
An Approximate Inductive Miner
Jan Niklas van Detten

Celonis Labs GmbH & RWTH Aachen
Aachen, Germany

niklas.van.detten@rwth-aachen.de

Pol Schumacher
Celonis Labs GmbH
München, Germany

p.schumacher@celonis.com

Sander J. J. Leemans
RWTH Aachen

Aachen, Germany
s.leemans@bpm.rwth-aachen.de

Abstract—Process discovery algorithms extract process models
from business process event logs. Existing discovery algorithms
require upfront filtering, or specific parameter input, to produce
models with balanced quality dimensions on real-life event logs.
We propose the Approximate Inductive Miner (AIM) to fill this
gap and offer an automated way to discover sound models
in polynomial time complexity, without any pre-processing or
mandatory parameter input. AIM uses the existing Inductive
Miner framework and applies clustering techniques to recursively
identify structures in the event log. It additionally performs an
approximate parameter optimisation to dynamically suggest a
suitable parameter. We compare AIM with existing discovery
algorithms on synthetic and real-life event logs, and evaluate
the quality of the integrated parameter suggestion. We find
that AIM on its own produces sound models with low control
flow complexity and high precision, even on complex event logs.
Additionally, AIM is able to handle a vast range of event log
properties, such as infrequent and incomplete behaviour, without
requiring any human parameter input or upfront filtering.

Index Terms—process mining, process discovery, automated
discovery, parameter approximation

I. INTRODUCTION

Modern business environments produce track records of
process activities in event logs, which enable the empirical
analysis of the underlying business process. An important step
in process analysis is the discovery of a process model. Many
algorithms exist for this purpose, each producing models with
different properties on relevant quality dimensions.

Often used process model quality criteria include fitness,
precision, simplicity, soundness and rediscoverability. Fitness
describes a model’s ability to represent the behaviour con-
tained in the event log. Precision measures how well a model
excludes behaviour dissimilar to the event log. Simplicity
values a minimal control flow complexity and model size. The
soundness property guarantees a model to be deadlock free and
to not include any unreachable parts [1]. Rediscoverability is
the ability to discover a process model from an event log that
is equivalent to the original one [2].

In addition to these model-specific and log-based properties,
there are further requirements on the discovery algorithm
itself. The time and space complexity should scale well with
increasing event log size and complexity. Additionally, it
should be adaptable to different levels of noise, which can be
found in real-life event logs [3]. An ideal process discovery
algorithm should reliably produce good models on relevant
quality metrics and possess these properties.

Some existing discovery algorithms adhere to the Inductive
Miner framework (IM) introduced in [4]. IM splits an event log
by recursively searching an activity partition and an operator,
which describes the control flow relation between the resulting
partition’s parts. The combination of such an activity partition
and operator is called a cut. The IM recursion continues by
splitting the event log based on the detected cut and stops when
a base case is reached, meaning that the event log cannot be
split any further. A set of fall-through methods handles event
logs that do not perfectly fit any of the available operators
and are not a base case. These methods increasingly sacrifice
precision to represent the log with the available operators. All
implementations of IM guarantee model soundness.

Many algorithms, such as [5], [6] and [7], handle noise
with filtering methods based on parameters. The flexibility
introduced by these parameters is offset by the large range
of input values that a user must consider. This problem can
be addressed by performing a hyper-parameter optimisation at
design time. The resulting default parameters can however be
sub-optimal if an event log differs substantially from the ones
used for the optimisation. A user might still need to try a set
of models with different parameter choices and evaluate them,
which can be time intensive. To the best of our knowledge, an
automated and runtime-efficient parameter suggestion, directly
integrated into the discovery process itself, is not offered yet
by any process discovery algorithms.

In this paper we introduce the Approximate Inductive Miner
(AIM), which provides such an integrated parameter sugges-
tion. It investigates a state space for potential cuts in the event
log under consideration of the available filter parameter space.
These cuts are evaluated with heuristic quality measures,
which estimate the adherence of the event log to each cut
and the potential information loss induced by our filtering
method. Clustering techniques are subsequently used to prune
the state space and to select a cut with a filter parameter.
These techniques are integrated into the IM recursion, as a
replacement for all fall-through methods, to benefit from the
framework’s already proven guarantees.

We compare the process models produced by AIM to those
from existing discovery algorithms on 18 real-life event logs
and use 480 synthetic event logs to observe the structural
influence of the utilised clustering techniques. To evaluate the
integrated parameter suggestions, we additionally perform a
hyper-parameter optimisation for comparison.

The remainder of this paper is structured as follows. Section

II contains relevant process mining concepts and notations.
AIM itself is explained in Section III. The evaluation of AIM
is done in Section IV, while Section V provides an overview
about existing discovery algorithms. Section VI contains our
final thoughts and a summary of our findings.

II. PRELIMINARIES

An event log L = [σc1
1 , . . . , σcn

n] is a multi-set of traces σi

with multiplicities ci. A trace σ consists of ordered activities.
For a trace that contains exactly the activities a and b, in this
order, we write ⟨a, b⟩, while an empty trace is represented by
ϵ. The set of unique activities in the event log is called the
alphabet Σ. The start activities START(L) = {a ∈ Σ|∃σ ∈ L :
σ = ⟨a, . . .⟩} and end activities END(L) = {a ∈ Σ|∃σ ∈ L :
σ = ⟨. . . , a⟩} are the sets of unique activities that appear in
the first and last position of a trace in the event log. We write
|a| for the total occurrence count of an activity a across all
traces of the event log. |L| is the number of traces in L, while
||L|| describes the sum of all activity occurrence counts.

