
An Approximate Inductive Miner
Jan Niklas van Detten

Celonis Labs GmbH & RWTH Aachen
Aachen, Germany

niklas.van.detten@rwth-aachen.de

Pol Schumacher
Celonis Labs GmbH
München, Germany

p.schumacher@celonis.com

Sander J. J. Leemans
RWTH Aachen

Aachen, Germany
s.leemans@bpm.rwth-aachen.de

Abstract—Process discovery algorithms extract process
models from business process event logs. Existing discovery
algorithms require upfront filtering, or specific parameter input,
to produce models with balanced quality dimensions on real-
life event logs. We propose the Approximate Inductive Miner
(AIM) to fill this gap and offer an automated way to discover
sound models in polynomial time complexity, without any
pre-processing or mandatory parameter input. AIM uses the
existing Inductive Miner framework and applies clustering
techniques to recursively identify structures in the event log. It
additionally performs an approximate parameter optimisation
to dynamically suggest a suitable parameter. We compare AIM
with existing discovery algorithms on synthetic and real-life
event logs, and evaluate the quality of the integrated parameter
suggestion. We find that AIM on its own produces sound
models with low control flow complexity and high precision,
even on complex event logs. Additionally, AIM is able to handle
a vast range of event log properties, such as infrequent and
incomplete behaviour, without requiring any human parameter
input or upfront filtering.

Index Terms—process mining, process discovery, automated
discovery, parameter approximation

I. Introduction
Modern business environments produce track records of

process activities in event logs, which enable the empirical
analysis of the underlying business process. An important
step in process analysis is the discovery of a process
model. Many algorithms exist for this purpose, each
producing models with different properties on relevant
quality dimensions.

Often used process model quality criteria include fitness,
precision, simplicity, soundness and rediscoverability. Fit-
ness describes a model’s ability to represent the behaviour
contained in the event log. Precision measures how well
a model excludes behaviour dissimilar to the event log.
Simplicity values a minimal control flow complexity and
model size. The soundness property guarantees a model to
be deadlock free and to not include any unreachable parts
[1]. Rediscoverability is the ability to discover a process
model from an event log that is equivalent to the original
one [2].

In addition to these model-specific and log-based prop-
erties, there are further requirements on the discovery
algorithm itself. The time and space complexity should
scale well with increasing event log size and complexity.
Additionally, it should be adaptable to different levels of
noise, which can be found in real-life event logs [3]. An

ideal process discovery algorithm should reliably produce
good models on relevant quality metrics and possess these
properties.

Some existing discovery algorithms adhere to the Induc-
tive Miner framework (IM) introduced in [4]. IM splits an
event log by recursively searching an activity partition
and an operator, which describes the control flow relation
between the resulting partition’s parts. The combination
of such an activity partition and operator is called a cut.
The IM recursion continues by splitting the event log
based on the detected cut and stops when a base case
is reached, meaning that the event log cannot be split any
further. A set of fall-through methods handles event logs
that do not perfectly fit any of the available operators and
are not a base case. These methods increasingly sacrifice
precision to represent the log with the available operators.
All implementations of IM guarantee model soundness.

Many algorithms, such as [5], [6] and [7], handle noise
with filtering methods based on parameters. The flexibility
introduced by these parameters is offset by the large range
of input values that a user must consider. This problem can
be addressed by performing a hyper-parameter optimisa-
tion at design time. The resulting default parameters can
however be sub-optimal if an event log differs substantially
from the ones used for the optimisation. A user might
still need to try a set of models with different parameter
choices and evaluate them, which can be time intensive.
To the best of our knowledge, an automated and runtime-
efficient parameter suggestion, directly integrated into the
discovery process itself, is not offered yet by any process
discovery algorithms.

In this paper we introduce the Approximate Inductive
Miner (AIM), which provides such an integrated param-
eter suggestion. It investigates a state space for potential
cuts in the event log under consideration of the available
filter parameter space. These cuts are evaluated with
heuristic quality measures, which estimate the adherence
of the event log to each cut and the potential information
loss induced by our filtering method. Clustering techniques
are subsequently used to prune the state space and to
select a cut with a filter parameter. These techniques are
integrated into the IM recursion, as a replacement for
all fall-through methods, to benefit from the framework’s
already proven guarantees.

We compare the process models produced by AIM to

those from existing discovery algorithms on 18 real-life
event logs and use 480 synthetic event logs to observe the
structural influence of the utilised clustering techniques.
To evaluate the integrated parameter suggestions, we
additionally perform a hyper-parameter optimisation for
comparison.

The remainder of this paper is structured as follows.
Section II contains relevant process mining concepts and
notations. AIM itself is explained in Section III. The
evaluation of AIM is done in Section IV, while Section V
provides an overview about existing discovery algorithms.
Section VI contains our final thoughts and a summary of
our findings.

II. Preliminaries
An event log L = [σc1

1 , . . . , σcn
n] is a multi-set of traces

σi with multiplicities ci. A trace σ consists of ordered
activities. For a trace that contains exactly the activities
a and b, in this order, we write 〈a, b〉, while an empty trace
is represented by ε. The set of unique activities in the event
log is called the alphabet Σ. The start activities start(L)
= {a ∈ Σ|∃σ ∈ L : σ = 〈a, . . .〉} and end activities end(L)
= {a ∈ Σ|∃σ ∈ L : σ = 〈. . . , a〉} are the sets of unique
activities that appear in the first and last position of a
trace in the event log. We write |a| for the total occurrence
count of an activity a across all traces of the event log.
|L| is the number of traces in L, while ||L|| describes the
sum of all activity occurrence counts.

