
Enjoy the Silence:
Analysis of Stochastic Petri Nets with Silent Transitions

Sander J.J. Leemansa, Fabrizio Maria Maggib, Marco Montalib

aRWTH Aachen, Germany
bFree University of Bozen-Bolzano, Italy

Abstract

Capturing stochastic behaviour in business and work processes is essential to quan-

titatively understand how nondeterminism is resolved when taking decisions within

the process. This is of special interest in process mining, where event data tracking

the actual execution of the process are related to process models, and can then pro-

vide insights on frequencies and probabilities. Variants of stochastic Petri nets provide

a natural formal basis to represent stochastic behaviour and support different data-

driven and model-driven analysis tasks in this spectrum. However, when capturing

business processes, such nets inherently need a labelling that maps between transi-

tions and activities. In many state of the art process mining techniques, this labelling

is not 1-on-1, leading to unlabelled transitions and activities represented by multiple

transitions. At the same time, they have to be analysed in a finite-trace semantics,

matching the fact that each process execution consists of finitely many steps. These

two aspects impede the direct application of existing techniques for stochastic Petri

nets, calling for a novel characterisation that incorporates labels and silent transitions

in a finite-trace semantics. In this article, we provide such a characterisation starting

from generalised stochastic Petri nets and obtaining the framework of labelled stochas-

tic processes (LSPs). On top of this framework, we introduce different key analysis

tasks on the traces of LSPs and their probabilities. We show that all such analysis tasks

can be solved analytically, in particular reducing them to a single method that com-

Email addresses: s.leemans@bpm.rwth-aachen.de (Sander J.J. Leemans),
maggi@inf.unibz.it (Fabrizio Maria Maggi), montali@inf.unibz.it (Marco Montali)

Preprint submitted to Elsevier December 18, 2023

bines automata-based techniques to single out the behaviour of interest within an LSP,

with techniques based on absorbing Markov chains to reason on their probabilities. Fi-

nally, we demonstrate the significance of how our approach in the context of stochastic

conformance checking, illustrating practical feasibility through a proof-of-concept im-

plementation and its application to different datasets.

Keywords: Stochastic Petri nets, stochastic process mining, silent transitions,

qualitative verification, Markov chains

1. Introduction

The study of stochastic dynamic systems is a long-standing line of research, es-

sential when one wants to quantitatively analyse how agents in AI and business/work

processes in BPM resolve the nondeterminism intrinsically present when taking deci-

sions. In the context of Petri nets, seminal works extending Petri nets with stochastic

decision making date back to the early 80s [49, 46, 47], finally evolving into the frame-

work of generalised stochastic Petri nets (GSPNs) [45, 44, 1].

In BPM in particular, interest in stochastic processes and their analysis has been

recently revived in the context of process mining, exploiting the fact that event data

provides the basis for relating behaviour to frequencies and probabilities. This is in

turn key to extract useful information for such behaviour: a quality control process

with 30% failed checks is a considerably different process than a process with 2%

failed checks, even if they have the same control flow. In this light, explicitly enriching

process models with a stochastic dimension, which indicates how likely every model

trace is, provides the basis for extracting quantifiable insights, as well as for increasing

the quality of further process analysis and mining tasks such as simulation, prediction

and recommendation. Not surprisingly, several stochastic process mining contributions

have been made in recent times, covering a variety of different tasks:

• discovery of stochastic process models enriched with likelihood information on the

different behaviour [12, 54, 13, 14];

• process model repair [53];

2

• stochastic conformance checking, either comparing the stochastic behaviour implic-

itly represented by an event log with that induced by a stochastic process model

[51, 52, 3, 32, 37], or considering the likelihood of model traces when aligning the

observed with the prescribed behaviour [7].

While all these works employ variants of Petri nets as control-flow backbones of their

process, a parallel thread of research infuses stochasticity in declarative process mining

[4].

Petri net-based approaches to stochastic process modeling typically come with ex-

plicit indications on the relative probability and timing of single steps in the process,

which only implicitly yield the overall likelihood of its traces. GSPNs do so by sup-

porting immediate and timed transitions. Immediate transitions have priority over the

timed ones, and come with (relative) weights that are used to compute the probability

of deciding which immediate transition to fire among the enabled ones. Each timed

transition comes with the rate of a corresponding exponential distribution capturing the

firing delay of the transition once it becomes enabled. Continuous and discrete Markov

chains are traditionally used to analytically address key analysis tasks such as calcu-

lating the expected time and probability of evolving a marking into another marking

[44, 1]. Unfortunately, this well-understood, solid foundational basis cannot be readily

applied to solve analysis tasks in BPM and process mining, due to three special re-

quirements when modelling business processes that do not directly match with GSPNs

and their execution semantics:

1. repeatable labels – transitions in the net must be labelled with corresponding

activities in the process, possibly using the same label in multiple transitions;

2. silent transitions – there may be transitions that do not correspond to any visible

activity in the process, but represent instead internal orchestration steps, such as

those capturing gateways in the process;

3. finite-trace semantics – the interesting dynamics exhibited by the process are

those representing the flow of cases/instances therein, starting from an initial

state and reaching one among possibly multiple final states after having executed

a finite (yet unbounded) amount of steps, for which only the visible activities are

of interest.

3

The interplay of these three requirements is far from trivial, in particular considering

that a single trace of activities may correspond to infinitely many different finite-length

paths in the process. This makes it impossible directly directly the probability of a

model trace via enumeration of paths, and explains why stochastic process mining

techniques have so far dealt with this problem through approximation [32, 7].

We refer to a visible transition if it is not silent. While the firing of a visible tran-

sition conceptually captures the execution of its task – this is explicitly recorded as

an event in a trace in an event log –, the firing of a silent transition instead indicates

the execution of an internal step, not perceived by the external environment, and thus

not explicitly recorded. This is useful to capture a number of modelling patterns. We

mention two:

• (control-flow patterns) silent transitions can be employed to model internal

control-flow patterns used to properly orchestrate visible transitions. Examples

are skips, loopbacks, split and join points for concurrent branches, and more in

general gateways in contemporary process modelling notations (such as BPMN).

• (non-loggable tasks) a silent transition can replace a visible one when its corre-

sponding task cannot be logged. This is typically the case of a manual activity

that is not backed up by a corresponding user-interaction activity, whose pur-

pose is to inform the supporting information system that the activity has been

performed.

Silent transitions are also relevant in their full generality in the context of process min-

ing, since many process discovery algorithms produce as output a Petri net with silent

transitions [33, 11, 5].

To get an intuitive understanding of the problem, consider the labelled stochastic

Petri net shown in Figure 1(a), where silent transitions are shown in black (we will

introduce these nets formally in Section 3). This process has two model traces, but their

likelihood may sound counterintuitive. For example, the probability that the process

will generate the model trace consisting of a followed by b is 2
3 [39]. The challenge

here stems from the loop of silent transitions, which “favours” b over c. Technically,

one can only compute that probability analytically by noticing that the probability of

generating a,b corresponds to the sum of infinitely many probabilities, each obtained

4

1

a

1/2

τ

1/2

τ

1/2

b

1/2

c

(a) Stochastic net adapted from [39].

1

a

1

τ

1

d

1

c

(b) Stochastic net with confusion, adapted from [16].

Figure 1: Two examples of labelled stochastic Petri nets.

by executing a different number of iterations within the “silent loop” consisting of

the two silent transitions. Specifically, the probability is 1
2 + 1

2
1
4 + 1

2

(
1
4

)2
+ . . . =

1
2

∑∞
i=0

(
1
4

)i
=

1
2

1− 1
4

= 2
3 .

Another example of potentially counterintuitive trace probability is shown in Figure

1(b). In this net, the likelihood of a followed by c is 3
4 . The challenge in this example

is again the silent transition, which is used here in a semi-concurrent context: the

transition c is mutually exclusive with transition d, but as c is part of two paths (that is,

executed before or after the silent transition), its probability is higher than one might

expect [16, confusion]. In Section 2, we describe how existing techniques address or

circumvent these challenges.

In this article, we start from GSPNs and propose the framework of (bounded) la-

belled stochastic processes (bounded LSPs) to capture processes that incorporate labels

and silent transitions in a finite-trace semantics. On top of this framework, we define

and analytically solve the following core problems:

1. Outcome probability: what is the probability that the bounded LSP evolves

from the initial marking to one (or a subset) of its final markings?