A follows-graph of the event log contains a node for each
activity in the alphabet. The directly follows-graph (DFG) of
an event log has an edge a ↠ b if ∃σ ∈ L : σ = ⟨. . . , a, b, . . .⟩.
The strictly indirectly follows-graph (IFG) contains an edge
a ↠∗ b if there is a trace σ ∈ L in which b does not directly
follow a and σ = ⟨. . . , a, . . . , b, . . .⟩. The eventually follows-
graph (EFG) has an edge a ↠+ b if a ↠ b ∨ a ↠∗ b. The
edge frequencies |a ↠ b|, |a ↠+ b| and |a ↠∗ b| indicate
how often b directly, eventually or indirectly follows a.

A. Process Trees

Process models can be represented by process trees for
alphabets Σ with τ ̸∈ Σ. They consist of leaf nodes with labels
in Σ∪{τ} and inner nodes with labels in {→,×, ||,⟲}. Inner
nodes are nodes with children in the tree structure, while leaf
nodes are those without. Without loss of generality we only
consider binary process trees, which means that each inner
node has exactly two children [2]. Each process tree t can be
translated into L(t), the language of traces it allows.

A leaf with an activity label a ∈ Σ represents the execution
of this activity, while a τ represents the empty trace. Therefore
L(τ) = {ϵ} and L(a) = {⟨a⟩}. The label of an inner
node in the process tree describes by which operator its
children are related. We define the resulting languages with
the notation from [8] and [9]. The exclusive choice operator
× allows a trace of only one of its children to be used with
L(×(t1, t2)) = L(t1) | L(t2). The sequence operator →
concatenates a trace from its first and second children with
L(→ (t1, t2)) = L(t1) · L(t2). The parallel operator || allows
any pair of traces from its children to be interleaved, as long as
their partial order is kept, with L(|| (t1, t2)) = L(t1)�L(t2).
The loop operator ⟲ allows the repetition of traces from its
first children after using a trace from the second one with
L(⟲ (t1, t2)) = L(t1)(L(t2)L(t1))∗. The first child of a loop
is called the body part and the second child the redo part.

Exclusive choice and loop nodes with τ as one of their
children nodes create special structures. Exclusive choice

nodes with one τ and one non-τ as children are called τ skips,
and are used to describe optional behaviour with ×(τ, t) or
×(t, τ) where t ̸= τ . A loop node with a non-τ body part
and a τ redo part is called a τ loop, which allows arbitrary
repetitions of the body part with ⟲ (t, τ) where t ̸= τ .

B. Inductive Miner

The Inductive Miner framework (IM) for binary cuts is
shown in Algorithm 1. It recursively constructs a process tree
out of an event log. In each recursion step a cut is detected
and the event log is split until a base case is reached. If no cut
can be found and no base case applies, a fall-through method
is used. In the following we recall an IM implementation with
the operator set {→,×, ||,⟲} from [4], which we call IMb.

Algorithm 1 IM framework from [4]
function IM(L)

bc← BASECASE(L)
if bc ̸= ∅ then

return bc
end if
⊕,Σ1,Σ2 ←FINDCUT(L)
if ⊕ ≠ ∅ then

L1, L2 ←SPLITLOG(L,⊕,Σ1,Σ2)
return ⊕(IM(L1),IM(L2))

else
return FALLTHROUGH(L)

end if
end function

If the event log is not a recursion base case, a cut needs to
be detected with FINDCUTIMb. A cut consists of a partition of
the alphabet into Σ1,Σ2 and an operator ⊕ ∈ {→,×, ||,⟲}.
Each operator leads to a unique set of DFG properties if the
event log adheres to it, which is called the operators footprint.
The DFG of the event log is used to check if any alphabet
partition fits an operator’s footprint, which is not guaranteed.

When a cut can be found, the event log is split with
SPLITLOGIMb into the sub-logs L1 and L2. For an operator
⊕ ∈ {||,× →} each of the activities in Σ is assigned to
sub-log L1 or L2 if it is in Σ1 or Σ2. For the operator ⟲
additional trace splitting is necessary. Each trace ⟨. . . a, b . . .⟩
with a ∈ Σ1 ∧ b ∈ Σ2 or a ∈ Σ2 ∧ b ∈ Σ1 is split between a
and b. Traces are then divided over L1 and L2, depending on
which part of the partition includes each of their activities.

The recursion continues on the resulting sub-logs until a
base case is found with BASECASEIMb. A base case is reached
when the event log is empty, or when its alphabet only contains
a single activity. In this case it is not possible to split the event
log, or its alphabet, any further. An empty event log results
in a τ , while an event log that only contains the trace ⟨a⟩
produces an activity leaf a. If the event log contains a trace
with at least one repetition of the remaining activity a, such
as ⟨a, a⟩, a self loop ⟲ (a, τ) is returned as a base case.

In case no cut can be found, for an event log that is not
a base case, a set of fall-through methods is applied with

FALLTHROUGHIMb. These fall-through methods are used to
fit the event log into the representational bias of the available
operators. They also account for τ skips and τ loops, but
become increasingly less precise. The last fall-through method
is called a flower model, which allows for the arbitrary
execution and repetition of the remaining activities.