A follows-graph of the event log contains a node for
each activity in the alphabet. The directly follows-graph
(DFG) of an event log has an edge a � b if ∃σ ∈ L : σ =
〈. . . , a, b, . . .〉. The strictly indirectly follows-graph (IFG)
contains an edge a �∗ b if there is a trace σ ∈ L in which
b does not directly follow a and σ = 〈. . . , a, . . . , b, . . .〉.
The eventually follows- graph (EFG) has an edge a �+ b
if a � b ∨ a �∗ b. The edge frequencies |a � b|, |a �+ b|
and |a �∗ b| indicate how often b directly, eventually or
indirectly follows a.

A. Process Trees
Process models can be represented by process trees

for alphabets Σ with τ 6∈ Σ. They consist of leaf nodes
with labels in Σ ∪ {τ} and inner nodes with labels in
{→,×, ||,	}. Inner nodes are nodes with children in the
tree structure, while leaf nodes are those without. Without
loss of generality we only consider binary process trees,
which means that each inner node has exactly two children
[2]. Each process tree t can be translated into L(t), the
language of traces it allows.

A leaf with an activity label a ∈ Σ represents the
execution of this activity, while a τ represents the empty
trace. Therefore L(τ) = {ε} and L(a) = {〈a〉}. The
label of an inner node in the process tree describes by
which operator its children are related. We define the
resulting languages with the notation from [8] and [9]. The
exclusive choice operator × allows a trace of only one of its

children to be used with L(×(t1, t2)) = L(t1) | L(t2). The
sequence operator → concatenates a trace from its first
and second children with L(→ (t1, t2)) = L(t1) · L(t2).
The parallel operator || allows any pair of traces from
its children to be interleaved, as long as their partial
order is kept, with L(|| (t1, t2)) = L(t1) � L(t2). The
loop operator 	 allows the repetition of traces from its
first children after using a trace from the second one with
L((t1, t2)) = L(t1)(L(t2)L(t1))∗. The first child of a
loop is called the body part and the second child the redo
part.

Exclusive choice and loop nodes with τ as one of their
children nodes create special structures. Exclusive choice
nodes with one τ and one non-τ as children are called τ
skips, and are used to describe optional behaviour with
×(τ, t) or ×(t, τ) where t 6= τ . A loop node with a non-τ
body part and a τ redo part is called a τ loop, which
allows arbitrary repetitions of the body part with 	 (t, τ)
where t 6= τ .

B. Inductive Miner
The Inductive Miner framework (IM) for binary cuts is

shown in Algorithm 1. It recursively constructs a process
tree out of an event log. In each recursion step a cut is
detected and the event log is split until a base case is
reached. If no cut can be found and no base case applies,
a fall-through method is used. In the following we recall
an IM implementation with the operator set {→,×, ||,	}
from [4], which we call IMb.

Algorithm 1 IM framework from [4]
function im(L)

bc← basecase(L)
if bc 6= ∅ then

return bc
end if
⊕,Σ1,Σ2 ←findcut(L)
if ⊕ 6= ∅ then

L1, L2 ←splitlog(L,⊕,Σ1,Σ2)
return ⊕(im(L1),im(L2))

else
return fallthrough(L)

end if
end function

If the event log is not a recursion base case, a cut
needs to be detected with findcutIMb. A cut consists of
a partition of the alphabet into Σ1,Σ2 and an operator
⊕ ∈ {→,×, ||,	}. Each operator leads to a unique set of
DFG properties if the event log adheres to it, which is
called the operators footprint. The DFG of the event log
is used to check if any alphabet partition fits an operator’s
footprint, which is not guaranteed.

When a cut can be found, the event log is split with
splitlogIMb into the sub-logs L1 and L2. For an operator
⊕ ∈ {||,× →} each of the activities in Σ is assigned

to sub-log L1 or L2 if it is in Σ1 or Σ2. For the
operator 	 additional trace splitting is necessary. Each
trace 〈. . . a, b . . .〉 with a ∈ Σ1 ∧ b ∈ Σ2 or a ∈ Σ2 ∧
b ∈ Σ1 is split between a and b. Traces are then divided
over L1 and L2, depending on which part of the partition
includes each of their activities.

The recursion continues on the resulting sub-logs until a
base case is found with basecaseIMb. A base case is reached
when the event log is empty, or when its alphabet only
contains a single activity. In this case it is not possible
to split the event log, or its alphabet, any further. An
empty event log results in a τ , while an event log that
only contains the trace 〈a〉 produces an activity leaf a. If
the event log contains a trace with at least one repetition
of the remaining activity a, such as 〈a, a〉, a self loop
	 (a, τ) is returned as a base case.

In case no cut can be found, for an event log that is
not a base case, a set of fall-through methods is applied
with fallthroughIMb. These fall-through methods are used
to fit the event log into the representational bias of the
available operators. They also account for τ skips and τ
loops, but become increasingly less precise. The last fall-
through method is called a flower model, which allows for
the arbitrary execution and repetition of the remaining
activities.