2. Trace probability: what is the probability of a given trace of the bounded LSP?

3. Specification probability: what is the probability that the bounded LSP pro-

duces a trace that satisfies a given qualitative specification that captures desired

behaviour?

4. Stochastic compliance: is the bounded LSP of interest compatible, in be-

havioural and stochastic terms, to a probabilistic declarative specification [4]

5

indicating which temporal constraints are expected to hold, and with which prob-

ability?

5. Stochastic conformance checking: how can we employ the previous analysis

questions, in particular trace probability, to improve the correctness and appli-

cability of existing stochastic conformance checking techniques [39] relating a

reference stochastic process model to a recorded log?

Specifically, we show how outcome probability can be analytically solved by build-

ing on and suitably revising the connection [45, 1] between GSPNs and discrete-time

Markov chains, considering in particular the class of absorbing Markov chains [28,

Chapter 11]. We then demonstrate how the other analysis tasks can be reduced to out-

come probability, relying on automata-based techniques inspired from those in qualita-

tive verification of Markov chains against temporal properties [6, Ch.10], here adapted

to handle finite traces. Such techniques are also used to elegantly deal with silent tran-

sitions. As a by-product, we hence provide a solution to an existing problem related

to the removal of ε-transitions in stochastic finite-state automata, so far only solved

through ad-hoc algorithms [29].

Finally, we demonstrate the significance of our approach in the context of stochas-

tic conformance checking, infusing an existing measure [39] with our analytical com-

putation of trace probabilities. We illustrate practical feasibility through a proof-of-

concept implementation and its application to different datasets.

This paper is a revised and extended version of [35]. In comparison with [35]:

• We here handle the full features of arbitrary GSPNs.

• We extend all the foundational results, providing a complete characterisation of

the considered analysis tasks, a more explicit connection with Markov chains,

and a characterisation of LSPs and their paths through stochastic languages, also

examining the impact of livelocks.

• We provide an implementation of the techniques in the ProM framework [26] and

an evaluation of stochastic conformance checking techniques, made possible by

our technique and its implementation.

The article is organised as follows. Section 2 discusses related work. In Section 3,

we introduce the framework of bounded LSPs based on GSPNs and its execution se-

6

mantics. Section 4 provides a brief roadmap of the different analysis tasks and how

they are inter-reduced to each other. In Section 5 we attack the outcome probability

problem showing how it can be analytically solved through a connection with absorb-

ing Markov chains. In Section 6 we introduce the qualitative verification of bounded

LSPs, show how it can be used to compute the probability of model traces, and reduce

it to outcome probability. Section 7 deals with stochastic compliance of bounded LSPs

against declarative probabilistic constraints, also in this case providing a reduction to

the outcome probability problem. In Section 8 we describe the proof-of-concept im-

plementation of our techniques, demonstrate their application to compute stochastic

conformance checking metrics, and report on a corresponding evaluation. Conclusions

follow.

2. Related Work

Stochastic process-based models have been studied extensively in literature. In the

context of this work, we are interested in formal, Petri net-based stochastic models

that are at the basis of the recent series of approaches in stochastic process discovery

[12, 54, 14] and conformance checking [32, 37, 8, 3, 15]. Such approaches all refer to

the model of (generalised) stochastic Petri nets, or fragments thereof. A first version of

this model was proposed in [47], extending Petri nets by assigning exponentially dis-

tributed firing rates to transitions. This was extended in [45] by distinguishing timed

(as in [47]) and immediate transitions. Immediate transitions have priority over timed

ones, and have weights to define their relative likelihood. As these two types of tran-

sitions, abstracting from time, behave homogeneously, we may capture the stochastic

behaviour of the net through a discrete-time Markov chain [45].

Several variants of stochastic Petri nets have been investigated starting from the

seminal work in [45]. These variants differ from each other depending on the features

they support (e.g., arbiters to resolve non-determinism, immediate vs timed transitions)

and the way they express probabilities. Such nets may aid modellers in expressing cer-

tain constructs. An orthogonal, important dimension is to ensure that probabilities and

concurrency interact properly. This can be achieved through good modelling princi-

ples [45, 16] or automated techniques [10].

7

Contrasting these formal models with recent works in stochastic process mining,

key differences exist. Traditional stochastic nets do not support transition labels nor

silent transitions, and put emphasis on recurring, infinite executions and the so-called

steady-state analysis, focused on calculating the probability that an execution is cur-

rently placed in a given state. This is done by constructing a discrete-time Markov

chain that characterises the stochastic behaviour of the net [47, 45]. Finding the prob-

ability of a finite-length trace in such nets is trivial, as every trace corresponds to a

single path. However, no transition labels or silent steps are supported, which limits

their usefulness for process mining due to the omnipresence of such transitions in pro-

cess models. On the other hand, when these features are incorporated in stochastic

Petri nets, which is precisely what we target in this paper, computing the probability of

a trace cannot be approached directly anymore, as infinitely many paths would poten-

tially need to be inspected. At the same time, in business processes we are interested

in behaviour at the trace level rather than at the process level – that is, we are not in-

terested in the state that a process can be in, but rather on the path that a trace follows

through the model – thus the large body of work on steady-state-based analyses on

Markov models does not apply for our purposes. This explains why reasoning on the

stochastic behaviour of such extended nets has been conducted in an approximated way

[32, 37], or by imposing restrictions on the model [8].

To bridge this gap, in this paper we take the most basic stochastic Petri nets: we

do not consider time or priority, but we add (duplicate) labels and silent transitions.

Importantly, our results seamlessly carry over to bounded, generalised stochastic Petri

nets, thanks to the fact that incorporating priorities in bounded nets is harmless, and

that timed and immediate transitions are homogeneous from the stochastic point of

view. To the best of our knowledge, outside of recent work using stochastic Petri nets

with silent transitions [32, 39, 8], such nets have not been defined or studied before.

While intuitively stochastic conformance checking techniques need to obtain the

probability of a given trace in a stochastic process model (for instance, [39] explicitly

obtains this probability to compute a distance measure between a log and a stochastic

process model), some stochastic conformance checking techniques avoid computing

the probability for a single trace, for instance by playing out the model to obtain a

8

sample of executions [32], or by assuming that the model is deterministic [37]. The

results presented in this paper therefore enable the practical application of [39], and

may enable further stochastic conformance checking techniques and, consequently,

new types of analysis.

Silent steps have been studied in the context of automata. For instance, in [29]

an ad-hoc method is described to iteratively remove all silent steps from a stochastic

automaton. Due to concurrency and confusion (see for instance Figure 1(b)), such

techniques are not directly applicable to stochastic Petri nets. A result of this paper is

that silent steps can be handled directly, without the need for ad-hoc techniques.

3. Labelled Stochastic Processes based on Petri Nets

In this section, we introduce the class of stochastic process models that can be

analysed with our techniques. This class essentially builds on (bounded) generalised

stochastic Petri nets (GSPNs [1]), where transitions (representing atomic units of work)

are [2]:

• immediate or timed;

• weighted, where weights are used to define firing probabilities for immediate transi-

tions, or firing delays for timed ones.

Our model introduces two additional distinguishing features:

1. transitions are silent or visible, in the latter case denoting process tasks, and

correspondingly come with a label defining the task name;

2. we focus on finite traces, progressing process instances through the net from an

initial to a final state.

This requires to go through the different features of GSPNs, carefully readapting them

to our context.

Before entering into the technical exposition, we give some preliminary notions on

multisets. A multiset a over a set U is a function a : U → N, where for u ∈ U , a(u)

indicates the multiplicity (i.e., the number of occurrences) of u. Set U is called the

support of the multiset a.

Given two multisets a and b over U , we define:

9

• the union of a and b, denoted by a + b, as the multiset that assigns to each u ∈ U

multiplicity a(u) + b(u);

• that a is included in b, denoted by a ≤ b, if for every u ∈ U , we have a(u) ≤ b(u);

• assuming a ≤ b, the difference of b and a, denoted by b − a, as the multiset that

assigns to each u ∈ U multiplicity b(u)− a(u).

The set of all multisets over U is denoted by M(U). Multiset a is explicitly repre-

sented by, in between squared brackets [. . .], each element u with non-zero multiplicity,

using notation ua(u).