C. Relation & Quality Estimates

Several alternative IM implementations have been defined
[5], [10] that, if no cut can be found, attempt to find a most
likely cut, based on relation estimates. The likelihood of a
cut is established by these techniques by taking the average
estimated likelihood of pairs of activities that get separated by
the cut’s partition. That is, for the operators {→,×, ||}, the
set M of these pairs is

M(⊕,Σ1,Σ2) = {(⊕, a, b) | a ∈ Σ1 ∧ b ∈ Σ2}

For the loop operator, one needs to distinguish two groups
of separated activity pairs: those that have a direct connection,
and those that do not [10]. The direct connection can be
estimated through the first and last activities of Σ2(S2, E2)
and the start and end activities contained in Σ1(S1, E1):

M(⟲,Σ1,Σ2) = {(⟲s, a, b) | a ∈ E1 ∧ b ∈ S2}

∪{(⟲s, a, b) | a ∈ E2 ∧ b ∈ S1}

∪{(⟲i, a, b) | a ∈ Σ1 \ (S1 ∪ E2) ∧ b ∈ Σ2 \ (S2 ∪ E2)}

III. APPROXIMATE INDUCTIVE MINER

In this section we introduce the Approximate Inductive
Miner (AIM). AIM uses a recursive strategy to discover a
process tree based on a given event log and filter parameter
space. In each recursion step, the best cut and filter parameter
is sought. To select such a cut, AIM first determines the state
space of potential cuts across the available parameter space
and calculates a quality estimate for each of them. Second,
AIM adjusts these cut quality estimates to account for the
information loss induced during filtering. Third, AIM prunes
this state space efficiently with the application of clustering
techniques to select a cut. Finally, the full AIM algorithm is
specified and its guarantees and properties are discussed.

A. Cut State Space

First, we describe the state space SL of cuts that we consider
in AIM, for a given event log L, filter parameter space F ⊆
[0, 1], and a cut quality estimate function Q(L,⊕, a, b). The
cuts come in two types: cuts with non-empty partition parts,
and τ structure cuts, with one empty partition part. We assume
an event log filtering function FILTER(L, f) to be available
with f ∈ [0, 1]. Then, the best cut (⊕,Σ1,Σ2) from SL is

argmax
(⊕,Σ1,Σ2)∈SL

max
f∈F

Q(FILTER(L, f),⊕,Σ1,Σ2) (1)

We now define the cuts in SL for each operator and
their corresponding cut quality estimates. A sequence cut
(→,Σ1,Σ2) denotes that the activities in Σ1 are executed

exclusively before the activities in Σ2. Let Σf be the alphabet
of FILTER(L, f). Then, the potential sequence cuts in SL are

{(→,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊊ Σf ∧ Σ1 ̸= ∅}

The cut quality estimate Q(L,→,Σ1,Σ2) is defined as the
mean of the relation estimate multi-set with

Q(L,→,Σ1,Σ2) = µ(→,a,b)∈M(→,Σ1,Σ2)R(L,→, a, b)

R(L,→, a, b) =
|a ↠+ b|

|a ↠+ b|+ |b ↠+ a|+ 1

An exclusive choice cut (×,Σ1,Σ2) denotes that in each
trace only activities from one partition part are executed. Let
a be an arbitrary activity appearing in the most traces of L
with a = argmaxa∈Σ |[σ ∈ L | σ = ⟨. . . , a, . . .⟩]|. Then, the
potential, non-symmetrical exclusive choice cuts in SL are

{(×,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 ̸= ∅}

Notice that a prevents symmetrical cuts. The cut quality esti-
mate Q(L,×,Σ1,Σ2) is defined analogue to Q(L,→,Σ1,Σ2),
based on R(L,×, a, b) with

Q(L,×,Σ1,Σ2) = µ(×,a,b)∈M(×,Σ1,Σ2)R(L,×, a, b)

R(L,×, a, b) = 1

|a ↠+ b|+ |b ↠+ a|+ 1

A concurrent cut (||,Σ1,Σ2) describes the interleaved con-
current execution of the activities in the different parts of the
alphabet partition. The potential, non-symmetrical concurrent
cuts in SL, analogue to the exclusive choice cuts, are

{(||,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 ̸= ∅}

The cut quality estimate for concurrent cuts Q(L, ||,Σ1,Σ2)
applies a bias l which measures the average excess trace length
in comparison to the alphabet size with

Q(L, ||,Σ1,Σ2) = µ(||,a,b)∈M(||,Σ1,Σ2)R(L, ||, a, b) · (1− l)

R(L, ||, a, b) = 2 · |a ↠ b| · |b ↠ a|
|a ↠ b|2 + |b ↠ a|2 + 1

l = min(1,max(µ([|σ| | σ ∈ L])− |Σ|, 0) · |Σ|−1)

A loop cut (⟲,Σ1,Σ2) denotes the optional repetition of the
activities in Σ1, as long as the activities in Σ2 are executed
before. The set of potential loop cuts in SL is

{(⟲,Σ1,Σf \ Σ1) | f ∈ F ∧ Σ1 ⊂ Σf ∧ a /∈ Σ1 ∧ Σ1 ̸= ∅}

The quality estimate for loop cuts Q(L,⟲,Σ1,Σ2) requires
the assumed start and end activities of the redo part of
the loop. For a given loop cut (⟲,Σ1,Σ2) we assume an
activity a ∈ Σ2 to be part of the start activities of Σ2(S2)
if ARGMAXb∈Σf

(R(L,⟲s, b, a)) ∈ END(L) ∩ Σ1. Similarly, a
is part of the end activities E2 if ARGMAXb∈Σ(R(L,⟲s, a, b))
∈ START(L) ∩ Σ1. The cut quality estimate is then

Q(L,⟲,Σ1,Σ2) = µ(⊕,a,b)∈M(⟲,Σ1,Σ2)R(L,⊕, a, b) · l

R(L,⟲s, a, b) =
2 · |a ↠ b| · |b ↠+ a|
|a ↠ b|2 + |b ↠+ a|2 + 1

R(L,⟲i, a, b) =
2 · |a ↠∗ b| · |b ↠∗ a|
|a ↠∗ b|2 + |b ↠∗ a|2 + 1

A τ skip cut (×,Σ, ∅) denotes the optional execution of the
activities in Σ. We define the quality estimate for the τ skip
cuts {(×,Σf , ∅) | f ∈ F} in SL as

