b itself. Thus,
Pl abstracts this trace into xa, by by removing the repeated
b. After a process discovery technique has been applied, the
log splitting step Sl splits the (non-abstracted) log into sub-
logs: one sub-log for each transition in the discovered process
model. Intuitively, each sub-log contains a trace for each
execution of the corresponding activity. In our example, the
trace would be split into xay and xb, by.

To formally define MLM, we use a projection function φ
that projects a particular level of an event to its lth attribute
value, and by extension multi-level traces and multi-level
languages onto traces and languages: φppa1, . . . amq, jq “ aj .
Then, the MLM framework is defined as follows:

1: procedure MLMP,D,S(multi-level language L, level l)
2: if l is the bottom level then
3: M Ð DlpφpL, lqq Ź discover a process model
4: else
5: L1 Ð PlpLq Ź abstract groups in L
6: M Ð DlpφpL

1, lqq Ź discover a process model
7: for all transition t PM do
8: Lt Ð SlpM,Lq Ź split L using M
9: Mt Ð MLM(Lt, l`1) Ź recurse

10: replace t with tMt in M Ź link t to
sub-model Mt

11: end for

12: end if
13: return M
14: end procedure

B. An Example Instantiation

To illustrate the MLM framework, we instantiate it in an
actual algorithm as follows. For the log abstraction function Pl,
consecutive appearances of the same activity are removed. For
instance, the trace xpaxq, p

a
yq, p

b
xqy at level 1 would be filtered to

xpaxq, p
b
xqy. For the log splitting function Sl, (1) the discovered

model is transformed to allow for repeated executions of
activities by replacing each transition as in Table I; (2)
alignments [2] are computed to link events in the log to a
transition in the transformed model, and to remove non-fitting
events, which makes the instantiation non-deterministic; and
(3) for each transition T , the trace is split into sub-trace(s):
events that are not linked to T are removed, and a new sub-
trace is started depending on the model formalism. [directly
follows models] a new sub-trace is started when an event
occurs of a transition T 1 ‰ T (as directly-follows models do
not support concurrency); [process trees] a new sub-trace is
started when an event occurs of a transition T 1 ‰ T such that
T 1 is not concurrent with T in the tree; [Petri nets] a new
sub-trace is started when an event occurs of any transition.

For instance, consider the top-level model of Figure 2 and
the trace xpaxq, p

b
kq, p

b
mqy at level 1. This trace would be

split into the subtrace xpaxqy for transition a and the subtrace
xpbkq, p

b
mqy for transition b.

V. CONFORMANCE CHECKING

To compare a hierarchical model with a multi-level log,
existing state-space exploring conformance checking tech-
niques could be updated to support multi-level logs. However,
we can use existing techniques unchanged by translating a
hierarchical model to a workflow net (flattening), if all levels
are individually translatable to workflow nets. In the following,
let M be a process model translated to a workflow net over
transitions pT1, . . . Tnq, which are replaced as follows:
a, τ are not replaced;
aM 1 (1) the sub-model M 1 is recursively translated to a

workflow net having a source place psource and a sink
place psink; (2) all labelled transitions of M 1 get their
labels superpositioned with a, e.g. pxq Ñ paxq; (3) a silent
transition tstart is added, which has the same input arcs as
aM 1 and one output arc to psource; and (4) another silent
transition tend is added with one input arc from psink and

Table I: Log splitting: model transformation for several form-
alisms.

Formalism transition transformed

Directly follows model a a

Process tree a œpa, τq

Petri net a

a T1

a

T2
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start a

paxq

end a

start b

pbl q pbmq

end b

start τ

pbkq

end τ

Figure 3: Our multi-level model flattened into a Petri net.

the same output arcs as aM 1 . The remaining net is sound,
that is, free of deadlocks and other anomalies [20], if all
of the sub-model-workflow nets are sound;

For instance, the hierarchical model shown in Figure 2 would
be flattened to Figure 3.