3.1. Labelled Petri Nets

We capture the control-flow backbone of a work process using Petri nets with

labelled transitions. Labels are used as follows:

• (labels as tasks) labels generally represent (atomic) tasks to be executed within

the process;

• (silent transitions) a special label is used to indicate that a transition is silent,

i.e., does not correspond to any task.

• (repeated labels) the same task can label distinct transitions.

To capture transition labels, we assume a given finite set A of tasks, and a special

label τ ̸∈ A to indicate a silent step. The whole alphabet of labels is denoted by

Σ = A ∪ {τ}.

We recall the standard definition of labelled Petri nets, where we assume un-

weighted arcs for simplicity of presentation.

Definition 1 (Labelled Petri net). A (labelled Petri) net N is a tuple ⟨Q,T, F, ℓ⟩,

where:

• Q is a finite set of places;

• T is a finite set of transitions, disjoint from Q (i.e., Q ∩ T = ∅);

• F ⊆ (Q × T) ∪ (T × Q) is a flow relation connecting places to transitions and

transitions to places;

• ℓ : T → Σ is a labelling function mapping each transition t ∈ T to a corresponding

label ℓ(t) that is either a task name from A or the silent label τ . ◁

10

We adopt a dot notation to extract the component of interest from a tuple. For example,

given a net N , its places are denoted by N.Q. We will adopt the same notational

convention for the other definitions as well. Given a net N and an element x ∈ N.Q ∪

N.T , the preset and post-set of x are respectively denoted by •x = {y | ⟨y, x⟩ ∈ F}

and x• = {y | ⟨x, y⟩ ∈ F}. If x is a transition, then its pre- and post-set respectively

denote its input and output places.

We now turn to the execution semantics of nets, with the goal of formally describing

how they represent the executions of process instances. We start with the notion of

state. It is worth noting that our definitions are built on standard notions in Petri nets,

such as that of marking, firing, path, reachability graph, but with a key difference:

process instances evolve through finite sequences of steps (of unbounded length) in the

process. Focusing on finite paths and traces differ both conceptually and technically

from the typical, infinite-trace execution semantics of Petri nets.

As usual in Petri nets, an execution state of a net is described by a marking. Mathe-

matically, a marking is a multiset of places. Conceptually, it represents a distribution of

tokens over places. Each token denotes an execution thread, whose current local state

is the place to which the token belongs. All tokens belong to a process instance (also

called case), whose current global state is collectively described by the local state of

each execution thread.

The distribution of token in a marking determines which transitions are enabled

and, in turn, can fire and update the state of the process instance. Specifically, a tran-

sition is enabled in a marking if its input places contain at least one token each. Firing

an enabled transition produces a new marking where one token per input place is con-

sumed, and each output place gets one token more. This is formally defined using

multiset operations as follows.

Definition 2 (Marking). A marking m of a net N is a multiset over the places of N ,

mapping each place q ∈ N.Q to the number m(q) of tokens in q. ◁

Definition 3 (Transition enablement, transition firing). Given a marking m of a net

N , a transition t ∈ N.T is enabled in m, written m[t⟩N , if •t ≤ m. We denote by

11

EN (m) the set of enabled transitions in a marking m.

Assuming m[t⟩N , if t fires in m of N , a new marking m′ of N is produced, written

m[t⟩Nm′, if m′ = (m− •t) + t•. ◁

Transition firings can be chained in a sequence, obtaining an execution. Before

discussing how this is done, we need to introduce a different aspect of transitions: their

timing.

3.2. Immediate and Timed Transitions

Orthogonally to the classification of transitions as visible or silent, we consider a

second, temporal dimension, which comes from GNPSs [1]: the distinction between

immediate and timed transitions, and the interpretation of weights attached to them.

We start by extending Definition 1 to accommodate these aspects. We stress that

our definition presents some minor differences with other definitions of GSPNs in the

literature, such as those in [1, 2]. First, we do not consider general transition priorities,

but we explicitly deal with priorities in the execution semantics. Second, we do not

consider inhibitor arcs. This is just for simplicity of presentation; in fact, since we

will focus on bounded GSPNs, inhibitor arcs can be seamlessly inserted without any

impact on the computational properties of the model. At the same time, differently from

the literature, our definition explicitly accounts for transition labels and, in particular,

silent transitions, which is a minor change in the definition, but has a major conceptual

and technical impact when it comes to the execution semantics and analysis of the

stochastic behaviour of these nets.

Definition 4 (Labelled, generalised stochastic Petri net). A labelled, generalised

stochastic Petri net (LGSPN) N is a tuple ⟨Q,T, F, ℓ, w⟩, where:

• ⟨Q,T, F, ℓ⟩ is a labelled Petri net;

• T = T im ∪ T ti with T im ∩ T ti = ∅, where T im is the set of immediate transitions,

and T ti is the set of timed transitions;

• w : T → R+ is a weight function that assigns a positive number to each transition in

N . ◁

12

With some abuse of terminology, we sometimes refer to an LGSPN by implicitly refer-

ring to its labelled Petri net.

An immediate transition that becomes enabled fires instantaneously without ad-

vancing time, while a timed transition that becomes enabled fires with some delay. The

question is then what happens if multiple transitions are enabled.

First and foremost, immediate transitions (being instantaneous) have priority over

timed ones. This calls for redefining the notion of enablement in Definition 5 as fol-

lows.

Definition 5 (Transition enablement in a LGSPN). Given a marking m of a LGSPN

N , a transition t ∈ N.T is enabled in m, written m[t⟩N , if t is enabled in the sense of

Definition 5, and either:

• t ∈ N.T im (i.e., it is immediate), or

• t ∈ N.T ti (i.e. it is timed), and N.T im ∩Em(N) = ∅ (i.e., no immediate transition

is enabled in m). ◁

If multiple immediate transitions are enabled, one is selected, resolving nondeter-

minism stochastically using the (relative) weights associated to the enabled transitions.

If multiple timed transitions are enabled, one is selected based on a stochastic choice

on which transition samples the shortest delay.

More specifically, the weight w(t) = λ of a timed transition t denotes the rate

of an exponentially distributed random variable describing the probability that, once

enabled, the transition samples a certain delay. Technically, consider an exponential

random variable X with rate λ, written X ∼ Expo(λ), denoting the firing delay of an

enabled transition. The probability that such transition fires between a and b time units

after becoming enabled is captured by

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

where

fX(x) =

λe−λx x ≥ 0

0 x < 0

13

q

place with name q

w

a
t

(visible) immediate transition named t, with weight w and label a

w

τ
t

silent immediate transition named t, with weight w

t

λ

a

(visible) timed transition named t, with rate λ and label a

t

λ

τ

silent timed transition named t, with rate λ

Figure 2: Notation for GSPNPs, considering their three main dimensions: transition labels, silent vs visible
transitions, timed vs immediate transitions

is the probability density function of X .

In Section 3.4 we will use weights and rates to define the stochastic semantics of

our model, recasting directly the original approach in [1, 2].

Representation of Nets. As customary in Petri net literature, we graphically represent

GSPNs as bipartite directed graphs with place nodes depicted as circles, immediate

transition nodes depicted as segments, and timed transition nodes depicted as squares.

Figure 2 shows the main graphical conventions we adopt in decorating places and tran-

sitions with relevant information. The name of a place is indicated below the place

circle, while that of a transition is shown inside the transition square, or at the bottom

right of the transition segment. The weight (resp., rate) of an immediate (resp., timed)

transition is shown on top of the transition icon, while its label is shown at the bottom.

Silent transitions labelled by τ are filled in black, while visible transitions labelled by

a task from A are filled in light blue.

Example 1. Figure 3 shows a LGSPN for a simplified order-to-cash process. Each

process instance refers to a distinct purchase order, evolved through visible transitions

that capture tasks under the responsibility of the customer, and silent transitions denot-

14

ing internal steps of the seller. Consistently with this distribution of responsibility, in

a given state the order can be progressed exclusively by the customer or by the seller.

We describe next intuitively how the process works.

A new process instance starts when the customer opens an order, and fills it with at

least one item. Further items can be then added. Crucially, the seller determines if the

customer is actually forced to add further items to progress the order, or whether instead

adding further items is just an option. This is a free choice of the seller, which may

be concretized in different ways (e.g., requiring certain items to be present together

with other items). The first situation is determined when the seller executes the silent

transition ts1 (capturing a loopback), the second when the seller executes the silent

transition ts2 .