C. Relation & Quality Estimates
Several alternative IM implementations have been de-

fined [5], [10] that, if no cut can be found, attempt to find a
most likely cut, based on relation estimates. The likelihood
of a cut is established by these techniques by taking the
average estimated likelihood of pairs of activities that get
separated by the cut’s partition. That is, for the operators
{→,×, ||}, the set M of these pairs is

M(⊕,Σ1,Σ2) = {(⊕, a, b) | a ∈ Σ1 ∧ b ∈ Σ2}

For the loop operator, one needs to distinguish two
groups of separated activity pairs: those that have a
direct connection, and those that do not [10]. The direct
connection can be estimated through the first and last
activities of Σ2(S2, E2) and the start and end activities
contained in Σ1(S1, E1):

M(,Σ1,Σ2) = {(s, a, b) | a ∈ E1 ∧ b ∈ S2}

∪{(s, a, b) | a ∈ E2 ∧ b ∈ S1}

∪{(i, a, b) | a ∈ Σ1 \ (S1 ∪ E2) ∧ b ∈ Σ2 \ (S2 ∪ E2)}

III. Approximate Inductive Miner
In this section we introduce the Approximate Inductive

Miner (AIM). AIM uses a recursive strategy to discover
a process tree based on a given event log and filter
parameter space. In each recursion step, the best cut
and filter parameter is sought. To select such a cut,
AIM first determines the state space of potential cuts
across the available parameter space and calculates a

quality estimate for each of them. Second, AIM adjusts
these cut quality estimates to account for the information
loss induced during filtering. Third, AIM prunes this
state space efficiently with the application of clustering
techniques to select a cut. Finally, the full AIM algorithm
is specified and its guarantees and properties are discussed.

A. Cut State Space
First, we describe the state space SL of cuts that we

consider in AIM, for a given event log L, filter parameter
space F ⊆ [0, 1], and a cut quality estimate function
Q(L,⊕, a, b). The cuts come in two types: cuts with non-
empty partition parts, and τ structure cuts, with one
empty partition part. We assume an event log filtering
function filter(L, f) to be available with f ∈ [0, 1]. Then,
the best cut (⊕,Σ1,Σ2) from SL is

argmax
(⊕,Σ1,Σ2)∈SL

max
f∈F

Q(filter(L, f),⊕,Σ1,Σ2) (1)

We now define the cuts in SL for each operator and
their corresponding cut quality estimates. A sequence cut
(→,Σ1,Σ2) denotes that the activities in Σ1 are executed
exclusively before the activities in Σ2. Let Σf be the
alphabet of filter(L, f). Then, the potential sequence cuts
in SL are

{(→,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 (Σf ∧ Σ1 6= ∅}

The cut quality estimate Q(L,→,Σ1,Σ2) is defined as the
mean of the relation estimate multi-set with

Q(L,→,Σ1,Σ2) = µ(→,a,b)∈M(→,Σ1,Σ2)R(L,→, a, b)

R(L,→, a, b) =
|a �+ b|

|a �+ b|+ |b �+ a|+ 1

An exclusive choice cut (×,Σ1,Σ2) denotes that in each
trace only activities from one partition part are executed.
Let a be an arbitrary activity appearing in the most traces
of L with a = argmaxa∈Σ |[σ ∈ L | σ = 〈. . . , a, . . .〉]|.
Then, the potential, non-symmetrical exclusive choice cuts
in SL are

{(×,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 6= ∅}

Notice that a prevents symmetrical cuts. The cut quality
estimate Q(L,×,Σ1,Σ2) is defined analogue to Q(L,→
,Σ1,Σ2), based on R(L,×, a, b) with

Q(L,×,Σ1,Σ2) = µ(×,a,b)∈M(×,Σ1,Σ2)R(L,×, a, b)

R(L,×, a, b) = 1

|a �+ b|+ |b �+ a|+ 1

A concurrent cut (||,Σ1,Σ2) describes the interleaved
concurrent execution of the activities in the different parts
of the alphabet partition. The potential, non-symmetrical
concurrent cuts in SL, analogue to the exclusive choice
cuts, are

{(||,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 6= ∅}

The cut quality estimate for concurrent cuts Q(L, ||
,Σ1,Σ2) applies a bias l which measures the average excess
trace length in comparison to the alphabet size with

Q(L, ||,Σ1,Σ2) = µ(||,a,b)∈M(||,Σ1,Σ2)R(L, ||, a, b) · (1− l)

R(L, ||, a, b) = 2 · |a � b| · |b � a|
|a � b|2 + |b � a|2 + 1

l = min(1,max(µ([|σ| | σ ∈ L])− |Σ|, 0) · |Σ|−1)

A loop cut (,Σ1,Σ2) denotes the optional repetition
of the activities in Σ1, as long as the activities in Σ2 are
executed before. The set of potential loop cuts in SL is

{(,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 6= ∅}

The quality estimate for loop cuts Q(L,	,Σ1,Σ2) re-
quires the assumed start and end activities of the redo part
of the loop. For a given loop cut (,Σ1,Σ2) we assume an
activity a ∈ Σ2 to be part of the start activities of Σ2(S2)
if argmaxb∈Σf

(R(L,	s, b, a)) ∈ end(L) ∩ Σ1. Similarly, a
is part of the end activities E2 if argmaxb∈Σ(R(L,	s, a, b))
∈ start(L) ∩ Σ1. The cut quality estimate is then

Q(L,	,Σ1,Σ2) = µ(⊕,a,b)∈M(,Σ1,Σ2)R(L,⊕, a, b) · l

R(L,	s, a, b) =
2 · |a � b| · |b �+ a|
|a � b|2 + |b �+ a|2 + 1

R(L,	i, a, b) =
2 · |a �∗ b| · |b �∗ a|
|a �∗ b|2 + |b �∗ a|2 + 1

A τ skip cut (×,Σ, ∅) denotes the optional execution of
the activities in Σ. We define the quality estimate for the
τ skip cuts {(×,Σf , ∅) | f ∈ F} in SL as

Q(L,×,Σ, ∅) = |{σ ∈ L | σ = ε}| · |L|−1

A τ -loop cut (,Σf , ∅) denotes the optional repetition of
the activities in Σ. For the τ -loop cuts {(,Σf , ∅) | f ∈ F}
in SL we define the quality estimate