VI. EVALUATION

In this section, we evaluate the MLM framework: first, we
illustrate its applicability in a qualitative comparison with other
discovery techniques. Second, we evaluate the quality of the
models discovered by the MLM framework.
Reproducibility. All event logs used in this paper are publicly
available, as well as the source code of our technique.

A. Implementation

Both the MLM framework instantiation (Section IV-B)
and the conformance checking technique (Section V) have
been implemented as plug-ins of the ProM framework [11],
in package multi-level miner. The MLM and its im-
plementation allow for easy extension with other discovery
techniques and sub-model formalisms; currently Petri nets,
directly follows models, BPMN models and process trees are
supported. The resulting hierarchical model can be visualised
in two ways: either as a single model (as in Figure 4f), or
using a separate visualisation for each level, where a user can
click on an annotated node, which opens the corresponding
sub-model (Figure 4e).

B. Qualitative Evaluation

To study qualitative and understandability aspects of the
MLM framework, we applied Disco (see http://fluxicon.com),
Declare [35], Inductive Miner - infrequent [20] and Split
Miner [6] at their default settings to the BPI Challenge 2017
log, which was recorded from a loan application process at
a financial institution in the Netherlands. Based on domain
knowledge and a small explorative analysis, we chose the
attributes eventOrigin and concept:name as the multi-
level classifier, and chose the Directly Follows Miner [24] and
the Inductive Miner as discovery techniques for the MLM
framework. The discovered models are shown in Figure 4.
A visual inspection of these models immediately reveals that
the multi-level model is much simpler and understandable
than any of the other models, especially on more abstract
levels. Hierarchical models enable an understanding of the
information in the logs in a systematic manner, by displaying
the behaviour in layers. For instance, the model obtained using
Disco may not be complex on first sight (even though it is

highly filtered as per default), although, understanding the
flow of activities under a particular event origin is not easy,
unlike in multi-level models. Other models might be more
structured (Inductive Miner), more flexible (Declare) or free
of concurrency (Split Miner), however the MLM model is
arguably simpler.

In [28], seven Process Modelling Guidelines for under-
standability were identified, of which four are relevant for
this experiment: (G1) use as few model elements as possible:
compared to the other process models, the MLM model de-
composes information in layers which contain fewer elements.
This enables users to focus on a particular section of the
model rather than on all the elements at the same time, even
though the total number of elements might be higher. (G2)
minimise the routing paths per element: the experiment did not
show large differences between the techniques. (G4) model as
structured as possible. MLM introduces structure by its layers,
which for some models increases the structuredness of the
entire model compared to other techniques. (G7) decompose
a model with more than 30 elements: our technique enables
decomposition of the model increasing the understandability
of the discovered model. Overall, we can see that our model
improves on most of the relevant guidelines, enabling better
understanding of the behaviour in the logs.

C. Quantitative Evaluation

To compare the MLM framework with existing discovery
techniques, we applied several techniques to six publicly
available real-life event logs. These logs are publicly avail-
able from https://data.4tu.nl/repository/collection:eventz logsz real, and were
chosen as they contain multiple event attributes that might
serve as activities. As a first step, for each log we manually
chose a multi-level classifier, based on domain knowledge on
the mentioned web page. The event logs are summarised in
Table II, which also shows the chosen classifiers. The included
existing discovery techniques are Split Miner (SM) [6], Induct-
ive Miner - infrequent (IM) [20] and Directly Follows Model
Miner (DM) [24]). Furthermore, we included two baseline
techniques: the trace model (T) that represents all traces of
the event log, and the flower model (F) that represents all
possible behaviour given the activities in the log. Finally,
we included several instantiations of the MLM framework:
(a) three instantiations that use the same existing discovery
technique for each of its levels, using Split Miner (MLM-SM),
Inductive Miner - infrequent (MLM-IM) and Directly Follows
Model Miner (MLM-DM); (b) an instantiation that uses the
flower model for each of its levels (MLM-F); a trace-MLM
would not involve multiple layers and was not included; (c)
an instantiation that combines Directly Follows Model Miner
and Inductive Miner - infrequent (MLM-DM-IM).