In the latter case, the customer can decide how to continue the process: (i) by

adding another item, in turn letting the seller choose whether a further item must or

may be added; (ii) by canceling the order, which leads to complete the process instance

in the canceled state (place qc); (iii) by finalizing the order, signalling that the cus-

tomer wants to proceed to the payment phase. Whether a finalized order actually goes

through the payment phase is determined by the seller, who decides whether the order

is rejected or accepted. Both decisions have to be acknowledged by the customer. A

rejection acknowledgement leads to conclude the process instance placing the order in

the rejected state (place qr).

An acceptance acknowledgment gives control back to the customer, who can decide

how to proceed: (i) by adding another item, which brings the order back to the previous

phase, where it can be finalized, canceled, or filled with further items; (ii) by canceling

the order, which leads, as before, to complete the process instance in the canceled state

(place qc); (iii) by paying the order (which we assume always succeeds for simplicity).

Upon payment, two tasks are executed by the seller concurrently (i.e., in no particular

order): a receipt is emitted for the customer, and the order leaves the warehouse for

15

qs

to

λo

open q1

ti1

λi1

add item q2

ws1

τ
ts1

ws2

τ
ts2q3

ti2

λi2

add item

tf

λf

finalize q4
ws3

τ
ts3 q5

ws4

τ
ts4 q6

ta

λa

ack accept q7

ti3

λi3

add item

tp

λp

pay q8

ws5

τ
ts5

q9

q10

te

λe

emit receipt

tl

λl

leave

q11

q12

ws6

τ
ts6 qh

tr

λr

ack reject qr

tc1

λc1

cancel qc

tc2

λc2

cancel

Figure 3: Stochastic net of an order-to-cash process. Weights and rates are presented symbolically

qs

to

λo

open q1

ti1

λi1

τ q2

ws1

τ
ts1

ws2

τ
ts2q3

ti2

λi2

τ

tf

λf

finalize q4
ws3

τ
ts3 q5

ws4

τ
ts4 q6

ta

λa

ack accept q7

ti3

λi3

τ

tp

λp

pay q8

ws5

τ
ts5

q9

q10

te

λe

emit receipt

tl

λl

leave

q11

q12

ws6

τ
ts6 qh

tr

λr

ack reject qr

tc1

λc1

τ qc

tc2

λc2

τ

Figure 4: Stochastic net obtained from that of Figure 3 in the case where the activities add item and cancel
are not logged.

delivery. Once both tasks are executed, the process instance successfully complete in

thehappy, final state (place qh). Notice the usage of the two silent transitions ts5 and

ts6 to respectively split and join the flow of control around the two concurrent tasks

emit receipt and ship.

Throughout this example, transitions denoting tasks are all timed, whereas internal

moves used for process orchestrations are captures as silent, immediate transitions.

Weights and rates are represented symbolically. ◁

The LGSPN shown in Figure 3 only contains visible timed transitions and silent

immediate ones. As shown next, this is not mandatory.

Example 2. Consider an information system supporting the execution of the net shown

in Figure 3, in a setting where the addition of items and the cancelation of orders cannot

be logged (for example because they are manual tasks executed by the customer with-

16

out interacting with the information system itself). To account for this key aspect, the

two tasks add item and cancel order should be replaced by τ , turning the correspond-

ing transitions into silent ones. This leads to the LGSPN shown in Figure 4. Notice

that the newly introduced silent transitions are all timed, as they denote the execution

of non-logged tasks, each introducing some delay upon progressing the execution of a

process instance. ◁

3.3. Labelled Stochastic Processes and their Finite-Trace Execution Semantics (With-
out Probabilities)

We now use LGSPNs as a basis for our model of labelled stochastic processes, and

describe their execution semantics based on finite traces. For the moment, we consider

choices as purely nondeterministic, while in Section 3.4 we handle their stochastic

behaviour.

Specifically, we are interested in using LGSPNs to describe the execution of process

instances. This is done by fixing an initial marking describing the initial state of the

process, and by executing the net starting from this initial marking and culminating in

one of the final states of the process, which we define to be all deadlock markings.

Definition 6 (Deadlock marking). A marking m of an LGSPN N is a deadlock mark-

ing if no transition is enabled in it: EN (m) = ∅. ◁

Definition 7 (Execution, supporting marking sequence). Let N be an LGSPN, and

let ms and mf be two markings of N . An execution of N from ms to mf is a (pos-

sibly empty) finite sequence t0, . . . , tn of transitions in N.T such that there exists

a corresponding sequence of markings m0, . . . ,mn+1 of N satisfying the following

conditions: (i) m0 = ms, (ii) mn+1 = mf , (iii) for every i ∈ {0, . . . , n}, we have

mi[ti⟩Nmi+1. We call the (unique) sequence m0, . . . ,mn+1 the supporting marking

sequence of t0, . . . , tn. ◁

Definition 8 (Labelled stochastic process). A labelled stochastic process (LSP) is a

triple ⟨N,m0,Mf ⟩, where:

17

• N is an LGSPN representing its supporting net;

• m0 is a marking of N representing the initial marking;

• Mf is a finite set of deadlock markings of N representing its final markings. ◁

Example 3. From now on, we will consider, as a running example, the LSP Norder

defined as follows:

• its supporting net Norder.N is the LGSPN shown in Figure 4;

• its initial marking Norder.m0 is the marking [qs];

• its final markings Norder.Mf are the three markings [qh], [qr], and [qc], represent-

ing the happy completion of the process where the order is paid and shipped, and

the unsuccessful completions where the order is either rejected or canceled. ◁

We will interchangeably assign markings to nets and to LSPs, simply meaning the

following: a marking of LSP N is a marking of N .N .

Paths are defined as LSP executions linking the initial state to one of the final states.

Definition 9 (Path through an LSP). A path through an LSP N is an execution (as

per Definition 7) that starts in the initial marking N .m0 of N and ends in one of its

final markings N .Mf . ◁

Example 4. Consider the LSP Norder from Example 3. The transition sequence

ηiair = to, ti1 , ts2 , tf , ts4 , ta, ti3 , tf , ts3 , tr

is a path through Norder, leading from the initial marking [qs] to the final, rejection

marking [qr]. It does so by adding an item to the order, passing once through accep-

tance, then adding an other item, finally being rejected.

The transition sequence:

ηiiair = to, ti1 , ts2 , ti2 , ts2 , tf , ts4 , ta, ti3 , tf , ts3 , tr

18

is another path through Norder, which resembles ηiair with the only difference that two

items are added before the first acceptance (later turned in a rejection). ◁

When logging paths, silent transitions disappear, while visible ones leave their cor-

responding task as a footprint. We capture this by lifting paths to traces: each trace

σ = e0, . . . , en ∈ A∗ is a sequence of events over A where, for simplicity, each event

ei simply tracks the task that has been executed, together with its qualitative position

in the trace with respect to the other events. A trace is a model trace for an LSP if it

is produced by one of its paths, stripping off the silent transitions and considering the

labels of the visible ones, keeping their relative positioning.

Definition 10 (Model trace, induced trace). A trace σ is a model trace of LSP N if

there exists a path η = t0, . . . , tm of N .N whose corresponding sequence of labels

N .N.ℓ(η) = N .N.ℓ(t0), . . . ,N .N.ℓ(tm) coincides with σ once all τ elements are

removed. In this case, we say that η induces σ. ◁

The following remark highlights one of the main phenomena arising when consid-

ering silent transitions. This will become a key challenge when reasoning over LSPs

and their stochastic behaviour.

Remark 1. A model trace σ of a (bounded) LSP N can in general be induced by

multiple, possibly infinitely many, paths through N . ◁

We denote the (possibly infinite) set of paths through LSP N that induce trace σ by

pathsN (σ). The following example substantiates Remark 1.

Example 5. Consider the two paths ηiair and ηiiair from Example 4. They both induce

the following trace of Norder:

σar = open, finalize,ack accept, finalize,ack reject

In fact, the addition of items is always handled via silent transitions, hence being com-

pletely invisible at the trace level.