Q(L,	,Σ, ∅) = µ(M(R,L,	,Σ,Σ)) · l

B. Filter Parameter Adjustment
Picking the cut with the highest quality estimate in

our state space can lead to excessive filtering. Removing
activities from the event log not only increases the chance
to find a near-perfect cut, but also induces information
loss. To prevent excessive filtering we therefore adjust the
quality estimate for each cut in SL with the factor Nf .
The adjusted quality estimate not only takes into account
how good a cut fits the potentially filtered event log,
but also expresses how much relative information loss was
induced by the filtering. The best cut in SL, in extension
to equation (1), is therefore

argmax
(⊕,Σ1,Σ2)∈SL

max
f∈F

Q(filter(L, f),⊕,Σ1,Σ2) ·Nf (2)

The filtering method used in our implementation re-
moves activities that appear in relatively few traces, com-
pared to the activity contained in the maximum number of

traces. Let count(a) be the number of traces that contain
the activity a with count(a) = |[σ ∈ L | σ = 〈. . . , a, . . .〉]|.
An activity is subsequently removed from the event log by
filterAIM (L, f) if count(a) < argmaxb∈Σ count(b) · f . To
capture the information loss induced by filterAIM (L, f),
we measure the relation between the average trace length
in the event log, before and after filtering. Nf is therefore
||Lf || · ||L||−1. Note that the choice of the available filter
parameter space can be used to include knowledge about
the event log into the discovery process, or to enforce
requirements regarding the minimal or maximal amount
of filtering.

C. State Space Pruning
The cut with the highest adjusted quality estimate in

SL provides a conceptual trade off. This cut can however
not be determined effectively. Our cut state space grows
exponentially in the size of Σ, irrespective of the utilized
parameter space F . The exhaustive evaluation of all cuts
in SL is therefore not feasible and significant pruning of
SL is required instead.

The quality estimate for a cut (⊕,Σ1,Σ2) with non-
empty partition parts depends on the average value of
R(L,⊕, a, b), for the activity pairs (a, b) in M(⊕,Σ1,Σ2).
These activity pairs always contain one activity from each
part of the alphabet partition. Cuts with high quality
estimates in SL therefore correspond to high values of
R(L,⊕, a, b) for a ∈ Σ1∧b ∈ Σ2 or b ∈ Σ1∧a ∈ Σ2. We sub-
sequently approximate such cuts, by using R(L,⊕, a, b) as
a distance measure for clustering. We apply k-means, with
a fixed cluster count of two, for each ⊕ ∈ {→,×, ||} and
f ∈ F . The clusters detected on R(Lf ,⊕, a, b) correspond
to the alphabet partition Σ⊕,f,1,Σ⊕,f,2. A high relation
estimate between two activities increases the probability
of them ending up in different parts of Σ⊕,f,1,Σ⊕,f,2. Note
that R(Lf ,⊕, a, b) potentially contains arbitrary many
clusters for ⊕ ∈ {×, ||,→}. Clustering fails if there are
less then two, which can only happen if all entries in
R(Lf ,⊕, a, b) are identical. In this case, all activities
have the same relation estimate to each other and an
arbitrary alphabet partition can be used. We subsequently
reduce our search space SL by excluding all cuts with
the symmetric operators ⊕ ∈ {|| ×} and non-empty
partition parts, except for the ones in {(⊕,Σ⊕,f,1,Σ⊕,f,2) |
f ∈ F ∧ ⊕ ∈ {||,×}}. For the non-symmetric sequence
operator we need to consider the ordering of the par-
tition and therefore exclude all sequence cuts, except
{(→,Σ→,f,1,Σ→,f,2), (→,Σ→,f,2,Σ→,f,1) | f ∈ F}.

The quality estimate for a loop cut (,Σ1,Σ2) depends
on the assumed start and end activities for each part of
the alphabet partition (S1, E1, S2, E2), and the relation
estimates R(L,	i, a, b) and R(L,	s, a, b). The clustering
based pruning is therefore not applicable here and a dif-
ferent strategy is needed to detect high quality loop cuts.
We attempt to find such a cut by first determining the
start and end activities of each partition part, effectively

establishing the borders between them. Afterwards, the
remaining activities are assigned to Σ1 and Σ2, based on
their relation to the already determined start and end
activities. This process is done for all f ∈ F .

We start by sorting the activities in start(Lf) ∪ end(Lf)
by their occurrence count in descending order. We subse-
quently assign each activity a in this ordered set to Σ	,f,1.
If a ∈ start(Lf) holds, we additionally assign a to S1 and
the activity b = argmaxb∈Σf

(R(Lf ,	s, b, a)) to Σ	,f,2 and
E2. Similarly, if a ∈ end(Lf) holds, we assign a to E1 and
the activity b = argmaxb∈Σf

(R(Lf ,	s, a, b)) to Σ	,f,2 and
S2. All activities that remain unassigned after this first
assignment process are assigned to the same part of the
loop, as the activity that they are the most connected with,
according to R(LF ,	s, a, b). We subsequently reduce SL

by removing all loop cuts with non-empty partition parts
except those in {(,Σ	,f,1,Σ	,f,2) | f ∈ F}.

Our pruned search space is significantly smaller than
the original one and contains exactly seven cuts for each
parameter value f ∈ F . There is one cut with non-empty
partition parts for each of the available operators, with an
additional cut for the non-symmetric sequence operator.
Additionally, the τ skip cut and the τ loop cut remain.
This pruned state space only grows linear in the size of
the selected parameter space |F | and not exponential in
the size of the alphabet |Σ|.