Q(L,×,Σ, ∅) = |{σ ∈ L | σ = ϵ}| · |L|−1

A τ -loop cut (⟲,Σf , ∅) denotes the optional repetition of
the activities in Σ. For the τ -loop cuts {(⟲,Σf , ∅) | f ∈ F}
in SL we define the quality estimate

Q(L,⟲,Σ, ∅) = µ(M(R,L,⟲,Σ,Σ)) · l

B. Filter Parameter Adjustment

Picking the cut with the highest quality estimate in our
state space can lead to excessive filtering. Removing activities
from the event log not only increases the chance to find a
near-perfect cut, but also induces information loss. To prevent
excessive filtering we therefore adjust the quality estimate
for each cut in SL with the factor Nf . The adjusted quality
estimate not only takes into account how good a cut fits the
potentially filtered event log, but also expresses how much
relative information loss was induced by the filtering. The best
cut in SL, in extension to equation (1), is therefore

argmax
(⊕,Σ1,Σ2)∈SL

max
f∈F

Q(FILTER(L, f),⊕,Σ1,Σ2) ·Nf (2)

The filtering method used in our implementation removes
activities that appear in relatively few traces, compared to
the activity contained in the maximum number of traces. Let
COUNT(a) be the number of traces that contain the activity a
with COUNT(a) = |[σ ∈ L | σ = ⟨. . . , a, . . .⟩]|. An activity is
subsequently removed from the event log by FILTERAIM (L, f)
if COUNT(a) < argmaxb∈Σ COUNT(b) · f . To capture the
information loss induced by FILTERAIM (L, f), we measure
the relation between the average trace length in the event
log, before and after filtering. Nf is therefore ||Lf || · ||L||−1.
Note that the choice of the available filter parameter space
can be used to include knowledge about the event log into the
discovery process, or to enforce requirements regarding the
minimal or maximal amount of filtering.

C. State Space Pruning

The cut with the highest adjusted quality estimate in SL

provides a conceptual trade off. This cut can however not be
determined effectively. Our cut state space grows exponentially
in the size of Σ, irrespective of the utilized parameter space
F . The exhaustive evaluation of all cuts in SL is therefore not
feasible and significant pruning of SL is required instead.

The quality estimate for a cut (⊕,Σ1,Σ2) with non-empty
partition parts depends on the average value of R(L,⊕, a, b),
for the activity pairs (a, b) in M(⊕,Σ1,Σ2). These activity
pairs always contain one activity from each part of the alphabet
partition. Cuts with high quality estimates in SL therefore
correspond to high values of R(L,⊕, a, b) for a ∈ Σ1 ∧ b ∈
Σ2 or b ∈ Σ1 ∧ a ∈ Σ2. We subsequently approximate
such cuts, by using R(L,⊕, a, b) as a distance measure for

clustering. We apply k-means, with a fixed cluster count of
two, for each ⊕ ∈ {→,×, ||} and f ∈ F . The clusters
detected on R(Lf ,⊕, a, b) correspond to the alphabet partition
Σ⊕,f,1,Σ⊕,f,2. A high relation estimate between two activities
increases the probability of them ending up in different parts
of Σ⊕,f,1,Σ⊕,f,2. Note that R(Lf ,⊕, a, b) potentially contains
arbitrary many clusters for ⊕ ∈ {×, ||,→}. Clustering fails if
there are less then two, which can only happen if all entries in
R(Lf ,⊕, a, b) are identical. In this case, all activities have the
same relation estimate to each other and an arbitrary alphabet
partition can be used. We subsequently reduce our search
space SL by excluding all cuts with the symmetric operators
⊕ ∈ {|| ×} and non-empty partition parts, except for the ones
in {(⊕,Σ⊕,f,1,Σ⊕,f,2) | f ∈ F ∧ ⊕ ∈ {||,×}}. For the non-
symmetric sequence operator we need to consider the ordering
of the partition and therefore exclude all sequence cuts, except
{(→,Σ→,f,1,Σ→,f,2), (→,Σ→,f,2,Σ→,f,1) | f ∈ F}.

The quality estimate for a loop cut (⟲,Σ1,Σ2) depends
on the assumed start and end activities for each part of the
alphabet partition (S1, E1, S2, E2), and the relation estimates
R(L,⟲i, a, b) and R(L,⟲s, a, b). The clustering based prun-
ing is therefore not applicable here and a different strategy is
needed to detect high quality loop cuts. We attempt to find
such a cut by first determining the start and end activities of
each partition part, effectively establishing the borders between
them. Afterwards, the remaining activities are assigned to Σ1

and Σ2, based on their relation to the already determined start
and end activities. This process is done for all f ∈ F .

We start by sorting the activities in START(Lf) ∪ END(Lf)
by their occurrence count in descending order. We subse-
quently assign each activity a in this ordered set to Σ⟲,f,1.
If a ∈ START(Lf) holds, we additionally assign a to S1 and
the activity b = ARGMAXb∈Σf

(R(Lf ,⟲s, b, a)) to Σ⟲,f,2 and
E2. Similarly, if a ∈ END(Lf) holds, we assign a to E1

and the activity b = ARGMAXb∈Σf
(R(Lf ,⟲s, a, b)) to Σ⟲,f,2

and S2. All activities that remain unassigned after this first
assignment process are assigned to the same part of the loop,
as the activity that they are the most connected with, according
to R(LF ,⟲s, a, b). We subsequently reduce SL by removing
all loop cuts with non-empty partition parts except those in
{(⟲,Σ⟲,f,1,Σ⟲,f,2) | f ∈ F}.

Our pruned search space is significantly smaller than the
original one and contains exactly seven cuts for each parameter
value f ∈ F . There is one cut with non-empty partition parts
for each of the available operators, with an additional cut for
the non-symmetric sequence operator. Additionally, the τ skip
cut and the τ loop cut remain. This pruned state space only
grows linear in the size of the selected parameter space |F |
and not exponential in the size of the alphabet |Σ|.