19

More in general, trace σar is induced by the infinitely many paths captured through

the following regular expression:

pathsNorder(σar) =

η | η matches

open; (add item)+; finalize;

(ack accept; (add item)+; finalize)∗;

ack reject

where (i) the atomic regular expression is a task name from A; (ii) expression “e1; e2”

is the concatenation of expression e1 followed by expression e2; (iii) “e∗” is the Kleene

star-closure of expression e, capturing the set of regular expressions where e is repeated

zero or more times; (iv) “e+” captures the set of expressions where e is repeated at least

once. ◁

The execution semantics of an LSP is described by a (possibly infinite-state) la-

belled transition system typically named a reachability graph. In our setting, labelled

transition systems are deterministic, in the sense that given a state and a label, there

can be at most one transition having that state as source and that label attached. This

will be essential when turning to the stochastic behaviour of LSPs.

Definition 11 (Labelled transition system, path). A (deterministic) labelled transi-

tion system Λ is a tuple ⟨L, S, s0, Sf , ϱ⟩ where:

• L is a finite set of labels;

• S is a (possibly infinite) set of states;

• s0 ∈ S is the initial state;

• Sf ⊆ S is the set of accepting states;

• ϱ : (S × L) → S is a transition function, that is, a partial function that, given a

state s ∈ S and a label l ∈ L, is either undefined or returns a single successor state

s′ = ϱ(s, l);

• ϱ is undefined for states in Sf (that is, final states to not have successors).

A path through Λ is a finite (possibly empty) sequence l0 . . . ln such that there exists a

20

corresponding sequence r0, . . . , rn+1 of states in S satisfying the following properties:

(i) r0 = s0; (ii) rn+1 ∈ Sf ; (iii) for every i ∈ {0, . . . , n}, we have that ϱ(ri, li) is

defined, and ϱ(ri, li) = ri+1. ◁

When defining the execution semantics of an LSP, the resulting reachability graph

is a labelled transition system with the following charachteristics: (i) labels are built

from the LSP transitions; (ii) states correspond to markings of the LSP that are reach-

able from the initial state of the LSP; (iii) initial and accepting states correspond to

initial and final markings of the LSP; (iv) transitions match transition firings of the

LSP, keeping track of the transition name for provenance. The distinction between la-

bels of the LSP (task names or τ), and those of the reachability graph (transition names

paired with their label) is key to guaranteeing determinism of the reachability graph it-

self. In fact, labelling the transition system with the labels of the LSP would introduce

nondeterminism.

Definition 12 (Reachability graph). The reachability graph RG(N) of an LSP N is

a labelled transition system ⟨L, S, s0, Sf , ϱ⟩ with L = N .N.T and whose other com-

ponents are defined by mutual induction as the minimal sets satisfying the following

conditions:

1. s0 = N .m0, s0 ∈ S;

2. for every state m ∈ S, every transition t ∈ N .N.T with label l = N .N.ℓ(t),

and every marking m′ ∈ M(N .N.Q), if m[t⟩N .Nm′ we have that (a) m′ ∈ S;

(b) if m′ ∈ N .Mf , then m′ ∈ Sf ; (c) ϱ(m, t) = m′. ◁

It will be useful later to refer to outgoing transitions from a given state s. We do so

by defining: succRG(N)(s) = {s′ | RG(N).ϱ(s, (t, l)) = s′ for some t, l}.

Given an LSP N , the paths through RG(N) (in the sense of Definition 11) match

with all and only the paths through N (in the sense of Definition 9). In addition, due

to our requirement that all final markings are deadlock markings, accepting states of

RG(N) have no outgoing transitions either.

In general, RG(N) may contain infinitely many states, if it is possible to uncon-

ditionally fire transitions to create bigger and bigger markings. When capturing work

21

processes, this is undesired, as the control flow characterising the possible evolutions

of each single process instance is expected to be finite-state. In Petri net terms, this

means that work processes should be represented by bounded nets, as defined next.

Definition 13 (Bounded LSP). An LSP N is bounded if there exists a number k such

that, for every reachable marking m ∈ RG(N).S and every place q ∈ N .N.Q, we

have m(q) ≤ k. ◁

As desired, a bounded LSP induces a reachability graph that has finitely many states.

Boundedness is a standard property assumed when capturing work processes. Verify-

ing boundedness is decidable for Petri nets [19] and well-known techniques exist. It

is instead undecidable for GSPNs, due to the implicit priority of immediate transitions

over timed ones, but becomes decidable if these two types of transitions are separated,

in the following sense: considering transition enablement only based on the presence of

enough tokens in the transition input places, in every reachable marking it is never the

case that both some timed and some immediate transition are enabled. The LGSPNs of

Figures 3 and 4 indeed satisfy this separation.

Since a bounded LSP reaches finitely many distinct markings, it also reaches

finitely many distinct deadlock ones. We then single out the class of complete bounded

LSPs, which exhaustively consider all their deadlock markings as final ones.

Definition 14. A bounded LSP N is complete if the set N .Sf of its final markings

coincide with the set of deadlock markings in RG(N). ◁

In the remainder of this paper, we focus on bounded LSPs, always implicitly as-

suming that they are complete. This is just for convenience, and we remark that all the

technical results presented hereafter seamlessly carry over the whole class of bounded

LSPs.

Example 6. Without considering, for the moment, ρ-attachments on edges, Figure 5

shows the finite reachability graph of the LSP Norder, which is 1-bounded. It also

witnesses that Norder is a complete bounded LSP. ◁

22

m0

[qs]

m1

[q1]

(to,open)1
m2

[q2]

(ti1 ,τ)

1
(ts1 ,τ)

ρs1 =
ws1

ws1
+ws2

m3

[q3]

(ts2 ,τ)

ρs2 =
ws2

ws1+ws2

(ti2 ,τ)

ρi2 =
λi2

λi2+λf+λc1

m4

[q4]

(tf ,fin)

ρf =
λf

λi2+λf+λc1

m5

[q5]

(ts3 ,τ)
ρs3 =

ws3

ws3
+ws4

mr

[qr]

(tr,rej) 1

m6

[q6]
(ts4 ,τ)

ρs4 =
ws4

ws3
+ws4

m7

[q7]

(ta,acc)

1

mc

[qc]

(tc1 ,τ)

ρc1 =
λc1

λi2+λf+λc1

(tc2 ,τ)ρc2 =
λc2

λi3+λp+λc2

(ti3 ,τ)

ρi3 =
λi3

λi3
+λp+λc2

m8

[q8]

(tp,pay)

ρp =
λp

λi3+λp+λc2

m9[q9,
q10

]
(ts5 ,τ)1

m11[q9,
q12

] (tl,leave)

ρl =
λl

λl+λe

m10[q10,
q11

](te,emit)

ρe =
λe

λl+λe

m12[q11,
q12

]
(te,emit)

1

(tl,leave)

1

mh

[qh]

(ts6 ,τ)1

Figure 5: Stochastic reachability graph of the order-to-cash LSP. States are named. The initial state is shown
with a small incoming edge. Final states have a double contour. To ease readability, in addition to transition
names we also include the corresponding task names (or τ). Some task names are shortened, and we depict
transitions that correspond to the firing of silent net transitions in magenta.

We close this section by identifying undesired reachable markings that cannot be

progressed to reach one of the final markings of the LSP of interest. They will be

of special interest when reasoning over bounded LSPs and their stochastic behaviour.

Such markings resemble the well-known notion of livelock.

Definition 15 (Livelock marking). A marking s ∈ RG(N).S of a bounded LSP N is

a livelock marking if it is not a deadlock marking, and there is no execution that starts

from s and leads to some deadlock marking. ◁

Since bounded LSPs have finitely many reachable markings, the only possibility of

creating livelocks is to recur over the same set of markings, without ever having the

possibility of exiting from the loop to reach a deadlock marking.

The following example illustrates these notions.

Example 7. Consider the LSP Nlive of Figure 6. The LSP contains an initial choice.