D. Implementation

We integrate our approaches into IM with the follow-
ing implementation. It uses BaseCaseAIM , FindCutIMb,
FallThroughAIM and SplitLogIMb, in accordance with
Algorithm 1. FallThroughAIM performs our state space
pruning to find a cut and to suggest the corresponding
filter parameter. As shown in Algorithm 2, this requires
a new log splitting method SplitLogAIM . We choose the
parameter space of discrete 0.1 steps with F = { x

10 | x ∈
N ∧ x < 10}.

Algorithm 2 AIM Fallthrough
function fallthroughAIM (L)
⊕,Σ1,Σ2, f ←findcutAIM (L)
L1, L2 ←splitlogAIM (Lf ,⊕,Σ1,Σ2)
return ⊕(im(L1),im(L2))

end function

Notice that the high-level method SplitLogIMb used
in the IM framework is not changed. The lower-level
function SplitLogAIM described here is only used in
FallThroughAIM from Algorithm 2. SplitLogAIM extends
SplitLogIMb with cuts that do not fit the potentially
filtered event log perfectly. It additionally covers τ loops
and τ skips. We remove all empty traces before applying
the splitting from IMb. This way we avoid an undesirable
accumulation of empty traces across multiple recursion
steps with such cuts. For τ loops we additionally split all

traces 〈. . . , a, b, . . .〉 between a and b if a ∈ end(Lf) ∧ b ∈
start(Lf).

BaseCaseAIM returns the base case τ if the event log
is empty. If the event log contains more then one unique
activity, no base case applies. If the event log contains only
one unique activity a, BaseCaseAIM returns either ×(a, τ),
a or 	 (a, τ), depending on the tightest structure that fits
the most traces. We define Q×(L) = |[σ ∈ L | σ = ε]|,
Qa(L) = |[σ ∈ L | σ = 〈a〉]| and Q	(L) = |[σ ∈ L | σ 6=
〈a〉∧σ 6= ε]|. ×(a, τ), a and 	 (a, τ) are chosen depending
on the maximum value of Q×(L), Q	(L) and Qa(L). In
case of equality we use the default base case order a,
×(a, τ), 	 (a, τ).

E. Complexity & Guarantees
AIM provides the same rediscoverability guarantees as

IMf, which can be proven irrespective of the utilised fall-
through methods [2, Section 6.2.4]. All models produced
by AIM are guaranteed to be sound due to the use of
process trees [2]. Additionally, we sketch a proof for the
worst case time complexity of AIM.

Each recursion step of AIM either detects a cut that
reduces the alphabet size, or results in a τ -skip, or τ -loop.
Due to SplitLogAIM there can be no consecutive recursion
steps, of τ skips or τ -loops. Therefore, the amount of
recursion steps of AIM is in O(|Σ|).

The execution of BaseCaseAIM only contains the cal-
culation of Q×, Qa and Q	, which can be done in
O(||L||). The log splitting SplitLogAIM can also be done
in O(||L||), while the cut detection FindCutIMb is of
complexity O(|Σ|2) [2]. Our activity filtering is done in
O(||L||) and the relation estimates between all activities
are determined in O(|Σ|2), for every potential filter pa-
rameter. Additionally, clustering is applied for each filter
parameter with a time complexity of O(g · r · |Σ|2) where
g is the number of iterations required for a single run
of k-means and r the number of repetitions per recursion
step [11]. A single recursion step is therefore of complexity
O(|F | ·(||L||+g ·r · |Σ|2)). It follows a total worst case time
complexity of O(|Σ| · |F | · (||L|| + g · r · |Σ|2)). Note that
|F |, r and g are all chosen constant which have the values
of ten, twelve and 300 in our implementation respectively.

IV. Evaluation
In this section we evaluate AIM threefold. First, we

observe the influence of various event log properties, on
the performance of our cut detection strategy, with differ-
ent quality estimates. Then, we compare the integrated
parameter suggestion of AIM with a hyper-parameter
optimisation on the same set of parameters. Finally, we
compare the performance of AIM with the performances
of existing discovery algorithms.

A. Structure Detection
We use 480 synthesised event logs from the Process

Discovery Contest 2022 (PDC) [12] to systematically

observe any structural weakness of AIM. That is, we
evaluate the quality of the clustering based cut detection
in isolation by setting F = {0.0}. The PDC event logs are
all generated from a configurable model, which makes it
possible to evaluate the influence of each model property
individually. There are long term dependencies (DP),
optional choice constructs (OR), routing constructs (RC),
optional activities (OA) and duplicated activities (DA),
which are either included (-Y) or not (-N). The model can
have loops with single entry points (LC-S), multiple entry
points (LC-M), or no loops at all (LP-N). Each possible
combination of these configurations results in a ground
truth model, which is used to generate a training event
log, with a thousand random walks through the model.
These event logs can either be noise free (NL-N), or have
events removed (NL-R), moved (NL-M) or added (NL-
A). A combination of events being removed, moved and
added is possible as well (NL-Y). The fitness of a thousand
trace pairs is measured on the original and the discovered
model. The accuracy is defined as the percentage of trace
pairs, for which the same trace fits both models better.
Figure 1 shows the resulting accuracy distributions for
each property configuration.

Fig. 1. AIM PDC 2022 classification accuracy with F = {0.0}

AIM achieves an average accuracy of 0.86. The biggest
drop in performance is caused by including long term
dependencies in the model (DP). The second highest drop
is due to the general inclusion of loops (LC), with only a
small difference between simple and complex loops. The
remaining properties cause less significant differences in
the accuracy distribution. We believe the performance
loss for long term dependencies to be caused by the
information loss induced during the event log splitting:
any potential dependencies between events that end up in
different sub-logs are not taken into account in subsequent
recursion steps. The performance drop under the inclusion
of loop constructs of any complexity is an indication
that our loop detection strategy has some room for
improvement left. Our results clearly showcase, that AIM
successfully accounts for a vast range of model and event
log properties, with the discussed limitations.