D. Implementation

We integrate our approaches into IM with the follow-
ing implementation. It uses BASECASEAIM , FINDCUTIMb,
FALLTHROUGHAIM and SPLITLOGIMb, in accordance with
Algorithm 1. FALLTHROUGHAIM performs our state space
pruning to find a cut and to suggest the corresponding filter

parameter. As shown in Algorithm 2, this requires a new log
splitting method SPLITLOGAIM . We choose the parameter
space of discrete 0.1 steps with F = { x

10 | x ∈ N ∧ x < 10}.

Algorithm 2 AIM Fallthrough
function FALLTHROUGHAIM (L)
⊕,Σ1,Σ2, f ←FINDCUTAIM (L)
L1, L2 ←SPLITLOGAIM (Lf ,⊕,Σ1,Σ2)
return ⊕(IM(L1),IM(L2))

end function

Notice that the high-level method SPLITLOGIMb used
in the IM framework is not changed. The lower-level
function SPLITLOGAIM described here is only used in
FALLTHROUGHAIM from Algorithm 2. SPLITLOGAIM ex-
tends SPLITLOGIMb with cuts that do not fit the potentially
filtered event log perfectly. It additionally covers τ loops and τ
skips. We remove all empty traces before applying the splitting
from IMb. This way we avoid an undesirable accumulation
of empty traces across multiple recursion steps with such
cuts. For τ loops we additionally split all traces ⟨. . . , a, b, . . .⟩
between a and b if a ∈ END(Lf) ∧ b ∈ START(Lf).

BASECASEAIM returns the base case τ if the event log
is empty. If the event log contains more then one unique
activity, no base case applies. If the event log contains only
one unique activity a, BASECASEAIM returns either ×(a, τ),
a or ⟲ (a, τ), depending on the tightest structure that fits the
most traces. We define Q×(L) = |[σ ∈ L | σ = ϵ]|, Qa(L) =
|[σ ∈ L | σ = ⟨a⟩]| and Q⟲(L) = |[σ ∈ L | σ ̸= ⟨a⟩∧σ ̸= ϵ]|.
×(a, τ), a and ⟲ (a, τ) are chosen depending on the maximum
value of Q×(L), Q⟲(L) and Qa(L). In case of equality we
use the default base case order a, ×(a, τ), ⟲ (a, τ).

E. Complexity & Guarantees

AIM provides the same rediscoverability guarantees as IMf,
which can be proven irrespective of the utilised fall-through
methods [2, Section 6.2.4]. All models produced by AIM
are guaranteed to be sound due to the use of process trees
[2]. Additionally, we sketch a proof for the worst case time
complexity of AIM.

Each recursion step of AIM either detects a cut that reduces
the alphabet size, or results in a τ -skip, or τ -loop. Due to
SPLITLOGAIM there can be no consecutive recursion steps,
of τ skips or τ -loops. Therefore, the amount of recursion steps
of AIM is in O(|Σ|).

The execution of BASECASEAIM only contains the calcu-
lation of Q×, Qa and Q⟲, which can be done in O(||L||).
The log splitting SPLITLOGAIM can also be done in O(||L||),
while the cut detection FINDCUTIMb is of complexity O(|Σ|2)
[2]. Our activity filtering is done in O(||L||) and the relation
estimates between all activities are determined in O(|Σ|2),
for every potential filter parameter. Additionally, clustering is
applied for each filter parameter with a time complexity of
O(g · r · |Σ|2) where g is the number of iterations required
for a single run of k-means and r the number of repetitions
per recursion step [11]. A single recursion step is therefore of

complexity O(|F | ·(||L||+g ·r · |Σ|2)). It follows a total worst
case time complexity of O(|Σ| · |F | · (||L||+g ·r · |Σ|2)). Note
that |F |, r and g are all chosen constant which have the values
of ten, twelve and 300 in our implementation respectively.

IV. EVALUATION

In this section we evaluate AIM threefold. First, we observe
the influence of various event log properties, on the perfor-
mance of our cut detection strategy, with different quality es-
timates. Then, we compare the integrated parameter suggestion
of AIM with a hyper-parameter optimisation on the same set
of parameters. Finally, we compare the performance of AIM
with the performances of existing discovery algorithms.

A. Structure Detection

We use 480 synthesised event logs from the Process Dis-
covery Contest 2022 (PDC) [12] to systematically observe
any structural weakness of AIM. That is, we evaluate the
quality of the clustering based cut detection in isolation by
setting F = {0.0}. The PDC event logs are all generated
from a configurable model, which makes it possible to evaluate
the influence of each model property individually. There
are long term dependencies (DP), optional choice constructs
(OR), routing constructs (RC), optional activities (OA) and
duplicated activities (DA), which are either included (-Y) or
not (-N). The model can have loops with single entry points
(LC-S), multiple entry points (LC-M), or no loops at all (LP-
N). Each possible combination of these configurations results
in a ground truth model, which is used to generate a training
event log, with a thousand random walks through the model.
These event logs can either be noise free (NL-N), or have
events removed (NL-R), moved (NL-M) or added (NL-A).
A combination of events being removed, moved and added
is possible as well (NL-Y). The fitness of a thousand trace
pairs is measured on the original and the discovered model.
The accuracy is defined as the percentage of trace pairs,
for which the same trace fits both models better. Figure 1
shows the resulting accuracy distributions for each property
configuration.