If one of the two transitions t01 and t04 is selected, the process instance completes in

the only final marking. If t02 is selected, the process instance enters into a part of the

process where it is forced to progress forever - a livelock situation. By looking at the

reachability graph, it is in fact clear that the LSP contains two livelock markings - when

a token is assigned either to q2 or q3. ◁

23

q0

t02

λb

b

t01

λa

a q1

q2

t23

λc

c q3

t32

λd

d

t33

λe

e

t04

λf

f q4

t45

λg

g q5

(a) Supporting net.

m0

[q0]

m2

[q2]

m1

[q1]

m3

[q3]

t01ρa
=

λa

λa
+λ

b
+λ

f

t02

ρb =
λb

λa+λb+λf

t23

1

t32

ρd = λd

λd+λe

t33

ρe =
λe

λe+λd

m4

[q4]

t04ρ
f =

λ
f

λ
a+λ

b+λ
f m5

[q5]

t45

1

(b) Reachability graph.

Figure 6: Reachability graph (b) of an LSP with supporting net shown in (a), initial marking [q0] and final
markings [q1] and [q5]. Markings s2 and s3 are livelock markings. The portion of the transition system that
cannot reach a final marking is greyed out.

3.4. Labelled Stochastic Processes and their Stochastic Behaviour

We finally extend LSPs with stochastic behaviour, by incorporating stochastic de-

cision making to determine which enabled transition to fire. Technically, given a

marking, we want to obtain a probability distribution over the transitions that are en-

abled therein, and use it to choose which one is fired next. This is where transition

weights come into play [2].

The resulting execution semantics is then defined through a stochastic transition

system.

Definition 16 (Stochastic transition system). A stochastic transition system is a tu-

ple ⟨L, S, s0, Sf , ϱ, p⟩ where ⟨L, S, s0, Sf , ϱ⟩ is a labelled transition system (in the

sense of Definition 11), while p : ϱ → [0, 1] is a transition probability function map-

ping each transition in ϱ to a corresponding probability value in [0, 1], such that for

every non-deadlock marking s ∈ S,
∑

ξ=⟨s1,t,s2⟩∈ϱ s.t. s1=s p(ξ) = 1. ◁

To define the stochastic execution semantics of LSP, we then need to indicate how

to enrich its reachability graph with a transition probability function. For immediate

transitions, weights are directly used to define the relative likelihood that one among

the enabled transitions will fire: each firing probability is in fact simply obtained as the

ratio between the weight of the corresponding transition and the sum of weights of all

enabled transitions.

24

An essential aspect of GSPNs is that exactly the same probability distribution is

obtained also in the case of timed transitions. We briefly recall why this is the case.

Consider two exponential random variables X ∼ Expo(λ) and Y ∼ Expo(µ). We are

interested in computing the probability that the delay sampled by X is shorter than that

sampled by Y , which in turn means that the transition associated by X will fire first. By

recalling Section 3.2, noticing that the two exponential distributions are independent

from each other, and that they are 0 for negative values, we recall the well-known

result (see, e.g., [27, Chapter 2]) that P(X ≤ Y) =∫ ∞

0

∫ ∞

x

fX(x)fY (y)dydx =

∫ ∞

0

∫ ∞

x

λe−λxµe−µydydx =

=

∫ ∞

0

λe−λx

∫ ∞

x

µe−µydydx =

∫ ∞

0

λe−λx
[
− e−µy

]∞
x
dx =

=

∫ ∞

0

λe−λxe−µxdx =

∫ ∞

0

λe−(λ+µ)xdx =

[
− λ

λ+ µ
e−(λ+µ)x

]∞
0

=
λ

λ+ µ

Consequently, we get the following approach to compute the firing probability, which

homogeneously applies to immediate and timed transitions.

Definition 17 (Firing probability). Let N be an LSP and m be a marking of N . The

firing probability of a transition t ∈ N .N.T in m, written PN (t | m), is defined as:

PN (t|m) =

w(t)∑

t′∈EN .N (m) w(t′) t ∈ EN .N (m)

0 otherwise

The execution semantics of an LSP is then defined by extending its reachability

graph with a transition probability function based on firing probabilities.

Definition 18 (Stochastic reachability graph). The stochastic reachability graph

SRG(N) of an LSP N is a stochastic labelled transition system ⟨L, S, s0, Sf , ϱ, p⟩

where ⟨L, S, s0, Sf , ϱ⟩ = RG(N), and p is defined as follows: for every transition

ξ = ⟨m, t,m′⟩ ∈ ϱ, we have that p(ξ) = PN (t | m). ◁

25

Example 8. Consider the LSP Norder from Example 3, whose supporting net is shown

in Figure 4. Figure 5 captures the stochastic reachability graph SRG(Norder) (using the

symbolic weights/rates shown in Figure 4). If we fix the weight w(ts4) of transition ts4

to 80, and the weight w(ts3) of transition ts3 to 20, we are representing that, whenever a

decision has to be taken on whether to accept or reject an order, then there is 0.2 chance

that the decision is of rejection, and 0.8 chance that the decision is of acceptance. ◁

A final step in the definition of the execution semantics of LSPs, is to lift firing

probabilities to the level of paths and traces. As customary in GSPNs, since every

firing contained in a path corresponds to an independent choice, we simply need to

compute the product of the firing probabilities.

Definition 19 (Path probability). The probability that a LSP N produces a path η =

t0, . . . , tn of N , called the path probability of η according to N , is:

PN (η) =

n∏
i=1

PN (ti|mi)

where m0, . . . ,mn+1 is the supporting marking sequence for η (cf. Definition 7). The

same notion is equivalently defined given as input a stochastic transition system. ◁

The probability of a trace is then simply obtained by summing up the probabilities

of all the paths inducing that trace.

Definition 20 (Trace probability). The probability that a LSP N produces a model

trace σ of N , called the trace probability of η according to N , is:

PN (σ) =
∑

η∈pathsN (σ)

PN (η)

The central problem we are now facing, which will be tackled in the second part of the

article, is that due to Remark 1, this is in general an infinite sum, even in the case of

bounded LSPs.

26

Example 9. Consider the model trace σar of Norder from Example 5. The trace prob-

ability PNorder(σar) cannot be directly computed, as it requires to sum the probabilities

of the infinitely many paths pathsNorder(σar). ◁

4. Analysis of Bounded Stochastic Labelled Processes

Now that we have settled the formal model of bounded LSPs, we are ready to tackle

their analysis. We recall from the introduction the five fundamental analysis tasks

we tackle: outcome probability, trace probability, specification probability, stochastic

compliance and stochastic conformance checking. We address these challenges as

follows:

(a) In Section 5, we formalise the problem of outcome probability and show how

it can can be solved using state-of-the-art analytic techniques for the analysis of

absorbing Markov chains [28].

(b) In Section 6, we formalise the problem of specification probability and show how

it can be reduced to that of outcome probability; we do so by employing state-

of-the-art qualitative model checking techniques for Markov chains [6], infused

with a technique to handle silent transitions and suitably defined over finite traces.

We then argue that traces can be encoded as specifications, hence reducing trace

probability to specification probability.

(c) In Section 7, we introduce the problem of stochastic compliance, and show how

it can be solved via specification probability.

(d) In Section 8, we describe a proof-of-concept implementation to solve the specifi-

cation probability problem following the technique explained in Section 6, and put

the implementation into practice by showing how stochastic conformance check-

ing measures can be effectively computed on a number of real-life logs.

5. Computing Outcome Probabilities

We tackle the problem of computing outcome probabilities, that is, determining

the probability that a process instance of the bounded LSP of interest evolves from the

initial to one (or a subset) of the final markings, representing the outcome(s) of interest.

27

For example, we may be interested in knowing the probability that the bounded LSP

Norder of our running example (Figure 3) evolves an order from opening (marking [qs])

to happy completion (marking [qh]).

Formally, we define the problem as follows:

Problem 1 (OUTCOME-PROB(N , F)).

Input: bounded LSP N , non-empty set F ⊆ N .Mf ;

Output: probability value PN (F) =
∑

η path through N ending in some m∈F PN (η). ◁

The same problem can also get, as input, a stochastic transition system instead of a

bounded LSP.

OUTCOME-PROB cannot be solved through an enumeration of paths, as there may

be infinitely many paths reaching the desired marking(s). So far, approximated enumer-

ations have been used, by fixing a maximum threshold either on the length of paths [32],

or on their minimum probability [7].