B. Parameter Choice
We use the 18 real-life event logs from the Business

Process Intelligence Challenge and other public bench-

marks [13]–[21], to quantitatively evaluate the integrated
parameter suggestion. First, AIM is applied with F =
{ x
10 | x ∈ N ∧ x < 10}. We additionally use AIM with

each of the filter parameter values f ∈ F individually,
which represents a hyper-parameter optimisation. We
subsequently measure alignment based fitness [22] and
precision [23], as well as the model size [24].

Fig. 2. Hyper-Parameter optimisation of AIM

AIM with the integrated parameter suggestion, on
average, achieves a fitness of 0.78, a precision of 0.88 and
a model size of 51 nodes across the 18 event logs. The
results for all investigated parameter spaces and event
logs can be seen in Figure 2. The average fitness of the
parameter suggestion is optimal across all investigated
parameter spaces, with the hyper-parameter optimisation
yielding an average value of 0.77 for F = {0.2}. For the
same parameter space F = {0.2} the precision improves
in comparison to the integrated parameter suggestion,
with an average value of 0.93. This however comes at
the cost of larger models with 70 nodes on average. The
Hyper-parameter optimisations of the model size leads
to the parameter space of F = {0.9}. On average, it
produces smaller models with only 13 nodes and a high
precision of 0.92, but causes a worse fitness of 0.53 in
return. Overall, the results showcase that the integrated
parameter suggestion is able to dynamically balance the
quality metrics of fitness, precision and model size, without
requiring a time intensive hyper-parameter optimisation.
Furthermore, searching all parameter took five days, while
AIMs integrated parameter suggestion only run took half
an hour in contrast.

C. Overall Performance

We use the public benchmark event logs from [13]–[21]
to compare AIM with the existing discovery algorithms
Inductive Miner infrequent (IMf) [7], Inductive Miner
incomplete (IMc) [10] and Split Miner (SM) [6]. Unfor-
tunately, we could not include the Probabilistic Inductive
Miner (PIM) [5] in this comparison, as its core concepts
are not published and its implementation is not publicly
available for research purposes. We apply IMf, IMc and SM
with their default parameters and AIM with the integrated
parameter suggestion. All experiments are executed on
the same hardware, providing an Intel Core I5-8625-
U processor with exclusive access to 16GB of working
memory. We choose time limits of four hours for the
discovery of a single model and twelve hours for the
calculation of each metric. We again measure alignment
based fitness [22] and precision [23] in addition to model
size [24].

During the model discovery we observed eight discovery
timeouts for IMc. We believe the reason for these timeouts
to be the exponential time complexity of IMc. All other
algorithms discovered models in the given time limit.

Three models of SM could not be evaluated, because
they were not sound. The remaining algorithms produce
only sound models, because they all represent models with
process trees.

The model evaluation caused six timeouts for IMc. The
high amount of τ structures in the discovered models is a
potential reason for the excessive amount of time needed
for the model evaluation. SM caused three timeouts during
the model evaluation. We assume the reason for these
evaluation timeouts to be the size of the discovered models.
IMf caused a similar problem, with evaluation timeouts
on the six largest models. AIM was the only algorithm
to discover sound models for all logs, that could also be
evaluated in the given time limit.

Table I shows all the results. We observe the number of
pareto-optimal models for the measured quality metrics.
AIM achieves the best results (17), followed by SM (12),
then IMf (6) and lastly IMc (2). The majority of models
with the highest precision per event log are found by
AIM (11/18) and SM (6/18). IMf only produces the most
precise model for the event log from [15], while IMc never
finds the most precise model. The models with the highest
fitness are found by SM (8/18), AIM (7/18) and IMc
(3/18). The smallest models are almost exclusively found
by AIM (16/18), with a clear difference to the other
algorithms. This is especially apparent for the event logs
from BPIC 2015 [16], which have more than 350 unique
activities. Overall, AIM trades a little fitness for smaller
and more precise models in comparison to SM, IMf and
IMc. Furthermore, it provides the unique ability to handle
event logs with a high number of unique activities and
removes the need for a user to choose a parameter.

As limitations, we note that some of the event logs from

TABLE I
AIM, SM, IMf & IMc on Benchmark Event Logs

Event Log Algorithm Precision Fitness Size

BPIC 20121 [13] AIM 0.9405 0.7044 56
IMf 0.5126 0.8004 59
SM 0.9604 0.8976 47
IMc nan nan nan

BPIC 20131 [14] AIM 0.9758 0.8293 26
IMf 0.9717 0.9122 32
SM 0.7771 0.9669 39
IMc nan nan nan

BPIC 20132 [15] AIM 0.9634 0.9254 17
IMf 0.9764 0.7591 18
SM 0.9033 0.9386 18
IMc 0.9371 0.8206 35

BPIC 20151 [16] AIM 0.9501 0.5627 88
IMf nan nan 588
SM nan nan 1078
IMc nan nan nan

BPIC 20152 [16] AIM 0.7418 0.5620 98
IMf nan nan 531
SM nan nan 1058
IMc nan nan nan

BPIC 20153 [16] AIM 0.9359 0.6282 96
IMf nan nan 758
SM nan nan 926
IMc nan nan nan

BPIC 20154 [16] AIM 0.9643 0.5999 173
IMf nan nan 526
SM nan nan 1072
IMc nan nan nan

BPIC 20155 [16] AIM 0.7490 0.6095 116
IMf nan nan 614
SM nan nan 855
IMc nan nan nan

BPIC 20171 [17] AIM 0.9786 0.7724 38
IMf 0.7623 0.8847 45
SM 0.8742 0.9018 62
IMc nan nan nan