To these logs and discovery techniques, we applied 3-fold
cross validation: the log was split into 3 buckets, and for each
bucket a model was discovered, which was validated against
the remaining buckets. To minimise the influence of random-
ness in the cross validation, this validation was repeated 10
times. Thus, for each log and discovery technique, 30 models
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(a) Directly follows model (Fluxicon Disco). (b) Declarative model (Declare).

(c) Process tree (Inductive Miner).

(d) BPMN model (Split Miner).

(e) This paper - MLM-DM-IM (tabbed). (f) This paper - MLM-DM-IM (hierarchical).

Figure 4: Impressions of mined process models for our qualitative evaluation.
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Table II: Event logs used in the quantitative evaluation.

log multi-level classifier traces events acts

bpic 2012 concept:name, life-
cycle:transition

13087 262200 36

bpic 2013 closed
problems

concept:name, life-
cycle:transition

1487 6660 7

bpic 2015 - 1 monitoringResource, activity-
NameEN

1199 52217 2302

bpic 2017 eventOrigin, concept:name 31509 1202267 26
bpic 2018 pay-
ment applications

subprocess, concept:name, li-
fecyle:transition

43809 984613 52

sepsis org:group, concept:name 1050 15214 42

were discovered and evaluated. The reported measures are the
averages over these 30 measures.

For each log and discovered model, we measured projected
fitness and precision [23] on a Petri-net representation of the
model; the MLM-models were flattened using the method
described in Section V. Furthermore, we recorded the total
number of nodes and edges, and the average connector degree.
Together, these measures have been shown to be significantly
negatively correlated with understandability [27], [32]. Both
the total number of nodes and edges and the average connector
degree were measured on a flattened Petri net (as a machine
would) and on the native graph visualisation of the model (as
a user would), where for MLM-models we averaged the values
over the sub-models in the MLM-models. We refer to these
measures as automated size and user size.

Table III shows an excerpt of the results, with the full res-
ults available in a technical report at https://eprints.qut.edu.au/134958/.
While run time of MLM was considerably longer than for the
other discovery techniques, due to the repeated application
of alignments, in this experiment run time never exceeded
two hours, and was generally lower than 20 minutes. Thus,
while feasible for the real-life logs considered here, larger
or more complex logs with more traces, events per trace or
activity might prove challenging. For some models, fitness
and precision could not be measured. Remarkably, on bpic17,
several variants of MLM got the same precision as the flower
model, even though the corresponding models (Figure 4f)
clearly limit behaviour considerably, and this was not the case
for the other logs. Comparing an algorithm and the same
algorithm in MLM, we see slight differences in both directions
for fitness and precision, but consistently smaller models. For
all event logs, F was pareto optimal (over fitness, precision and
user-average-size) once, T 5 times, DF 4 times, IM 3 times,
SM 3 times, MLM-F 5 times, MLM-DM 5 times, MLM-
IM once, MLM-SM once, and MLM-DM-IM 4 times. MLM
techniques got the highest fitness for 3 logs (disregarding the
baselines MLM-F and F), and the highest precision for 2.
This shows that MLM scores comparable or better on the
key metrics that are related to the understandability of process
models, and comparable on fitness and precision, compared to
existing techniques.

We conclude that even though the hierarchical models are
slightly more complex for automated analysis (as elements are
introduced with flattening), these models are much simpler
for user analysis (considering the average size per level/sub-

model), and have a similar quality as existing techniques.

VII. DISCUSSION & LIMITATIONS

While the positive effects of hierarchy on understandability
are well-established in process modelling literature [3], [4],
[28], [33], [36], the extent to which multiple formalisms might
increase complexity requires further research. Thus, more
research is necessary into simplicity measures that compare
hierarchical and “flat” process models fairly, and into users’
perceptions of these measures.