5.1. Absorbing Markov Chains

To obtain an analytically exact answer, we build on the direct connection, known

from literature [47, 45], between GSPNs and discrete-time Markov chains [27, 6]. This

is possible since if one does not consider labels, stochastic transition systems (in the

sense of Definition 16) are in fact discrete-time Markov chains. In the literature, the

Markov chain corresponding to the reachability graph of a bounded GSPN is called the

embedded/jump chain, which can be seen as the core of the continuous-time Markov

chain capturing the timed execution semantics of the net, once delays are stripped away

and one is only interested in the firing probabilities [47, 45]. Forgetting labels has

another effect: it blurs the distinction between silent and visible transitions. Hence, the

same approach used in the literature for bounded GSPNs can be employed, in spirit, to

deal with bounded LSPs. There is a main different, though: we have to suitably mirror

the finite-trace semantics of a bounded LSP into its corresponding Markov chains. We

do so by establishing a connection between bounded LSPs and the class of absorbing

Markov chains [28, Chapter 11].

28

Instead of using the classical definition of Markov chains via probability transi-

tion matrixes, we define them via their graph representation, which provides a direct

correspondence with stochastic transition systems as per Definition 16.

Definition 21 (Markov chain, walk, walk probability). An absorbing Markov chain

is a tuple M = ⟨V, ϱ, p⟩ where:

• V is a finite set of states;

• ϱ ⊆ V × V is a transition relation, such that ⟨V, ϱ⟩ is a connected graph;

• p : ϱ → [0, 1] is a transition probability function mapping each transition in ϱ to a

corresponding probability value in [0, 1], such that for every state v ∈ V , we have∑
ξ=⟨v1,v2⟩∈ϱ s.t. v1=v p(ξ) = 1.

A walk over M from state v0 ∈ V to state vn ∈ V is a sequence w = v0 · · · vn of

states, such that for every i ∈ {0, n− 1}, we have ⟨vi, vi+1⟩ ∈ ϱ. The probability of w

is PM(w) =
∏n−1

i=0 p(⟨vi, vi+1⟩). ◁

Definition 22 (Absorbing Markov chain, proper walk). An absorbing Markov

chain is a Markov chain M = ⟨V, ϱ, p⟩, where the set V of states is partitioned into

two subsets V a and V t:

• V a is the set of absorbing states, so that v ∈ V a if and only if the only transition

having v as source is the self-loop ⟨v, v⟩ (thus implying p(⟨v, v⟩) = 1);

• V t = V \ V a is the set of transient states, so that v ∈ V t if and only if there is a

walk from v to some absorbing state in V a.

A proper walk over M is a walk from a transient state v ∈ V t to an absorbing state

vf ∈ V a , which does not recur over vf (i.e., the previous-last state of the walk is

different from vf). ◁

The notion of proper walk helps establishing a direct correspondence with paths

through an LSP. Notice that having longer walks recurring over the same absorbing

state would not change at all their overall probability.

Within the wide spectrum of analysis tasks for Markov chains, the main problem

29

we are interested in is that of calculating the absorption probability. Given a transient

state v and a set A of one or more absorption states, the absorption probability of v is

the probability that a walk from v ends up in one of the states A. This corresponds to

the overall probability of proper walks from v to one of the states in A.

Problem 2 (ABSORPTION-PROB(M, v, A)).

Input: Absorbing Markov chain M, transient state v ∈ M.V t, non-empty set A ⊆

M.V a of absorbing states;

Output: probability value PN (A|v) =
∑

w proper walk from v to some vf∈A PM(w). ◁

This problem can be analytically tackled by solving a system of linear equations,

which encode the step-wise semantics of the input absorbing Markov chain, and how

probabilities are propagated therein. In particular, every state vi ∈ M.V gets a cor-

responding state variable xvi , capturing the probability the probability PM(A|vi) of

reaching one of the absorbing states in A from state vi; this means that variable xv

represents the solution of the problem. Then, each equation defines the value of a state

variable xvi as follows:

Base case (targeted absorbing state) if vi ∈ A, that is, vi is one of the targeted ab-

sorbing states), then xvi = 1;

Base case (non-targeted absorbing state) if vi ∈ V a \A, that is, vi is a non-targeted

absorbing state, then xvi = 0;

Inductive case if vi is a transient state, its variable is equal to sum of the state variables

of its successor states, each weighted by the correspnding transition probability

to move to that successor.

Formally, ABSORPTION-PROB(M, v, A) leads to the following system EM(v,A)

of linear equations, defined as follows:

xvi
= 1 for each vi ∈ A (1)

xvj = 0 for each vj ∈ M.V a \A (2)

xvk =
∑

⟨vk,v′
k⟩∈M.ϱ

M.p(⟨vk, v′k⟩) · xv′
k

for each vk ∈ M.V t (3)

We will introduce examples of systems of this kind in the next section. To conclude this

30

introductory discussion on absorbing Markov chains, we recall the following central

result.

Theorem 1 (From [28]). Given an absorbing Markov chain M, a transient state v ∈

M.V t, and a non-empty subset A of absorbing states from M.V a, we have:

1. EM(v,A) has exactly one solution;

2. ABSORPTION-PROB(M, v, A) coincides with the value of state variable xv ex-

tracted from the unique solution of EM(v,A). ◁

5.2. Connecting LSPs to (Absorbing) Markov Chains

We now encode stochastic transition systems and LSPs into corresponding Markov

chains. The encoding is straightforward: transition labels are stripped off, and final

states get a self-loop with probability 1, thus becoming absorbing states in the chain.

Definition 23. The embedded Markov chain of a stochastic transition system Λ =

⟨L, S, s0, Sf , ϱ, p⟩ is the Markov chain Chain(Λ) = ⟨V, ϱ′, p′⟩, where:

• V = S;

• ϱ′ = ϱ ∪ {⟨s, s⟩ | s ∈ Sf};

• p′ = {⟨s1, s2⟩ 7→ p(⟨s1, ℓ, s2⟩) | ⟨s1, ℓ, s2⟩ ∈ ϱ} ∪ {⟨s, s⟩ 7→ 1 | s ∈ Sf}.

The embedded Markov chain of a bounded LSP N is the Markov chain Chain(N) =

Chain(RG(N)). ◁

By inspecting the notion of reachability graph of a bounded LSP, as well as the

notion of livelock marking, we immediately get the following important result.

Lemma 1. For a livelock-free bounded LSP N , we have that Chain(N) is an absorb-

ing Markov chain. ◁

Proof. From Definition 23, we have that the final markings of RG(N), which are dead-

lock markings and hence do not have any successor, get encoded by Chain(Λ) into

absorbing states. By Definition 15, livelock-freedom implies that every other marking

in RG(N) reaches some of such final marking, thus getting encoded by Chain(Λ) into

a transient state. ⊣

31

5.3. Outcome Probability and Stochastic Languages for Livelock-free bounded LSPs

Lemma 1 provides the basis for showing that the outcome probability problem can

be casted as an absorption probability problem, and hence analytically solved through

the technique mentioned in Theorem 1.

Theorem 2. For every livelock-free bounded LSP N and set F ⊆ N .Mf , we have

that OUTCOME-PROB(N , F) has a unique solution, which coincides with that of

ABSORPTION-PROB(Chain(N),N .s0, F). ◁

Proof. Lemma 1 guarantees that Chain(N) is an absorbing Markov chain. This im-

plies, by Theorem 1, that ABSORPTION-PROB(Chain(N),N .s0, F) has a unique so-

lution. By contrasting the definition of path through a LSP as per Definition 9, with

the definition of proper path as per Definition 22, we have that every path through N

corresponds one-to-one to a proper walk over Chain(N) from s0. Hence:

OUTCOME-PROB(N , F) =
∑

η path through N ending in some m∈F

PN (η)

=
∑

w proper walk of Chain(N) from s0 to some m∈F

PChain(N)(w)

= ABSORPTION-PROB(Chain(N),N .s0, F) ⊣

Considering Theorem 2, the encoding of livelock-free bounded LSPs into absorb-

ing Markov chains, and the definition of the corresponding systems of equations,

we can directly solve the outcome probability problem OUTCOME-PROB(N , F) for

a livelock-free bounded LSP and a nonempty set F ⊆ N .Mf by extracting the value

of variable xN .m0
from the unique solution of the following system EMf

N of equations:

xmi = 1 for each marking mi ∈ F (4)

xmj
= 0 for each marking mj ∈ N .Mf \ F (5)

xmk
=

∑
⟨mk,l,m′

k⟩∈succRG(N)(mk)

p(⟨mk, l,m
′
k⟩) · xm′

k
for each marking mk ∈ RG(N).S \Mf (6)