BPIC 20191 [18] AIM 0.8881 0.7608 9
IMf nan nan 94
SM nan nan 103
IMc nan nan nan

BPIC 20201 [19] AIM 0.7682 0.8930 34
IMf 0.3584 0.9165 61
SM 0.7953 0.9692 56
IMc nan nan nan

BPIC 20202 [19] AIM 0.9999 0.9160 13
IMf 0.2709 0.9529 33
SM 0.9097 0.9960 29
IMc nan nan nan

BPIC 20203 [19] AIM 0.9577 0.8753 26
IMf 0.1340 0.8749 83
SM 0.8676 0.9818 64
IMc nan nan nan

BPIC 20204 [19] AIM 0.7173 0.7988 40
IMf 0.1835 0.8323 108
SM 0.7927 0.9664 111
IMc nan nan nan

BPIC 20205 [19] AIM 0.6084 0.9252 25
IMf 0.2605 0.9335 36
SM 0.8863 0.9939 32
IMc 0.1919 0.9995 60

SEPSIS [21] AIM 1.0 0.8223 14
IMf 0.6578 0.9726 26
SM 0.9468 0.9940 22
IMc 0.8042 0.9997 42

RTFMP [20] AIM 0.7707 0.9160 30
IMf 0.8024 0.9028 31
SM 0.9955 0.7899 33
IMc nan nan nan

[13]–[21] were part of the hyper-parameter optimisation,
used to select default parameters for SM in [6], which may
have given SM a slight advantage. All IM implementations
inherently compress event logs into the representational
bias of the available operators. The evaluations of AIM,
IMf and IMc therefore measure to some extent the
adherence of the event logs to these operators, which might
limit generalisability. The usage of k-means introduces
non deterministic behaviour. We did however not observe
any differences in the discovered models for three different
random seeds in our experiments.

V. Related Work
Many process discovery techniques have been proposed

in literature; for a survey on recent process discovery
techniques, please refer to [24].

Techniques that do not guarantee sound models include
the Structured Heuristic Miner 6.0, which discovers a
model based on a heuristic approach without any restric-
tion to the models soundness [25]. The algorithm adjusts
the resulting model in an attempt to make it sound, which
is not guaranteed to succeed. The method provides two
noise parameters.

The Split Miner enriches the directly follows graph
of an event log with gateways that describe the control
flow relation between activities [6]. Two parameters are
provided that allow the user to decide how much filtering
should be employed and to specify how much parallelism
is contained in the event log. Default parameters are pro-
vided by a hyper-parameter optimisation. The approach
does not guarantee the resulting models to be sound, but
at least deadlock free.

Some process discovery algorithms utilize concepts of
integer linear programming [26] and region theory [27].
Others focus specifically on special structures, such as
duplicated activities [28], routing constructs [29] and loops
[30]. However, none of these techniques guarantee to return
a sound model.

Techniques that guarantee sound models include the
Evolutionary Tree Miner, which is a genetic algorithm that
evolves a population of process models based on the qual-
ity metrics fitness, precision, generalization and simplicity
[31]. It offers the possibility to specify a level of importance
for each of these quality metrics. A termination condition
allows to instruct the miner to keep searching for a model
that satisfies this condition, however this process can take
an prohibitively long time on real-life logs.

The Inductive Miner Infrequent (IMf) is an imple-
mentation of the Inductive Miner framework (IM) that
handles noise with conditional filtering [7]. When no cut
can be found, parameterized filtering is applied and the
cut detection is repeated. Fall-through methods are only
used if the cut detection after the filtering fails as well.
AIM replaces all fall-through methods with the clustering
based cut detection and automatically determines the
filter parameter value.

The Inductive Miner Incomplete (IMc) also adheres to
the IM framework and handles incomplete event logs [10]
with the usage of probabilistic cut quality estimates. It
searches for the cut with the highest quality estimate
through optimization techniques, but nevertheless suffers
from the exponential number of potential cuts. Fall-
through methods are only used if no cut can be found
above a given threshold, which needs to be specified as an
input parameter. AIM reuses the set of relevant activity
pairs M(⊕,Σ1,Σ2), as described in Section II-C. AIM
however chooses different quality estimates to address a
range of event log properties in polynomial runtime.

The Probabilistic Inductive Miner (PIM) adapts the
cut detection from IMc by using heuristic cut quality
estimates [5] to address the cut search, though this remains
exponential in worst case. PIM also introduces a new
activity filtering method that still requires a parameter
input. Unfortunately, no implementation of the approach
has been made public for research purposes. AIM uses
different cut quality estimates, which include measures
for τ -loops and τ -skips, and guarantees a polynomial
worst case runtime. AIM additionally provides a different
filtering method with parameter suggestions.

Existing applications of clustering techniques in process
mining focus on detecting trace clusters to subsequently
discover multiple models [32]. Activity clustering is mostly
used to prepare a decomposed model discovery [33]. To
the best of our knowledge, none of the state-of-the-art
discovery algorithms utilizes clustering to select model
structures.

VI. Conclusion
In this paper we introduced the Approximate Inductive

Miner (AIM), which utilizes clustering techniques to
investigate an exponentially growing state space in poly-
nomial runtime. We additionally proposed an integrated
parameter suggestion, based on novel quality estimates,
under consideration of the information loss induced by
filtering the event log. Our evaluation showed that AIM
successfully balances fitness, precision and model size in a
given parameter space, without requiring human guidance
or a time intensive hyper-parameter optimisation. Our cut
quality estimates consistently handled challenging event
log properties, such as infrequent or incomplete behaviour.
We compared AIM to existing discovery algorithms and
observed its unique ability to handle more than 350
unique activities per event log, without suffering from any
comparative performance drawbacks.