In our evaluation, we selected multi-level classifiers based
on domain knowledge and on a quick analysis of short loops
for each attribute. We argue that this adds little complexity
over manually choosing a single classifier, as it requires
choosing multiple columns of a CSV file rather than a single
one. Obviously, the outcomes of multi-level process mining
highly depend on this choice, it may introduce a bias of the
results, and it requires that multiple suitable attributes are
present in the log. Users might need to iterate to find suitable
multi-level classifiers, discovery techniques and formalisms. In
future work, it would be interesting to explore methodologies,
scoring and best-practices to recommend these (e.g. as in [7]),
and to study their influence in detail.

The abstraction step (5) of MLM suffers from a chicken-
and-egg problem when regarding concurrency: in order to
abstract, knowledge of the process model would be beneficial,
however that is not available at that step. This manifests
in our instantiation in two situations. First, our event-group
abstraction step cannot be aware of concurrency: if executions
of two activities a and b overlap by having alternating events,
then our instantiation will split these executions whenever
an alternating event occurs. For instance, xpaxq, p

b
yq, p

a
yq, p

b
xqy

would be split into xpaxqy and xpayqy for a, and xpbyqy and
xpbxqy for b, rather than xpaxq, p

a
yqy and xpbyq, p

b
xqy. However,

if the discovery technique (step 6) nevertheless discovers
the concurrency, the log splitting (step 8) will split the log
correctly. Second, repeated execution of an activity (length-1-
loops) challenges both abstraction and log splitting: given a
repeated execution of an activity (for instance, xa, a, a, ay),
without further information, both steps cannot decide how
many executions of a are present, nor where one execution
ends and the next one starts. In future work, both could be
addressed using attributes such as concept:instance or
lifecycle:transition.

Finally, our conformance checking approach could be ex-
tended to support declarative formalisms [35].

VIII. CONCLUSION

Process mining is challenged by the need to strike a good
balance between model complexity and behavioural quality
of process models. In this paper, we introduced multi-level
logs and generalised hierarchical models, which enable the
use of multi-level data in existing logs to discover simpler
models, and generalise over existing approaches by combining
multiple formalisms with multiple levels of abstraction. We
introduced a corresponding discovery framework and con-
formance checking technique, working on standard event logs,
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Table III: Quantitative experiment results, with pareto-optimal results in bold. For all 6 logs, see https://eprints.qut.edu.au/134958/.

log algorithm fitness precision automated user time

size avg con deg avg size avg conn deg (ms)

bpic17 F 1.00 0.60 78.50 3.85 58.67 1.97 1175.00
T 1.00 0.73 2121196.70 2.02 1088537.93 2.00 816.97
DM 0.99 0.71 213.23 2.90 213.23 2.90 4605.50
SM 0.91 0.69 218.00 2.54 142.00 2.90 43399.23
IM 0.95 0.69 178.77 2.67 147.13 1.99 370274.87
MLM-F 1.00 0.60 111.50 3.33 34.63 2.83 1115102.67
MLM-DM 0.95 0.69 237.00 3.10 10.00 1.06 31809.00

...

MLM-IM 1.00 0.60 214.17 2.73 46.10 1.95 147507.60
MLM-SM 1.00 0.60 235.67 2.73 45.08 2.80 68784.10
MLM-DM-IM 1.00 0.60 437.80 2.84 42.10 1.97 136822.30

where a user selects several attributes. The proposed approach
has been evaluated in two ways: a qualitative evaluation on
a real-life event log demonstrated that discovered hierarchical
models can be much simpler and more understandable than flat
models. Second, a quantitative evaluation on six real-life event
logs showed that our approach scores better on the key metrics
that are related to the understandability of process models, and
comparable on fitness and precision to existing techniques.

There are several avenues for future work. Better ways to
visualise hierarchical process models and evaluate the impact
of visualisation on the understandability of these models
could be explored. Also, automatic suggestions for suitable
attributes and corresponding discovery techniques could be
developed [7], and our approach could be combined with
clustering-based hierarchical discovery techniques [39], [10].
Furthermore, performance measures for hierarchical models
can be investigated, similar to [18].
Acknowledgement. We thank Dirk Fahland and Moe Wynn for
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