Fig. 1. AIM PDC 2022 classification accuracy with F = {0.0}

AIM achieves an average accuracy of 0.86. The biggest drop
in performance is caused by including long term dependencies
in the model (DP). The second highest drop is due to the
general inclusion of loops (LC), with only a small difference
between simple and complex loops. The remaining properties

cause less significant differences in the accuracy distribution.
We believe the performance loss for long term dependencies
to be caused by the information loss induced during the
event log splitting: any potential dependencies between events
that end up in different sub-logs are not taken into account
in subsequent recursion steps. The performance drop under
the inclusion of loop constructs of any complexity is an
indication that our loop detection strategy has some room
for improvement left. Our results clearly showcase, that AIM
successfully accounts for a vast range of model and event log
properties, with the discussed limitations.

B. Parameter Choice

We use the 18 real-life event logs from the Business Process
Intelligence Challenge and other public benchmarks [13]–[21],
to quantitatively evaluate the integrated parameter suggestion.
First, AIM is applied with F = { x

10 | x ∈ N ∧ x < 10}. We
additionally use AIM with each of the filter parameter values
f ∈ F individually, which represents a hyper-parameter op-
timisation. We subsequently measure alignment based fitness
[22] and precision [23], as well as the model size [24].

Fig. 2. Hyper-Parameter optimisation of AIM

AIM with the integrated parameter suggestion, on average,
achieves a fitness of 0.78, a precision of 0.88 and a model
size of 51 nodes across the 18 event logs. The results for all
investigated parameter spaces and event logs can be seen in
Figure 2. The average fitness of the parameter suggestion is op-
timal across all investigated parameter spaces, with the hyper-
parameter optimisation yielding an average value of 0.77 for
F = {0.2}. For the same parameter space F = {0.2} the
precision improves in comparison to the integrated parameter
suggestion, with an average value of 0.93. This however comes
at the cost of larger models with 70 nodes on average. The
Hyper-parameter optimisations of the model size leads to the

parameter space of F = {0.9}. On average, it produces
smaller models with only 13 nodes and a high precision of
0.92, but causes a worse fitness of 0.53 in return. Overall,
the results showcase that the integrated parameter suggestion
is able to dynamically balance the quality metrics of fitness,
precision and model size, without requiring a time inten-
sive hyper-parameter optimisation. Furthermore, searching all
parameter took five days, while AIMs integrated parameter
suggestion only run took half an hour in contrast.

C. Overall Performance

We use the public benchmark event logs from [13]–[21] to
compare AIM with the existing discovery algorithms Inductive
Miner infrequent (IMf) [7], Inductive Miner incomplete (IMc)
[10] and Split Miner (SM) [6]. Unfortunately, we could not
include the Probabilistic Inductive Miner (PIM) [5] in this
comparison, as its core concepts are not published and its
implementation is not publicly available for research purposes.
We apply IMf, IMc and SM with their default parameters
and AIM with the integrated parameter suggestion. All exper-
iments are executed on the same hardware, providing an Intel
Core I5-8625-U processor with exclusive access to 16GB of
working memory. We choose time limits of four hours for
the discovery of a single model and twelve hours for the
calculation of each metric. We again measure alignment based
fitness [22] and precision [23] in addition to model size [24].

During the model discovery we observed eight discovery
timeouts for IMc. We believe the reason for these timeouts
to be the exponential time complexity of IMc. All other
algorithms discovered models in the given time limit.

Three models of SM could not be evaluated, because they
were not sound. The remaining algorithms produce only sound
models, because they all represent models with process trees.

The model evaluation caused six timeouts for IMc. The
high amount of τ structures in the discovered models is a
potential reason for the excessive amount of time needed for
the model evaluation. SM caused three timeouts during the
model evaluation. We assume the reason for these evaluation
timeouts to be the size of the discovered models. IMf caused
a similar problem, with evaluation timeouts on the six largest
models. AIM was the only algorithm to discover sound models
for all logs, that could also be evaluated in the given time limit.

Table I shows all the results. We observe the number of
pareto-optimal models for the measured quality metrics. AIM
achieves the best results (17), followed by SM (12), then IMf
(6) and lastly IMc (2). The majority of models with the highest
precision per event log are found by AIM (11/18) and SM
(6/18). IMf only produces the most precise model for the event
log from [15], while IMc never finds the most precise model.
The models with the highest fitness are found by SM (8/18),
AIM (7/18) and IMc (3/18). The smallest models are almost
exclusively found by AIM (16/18), with a clear difference to
the other algorithms. This is especially apparent for the event
logs from BPIC 2015 [16], which have more than 350 unique
activities. Overall, AIM trades a little fitness for smaller and
more precise models in comparison to SM, IMf and IMc.

TABLE I
AIM, SM, IMF & IMC ON BENCHMARK EVENT LOGS

Event Log Algorithm Precision Fitness Size

BPIC 20121 [13] AIM 0.9405 0.7044 56
IMf 0.5126 0.8004 59
SM 0.9604 0.8976 47
IMc nan nan nan

BPIC 20131 [14] AIM 0.9758 0.8293 26
IMf 0.9717 0.9122 32
SM 0.7771 0.9669 39
IMc nan nan nan

BPIC 20132 [15] AIM 0.9634 0.9254 17
IMf 0.9764 0.7591 18
SM 0.9033 0.9386 18
IMc 0.9371 0.8206 35

BPIC 20151 [16] AIM 0.9501 0.5627 88
IMf nan nan 588
SM nan nan 1078
IMc nan nan nan

BPIC 20152 [16] AIM 0.7418 0.5620 98
IMf nan nan 531
SM nan nan 1058
IMc nan nan nan

BPIC 20153 [16] AIM 0.9359 0.6282 96
IMf nan nan 758
SM nan nan 926
IMc nan nan nan

BPIC 20154 [16] AIM 0.9643 0.5999 173
IMf nan nan 526
SM nan nan 1072
IMc nan nan nan

BPIC 20155 [16] AIM 0.7490 0.6095 116
IMf nan nan 614
SM nan nan 855
IMc nan nan nan