References
[1] T. Murata, “Petri nets: Properties, analysis and applications,”

Proc. IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[2] S. J. J. Leemans, “Robust process mining with guarantees,” in

Business Process Management (BPM 2018), vol. 2196 of CEUR
Workshop Proceedings, pp. 46–50, CEUR-WS.org, 2018.

[3] M. F. Sani, S. J. van Zelst, and W. M. P. van der Aalst, “Re-
pairing outlier behaviour in event logs,” in Business Information
Systems, vol. 320 of Lecture Notes of Business Information
Systems, 2018.

[4] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Discovering block-structured process models from event logs -
A constructive approach,” in Application and Theory of Petri
Nets and Concurrency, vol. 7927 of Lecture Notes in Computer
Science, pp. 311–329, 2013.

[5] D. Brons, R. Scheepens, and D. Fahland, “Striking a new bal-
ance in accuracy and simplicity with the probabilistic inductive
miner,” in 3rd International Conference on Process Mining,
ICPM, 2021.

[6] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split
miner: Discovering accurate and simple business process models
from event logs,” in 2017 IEEE International Conference on
Data Mining, ICDM 2017, pp. 1–10, IEEE Computer Society,
2017.

[7] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Discovering block-structured process models from event logs
containing infrequent behaviour,” in Business Process Manage-
ment Workshops - BPM, vol. 171 of Lecture Notes in Business
Information Processing, 2013.

[8] P. Linz, An introduction to formal languages and automata, 4th
Edition. Jones and Bartlett Publishers, 2006.

[9] S. L. Bloom and Z. Ésik, “Free shuffle algebras in language
varieties,” Theor. Comput. Sci., vol. 163, no. 1&2, pp. 55–98,
1996.

[10] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Discovering block-structured process models from incomplete
event logs,” in Application and Theory of Petri Nets and
Concurrency, Lecture Notes in Computer Science, 2014.

[11] P. Fränti and S. Sieranoja, “K-means properties on six clus-
tering benchmark datasets,” Appl. Intell., vol. 48, no. 12,
pp. 4743–4759, 2018.

[12] E. Verbeek, “Process discovery contest 2022,” 2022.
[13] B. van Dongen, “Bpi challenge 2012,” 2012.
[14] W. Steeman, “Bpi challenge 2013, incidents,” 2013.
[15] W. Steeman, “Bpi challenge 2013, closed problems,” 2013.
[16] B. B. van Dongen, “Bpi challenge 2015,” 2015.
[17] B. van Dongen, “Bpi challenge 2017,” 2017.
[18] B. van Dongen, “Bpi challenge 2019,” 2019.
[19] B. van Dongen, “Bpi challenge 2020,” 2020.
[20] M. M. de Leoni and F. Mannhardt, “Road traffic fine manage-

ment process,” 2015.
[21] F. Mannhardt, “Sepsis cases - event log,” 2016.
[22] B. F. van Dongen, J. Carmona, T. Chatain, and F. Taymouri,

“Aligning modeled and observed behavior: A compromise be-
tween computation complexity and quality,” 2017.

[23] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen,
and W. M. P. van der Aalst, “Measuring precision of modeled
behavior,” Inf. Syst. E Bus. Manag., vol. 13, no. 1, pp. 37–67,
2015.

[24] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of
process models from event logs: Review and benchmark,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 686–705, 2019.

[25] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
“Automated discovery of structured process models from event
logs: The discover-and-structure approach,” Data & Knowledge
Engineering, vol. 117, pp. 373–392, 2018.

[26] H. M. W. Verbeek and W. M. P. van der Aalst, “Decomposed
process mining: The ilp case,” in Business Process Manage-
ment Workshops (F. Fournier and J. Mendling, eds.), (Cham),
pp. 264–276, Springer International Publishing, 2015.

[27] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process
mining based on regions of languages,” in Business Process
Management (G. Alonso, P. Dadam, and M. Rosemann, eds.),
(Berlin, Heidelberg), pp. 375–383, Springer Berlin Heidelberg,
2007.

[28] S. K. vanden Broucke and J. De Weerdt, “Fodina: A robust and
flexible heuristic process discovery technique,” Decision Support
Systems, vol. 100, pp. 109–118, 2017. Smart Business Process
Management.

[29] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining invisible
tasks in non-free-choice constructs,” in Business Process Man-
agement (H. R. Motahari-Nezhad, J. Recker, and M. Weidlich,

eds.), (Cham), pp. 109–125, Springer International Publishing,
2015.

[30] A. Weijters, “Process mining: Extending the alpha-algorithm to
mine short loops,” 06 2004.

[31] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der
Aalst, “Quality dimensions in process discovery: The impor-
tance of fitness, precision, generalization and simplicity,” Int. J.
Cooperative Inf. Syst., vol. 23, no. 1, 2014.

[32] J. D. Weerdt, S. K. L. M. vanden Broucke, J. Vanthienen,
and B. Baesens, “Active trace clustering for improved process
discovery,” IEEE Trans. Knowl. Data Eng., vol. 25.

[33] B. F. A. Hompes, H. M. W. Verbeek, and W. M. P. van der
Aalst, “Finding suitable activity clusters for decomposed pro-
cess discovery,” in Data-Driven Process Discovery and Analysis,
vol. 237, 2014.

	Introduction
	Preliminaries
	Process Trees
	Inductive Miner
	Relation & Quality Estimates

	Approximate Inductive Miner
	Cut State Space
	Filter Parameter Adjustment
	State Space Pruning
	Implementation
	Complexity & Guarantees

	Evaluation
	Structure Detection
	Parameter Choice
	Overall Performance

	Related Work
	Conclusion
	References