BPIC 20171 [17] AIM 0.9786 0.7724 38
IMf 0.7623 0.8847 45
SM 0.8742 0.9018 62
IMc nan nan nan

BPIC 20191 [18] AIM 0.8881 0.7608 9
IMf nan nan 94
SM nan nan 103
IMc nan nan nan

BPIC 20201 [19] AIM 0.7682 0.8930 34
IMf 0.3584 0.9165 61
SM 0.7953 0.9692 56
IMc nan nan nan

BPIC 20202 [19] AIM 0.9999 0.9160 13
IMf 0.2709 0.9529 33
SM 0.9097 0.9960 29
IMc nan nan nan

BPIC 20203 [19] AIM 0.9577 0.8753 26
IMf 0.1340 0.8749 83
SM 0.8676 0.9818 64
IMc nan nan nan

BPIC 20204 [19] AIM 0.7173 0.7988 40
IMf 0.1835 0.8323 108
SM 0.7927 0.9664 111
IMc nan nan nan

BPIC 20205 [19] AIM 0.6084 0.9252 25
IMf 0.2605 0.9335 36
SM 0.8863 0.9939 32
IMc 0.1919 0.9995 60

SEPSIS [21] AIM 1.0 0.8223 14
IMf 0.6578 0.9726 26
SM 0.9468 0.9940 22
IMc 0.8042 0.9997 42

RTFMP [20] AIM 0.7707 0.9160 30
IMf 0.8024 0.9028 31
SM 0.9955 0.7899 33
IMc nan nan nan

Furthermore, it provides the unique ability to handle event
logs with a high number of unique activities and removes the
need for a user to choose a parameter.

As limitations, we note that some of the event logs from
[13]–[21] were part of the hyper-parameter optimisation, used
to select default parameters for SM in [6], which may have
given SM a slight advantage. All IM implementations inher-
ently compress event logs into the representational bias of the
available operators. The evaluations of AIM, IMf and IMc
therefore measure to some extent the adherence of the event
logs to these operators, which might limit generalisability. The
usage of k-means introduces non deterministic behaviour. We
did however not observe any differences in the discovered
models for three different random seeds in our experiments.

V. RELATED WORK

Many process discovery techniques have been proposed in
literature; for a survey on recent process discovery techniques,
please refer to [24].

Techniques that do not guarantee sound models include the
Structured Heuristic Miner 6.0, which discovers a model based
on a heuristic approach without any restriction to the models
soundness [25]. The algorithm adjusts the resulting model
in an attempt to make it sound, which is not guaranteed to
succeed. The method provides two noise parameters.

The Split Miner enriches the directly follows graph of an
event log with gateways that describe the control flow relation
between activities [6]. Two parameters are provided that allow
the user to decide how much filtering should be employed and
to specify how much parallelism is contained in the event
log. Default parameters are provided by a hyper-parameter
optimisation. The approach does not guarantee the resulting
models to be sound, but at least deadlock free.

Some process discovery algorithms utilize concepts of in-
teger linear programming [26] and region theory [27]. Others
focus specifically on special structures, such as duplicated ac-
tivities [28], routing constructs [29] and loops [30]. However,
none of these techniques guarantee to return a sound model.

Techniques that guarantee sound models include the Evolu-
tionary Tree Miner, which is a genetic algorithm that evolves
a population of process models based on the quality metrics
fitness, precision, generalization and simplicity [31]. It offers
the possibility to specify a level of importance for each of these
quality metrics. A termination condition allows to instruct
the miner to keep searching for a model that satisfies this
condition, however this process can take an prohibitively long
time on real-life logs.

The Inductive Miner Infrequent (IMf) is an implementation
of the Inductive Miner framework (IM) that handles noise
with conditional filtering [7]. When no cut can be found,
parameterized filtering is applied and the cut detection is
repeated. Fall-through methods are only used if the cut de-
tection after the filtering fails as well. AIM replaces all fall-
through methods with the clustering based cut detection and
automatically determines the filter parameter value.

The Inductive Miner Incomplete (IMc) also adheres to the
IM framework and handles incomplete event logs [10] with
the usage of probabilistic cut quality estimates. It searches for
the cut with the highest quality estimate through optimization
techniques, but nevertheless suffers from the exponential num-
ber of potential cuts. Fall-through methods are only used if no
cut can be found above a given threshold, which needs to be
specified as an input parameter. AIM reuses the set of relevant
activity pairs M(⊕,Σ1,Σ2), as described in Section II-C. AIM
however chooses different quality estimates to address a range
of event log properties in polynomial runtime.

The Probabilistic Inductive Miner (PIM) adapts the cut
detection from IMc by using heuristic cut quality estimates [5]
to address the cut search, though this remains exponential in
worst case. PIM also introduces a new activity filtering method
that still requires a parameter input. Unfortunately, no imple-
mentation of the approach has been made public for research
purposes. AIM uses different cut quality estimates, which
include measures for τ -loops and τ -skips, and guarantees a
polynomial worst case runtime. AIM additionally provides a
different filtering method with parameter suggestions.

Existing applications of clustering techniques in process
mining focus on detecting trace clusters to subsequently
discover multiple models [32]. Activity clustering is mostly
used to prepare a decomposed model discovery [33]. To the
best of our knowledge, none of the state-of-the-art discovery
algorithms utilizes clustering to select model structures.

VI. CONCLUSION

In this paper we introduced the Approximate Inductive
Miner (AIM), which utilizes clustering techniques to inves-
tigate an exponentially growing state space in polynomial
runtime. We additionally proposed an integrated parameter
suggestion, based on novel quality estimates, under consid-
eration of the information loss induced by filtering the event
log. Our evaluation showed that AIM successfully balances
fitness, precision and model size in a given parameter space,
without requiring human guidance or a time intensive hyper-
parameter optimisation. Our cut quality estimates consistently
handled challenging event log properties, such as infrequent or
incomplete behaviour. We compared AIM to existing discov-
ery algorithms and observed its unique ability to handle more
than 350 unique activities per event log, without suffering from
any comparative performance drawbacks.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] S. J. J. Leemans, “Robust process mining with guarantees,” in Business
Process Management (BPM 2018), vol. 2196 of CEUR Workshop
Proceedings, pp. 46–50, CEUR-WS.org, 2018.

[3] M. F. Sani, S. J. van Zelst, and W. M. P. van der Aalst, “Repairing outlier
behaviour in event logs,” in Business Information Systems, vol. 320 of
Lecture Notes of Business Information Systems, 2018.

[4] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discover-
ing block-structured process models from event logs - A constructive
approach,” in Application and Theory of Petri Nets and Concurrency,
vol. 7927 of Lecture Notes in Computer Science, pp. 311–329, 2013.

[5] D. Brons, R. Scheepens, and D. Fahland, “Striking a new balance in
accuracy and simplicity with the probabilistic inductive miner,” in 3rd
International Conference on Process Mining, ICPM, 2021.

[6] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split miner:
Discovering accurate and simple business process models from event
logs,” in 2017 IEEE International Conference on Data Mining, ICDM
2017, pp. 1–10, IEEE Computer Society, 2017.

[7] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Dis-
covering block-structured process models from event logs containing
infrequent behaviour,” in Business Process Management Workshops -
BPM, vol. 171 of Lecture Notes in Business Information Processing,
2013.

[8] P. Linz, An introduction to formal languages and automata, 4th Edition.
Jones and Bartlett Publishers, 2006.

[9] S. L. Bloom and Z. Ésik, “Free shuffle algebras in language varieties,”
Theor. Comput. Sci., vol. 163, no. 1&2, pp. 55–98, 1996.

[10] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-
ering block-structured process models from incomplete event logs,” in
Application and Theory of Petri Nets and Concurrency, Lecture Notes
in Computer Science, 2014.

[11] P. Fränti and S. Sieranoja, “K-means properties on six clustering
benchmark datasets,” Appl. Intell., vol. 48, no. 12, pp. 4743–4759, 2018.

[12] E. Verbeek, “Process discovery contest 2022,” 2022.
[13] B. van Dongen, “Bpi challenge 2012,” 2012.
[14] W. Steeman, “Bpi challenge 2013, incidents,” 2013.
[15] W. Steeman, “Bpi challenge 2013, closed problems,” 2013.
[16] B. B. van Dongen, “Bpi challenge 2015,” 2015.
[17] B. van Dongen, “Bpi challenge 2017,” 2017.
[18] B. van Dongen, “Bpi challenge 2019,” 2019.
[19] B. van Dongen, “Bpi challenge 2020,” 2020.
[20] M. M. de Leoni and F. Mannhardt, “Road traffic fine management

process,” 2015.
[21] F. Mannhardt, “Sepsis cases - event log,” 2016.
[22] B. F. van Dongen, J. Carmona, T. Chatain, and F. Taymouri, “Aligning

modeled and observed behavior: A compromise between computation
complexity and quality,” 2017.

[23] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst, “Measuring precision of modeled behavior,”
Inf. Syst. E Bus. Manag., vol. 13, no. 1, pp. 37–67, 2015.

[24] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of process
models from event logs: Review and benchmark,” IEEE Trans. Knowl.
Data Eng., vol. 31, no. 4, pp. 686–705, 2019.

[25] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
“Automated discovery of structured process models from event logs:
The discover-and-structure approach,” Data & Knowledge Engineering,
vol. 117, pp. 373–392, 2018.

[26] H. M. W. Verbeek and W. M. P. van der Aalst, “Decomposed process
mining: The ilp case,” in Business Process Management Workshops
(F. Fournier and J. Mendling, eds.), (Cham), pp. 264–276, Springer
International Publishing, 2015.

[27] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process mining
based on regions of languages,” in Business Process Management
(G. Alonso, P. Dadam, and M. Rosemann, eds.), (Berlin, Heidelberg),
pp. 375–383, Springer Berlin Heidelberg, 2007.

[28] S. K. vanden Broucke and J. De Weerdt, “Fodina: A robust and flex-
ible heuristic process discovery technique,” Decision Support Systems,
vol. 100, pp. 109–118, 2017. Smart Business Process Management.

[29] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining invisible tasks
in non-free-choice constructs,” in Business Process Management (H. R.
Motahari-Nezhad, J. Recker, and M. Weidlich, eds.), (Cham), pp. 109–
125, Springer International Publishing, 2015.

[30] A. Weijters, “Process mining: Extending the alpha-algorithm to mine
short loops,” 06 2004.

[31] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst,
“Quality dimensions in process discovery: The importance of fitness,
precision, generalization and simplicity,” Int. J. Cooperative Inf. Syst.,
vol. 23, no. 1, 2014.

[32] J. D. Weerdt, S. K. L. M. vanden Broucke, J. Vanthienen, and B. Bae-
sens, “Active trace clustering for improved process discovery,” IEEE
Trans. Knowl. Data Eng., vol. 25.

[33] B. F. A. Hompes, H. M. W. Verbeek, and W. M. P. van der Aalst,
“Finding suitable activity clusters for decomposed process discovery,”
in Data-Driven Process Discovery and Analysis, vol. 237, 2014.

	Introduction
	Preliminaries
	Process Trees
	Inductive Miner
	Relation & Quality Estimates

	Approximate Inductive Miner
	Cut State Space
	Filter Parameter Adjustment
	State Space Pruning
	Implementation
	Complexity & Guarantees

	Evaluation
	Structure Detection
	Parameter Choice
	Overall Performance

	Related Work
	Conclusion
	References