32

Example 10. Consider the bounded LSP Norder (Figure 3). We want to solve

OUTCOME-PROB(Norder,mh) to compute the probability that a created order is even-

tually paid and shipped. To do so, we encode the reachability graph of Figure 5 into

the system Emh

Norder
. Specifically, noticing that the overall sum of all probability values

appearing in the outgoing edges of a given marking is always 1, we get:

xmh
= 1

xmc
= xmr

= xm5
= 0

xm10 = xm11 = xm12 = xmh
= 1

xm8 = xm9 = ρexm10 + ρlxm11 = ρe + ρl = 1

xm6
= xm7

= ρi3xm3
+ ρpxm8

+ ρc2xmc
= ρi3xm3

+ ρp

xm4
= ρs3xm5

+ ρs4xm6
= ρs4ρi3xm3

+ ρs4ρp

xm3
= ρi2xm2

+ ρfxm4
+ ρc1xmc

= ρi2xm2
+ ρfρs4ρi3xm3

+ ρfρs4ρp =

=
ρi2

1− ρfρs4ρi3
xm2

+
ρfρs4ρp

1− ρfρs4ρi3

xm2
= ρs1xm1

+ ρs2xm3
= ρs1xm1

+
ρs2ρi2

1− ρfρs4ρi3
xm2

+
ρs2ρfρs4ρp
1− ρfρs4ρi3

=

=
ρs1 − ρs1ρfρs4ρi3

1− ρfρs4ρi3 − ρs2ρi2
xm1

+
ρs2ρfρs4ρp

1− ρfρs4ρi3 − ρs2ρi2

xm0 = xm1 = xm2 =
ρs1 − ρs1ρfρs4ρi3

1− ρfρs4ρi3 − ρs2ρi2
xm0 +

ρs2ρfρs4ρp
1− ρfρs4ρi3 − ρs2ρi2

=
ρs2ρfρs4ρp

1− ρs1 − ρs2ρi2 − ρfρs4ρi3 + ρs1ρfρs4ρi3

=
ρs2ρfρs4ρp

1− ρs1 − ρs2ρi2 − ρfρs4ρi3(1− ρs1)
=

ρs2ρfρs4ρp
1− ρs1 − ρs2ρi2 − ρs2ρfρs4ρi3

If we assume that the weights of Norder are all equal, the probability distributions for

choosing the next transition are all uniform, so that ρs1 = ρs2 = 1
2 , ρi2 = ρf = ρc1 =

1
3 , ρs3 = ρs4 = 1

2 , ρi3 = ρp = ρc2 = 1
3 , and ρe = ρl =

1
2 . Under this assumption, we

thus get xm0 = 1/36
1−1/2−1/6−1/36 = 1/36

11/36 = 1
11 ≈ 0.09.

With an analogous approach, the probability that an order gets cancelled is 4
11 , and

33

the one that an order gets rejected is 6
11 . ◁

As the example shows, the total sum of probabilities associated to reaching the

whole set of final markings is, as expected, 1: every order that finishes does so in

one of the categories of completion (i.e., one of the final markings). This actually

generalizes to any livelock-free bounded LSP: the outcome probability calculated by

considering the whole set of final markings corresponds to 1.

Theorem 3. For every livelock-free bounded LSP N , we have that

OUTCOME-PROB(N ,N .Mf) = 1. ◁

Proof. The claim is a direct consequence of Theorem 2, and the fact that the probability

of reaching an absorbing state in an absorbing Markov chain is 1 - as proved in [28,

Theorem 11.3]. ⊣

The effect of Theorem 3 is that the trace language of a livelock-free bounded LSP

is indeed a stochastic language.

Definition 24 (Stochastic language). A stochastic language over an alphabet L of

symbols is a total function Ψ : L∗ → [0, 1] mapping each sequence over L onto a

probability value, so that
∑

ξ∈L∗ Ψ(ξ) = 1. ◁

Definition 25 (Induced stochastic language). The induced stochastic language of a

livelock-free bounded LSP N is the function PN : A∗ → [0, 1] defined as follows: for

every σ ∈ A∗, we have

PN (σ) =

PN (σ) if σ is a model trace of N

0 otherwise

Corollary 4. Let N be a livelock-free bounded LSP. Then PN is indeed a stochastic

language in the sense of Definition 24. ◁

34

5.4. Dealing with Livelocks

We now show how the technique introduced in Section 5.3 for livelock-free

bounded LSPs can be generalized to arbitrary bounded LSPs with minor adaptations:

the crux is to deal with livelocks by recognizing that they are not able to reach any final

marking, and hence their states should be assigned to a probability value of 0.

This problem is well-known in Markov chain analysis. In fact, the same approach

used to solve the absorption probability problem can be adopted, in spirit, to deal with

arbitrary Markov chains, in particular to compute the probability that a walk from a

state vi culminates in another state vf . However, as the next example shows, in case of

livelocks the system of linear equations recalled before becomes indeterminate.

Example 11. Consider the bounded LSP Nlive from Example 7 and Figure 6. If we try

to compute the outcome probability of its two final markings [q1] and [q5] by applying

verbatim the approach used so far, we get the following system of linear equations,

directly derived from the reachability graph of Figure 6(b):

xm5
= 1 xm2

= xm3

xm4
= xm5

xm1
= 1

xm3
= ρdxm2

+ ρexm3
xm0

= ρaxm1
+ ρbxm2

+ ρfxm4

By recalling that, by definition, ρd + ρe = 1, the system yields xm3
= ρdxm3

+

ρexm3 = (ρd+ρe)xm3 = xm3 , and so is indeterminate. This is caused by the livelock

markings [q2] and [q3], which induce a cycle from which none of the target markings

can be reached. The minimal non-negative solution of the system then assigns xm3
=

xm2 = 0 and, in turn, xm0 = ρa. ◁

The indeterminacy shown in Example 11 is solved in Markov chain analysis by

turning the system of equalities into an optimization problem, where one is interested

in extracting the minimum non-negative solution [27, 6]. This corresponds to assigning

0 to each state variable that is causing the indeterminacy. In the case of bounded LSPs,

35

such state variables correspond to livelock markings. To deal with arbitrary bounded

LSPs without resorting to an optimisation problem, we then proceed as follows. The

outcome probability problem OUTCOME-PROB(N , F) for an arbitrary bounded LSP

and a nonempty set F ⊆ N .Mf is solved by extracting the value of variable xN .m0

from the unique solution of EMf

N , now generalized as follows:

xmi
= 1 for each marking mi ∈ F (7)

xmj = 0 for each marking mj ∈ N .Mf \ F (8)

xml
= 0 for each livelock marking ml ∈ RG(N).S (9)

xmk
=

∑
⟨mk,l,m′

k⟩∈succRG(N)(mk)

p(⟨mk, l,m
′
k⟩) · xm′

k
for each other marking mk ∈ RG(N).S (10)

Recall that detecting livelock markings can be done over the reachability graph of the

input bounded LSP via simple graph (non-)reachability checks. Such checks do not

involve probabilities at all.

Example 12. We revise Example 11 by solving OUTCOME-PROB(Nlive, {[q1], [q5]})

as follows. The system E{[q1],[q5]}
Nlive

corresponds to:

xm5
= xm1

= 1 xm2
= xm3

= 0

xm4
= xm5

xm0
= ρaxm1

+ ρbxm2
+ ρfxm4

Hence, we get xm0 = ρa + ρf . ◁

As witnessed by Example 12, in case of bounded LSPs with livelocks, the outcome

probability value p computed over all final markings is not 1, as instead it is guaranteed

for livelock-free bounded LSPs (cf. Theorem 3). This also means that every bounded

LSP with livelocks does not induce a stochastic language over its traces, but only a

form of “incomplete” stochastic language, where the complement probability value

1− p indicates the probability that the process gets stuck in a livelock.

Remark 2. For a bounded LSP N containing livelocks, we get the following:

• OUTCOME-PROB(N ,N .Mf) < 1;

36

• 1 − OUTCOME-PROB(N ,N .Mf) is the probability that an execution starting

from N .m0 ends up into a livelock. ◁

Example 13. By continuing on Example 12, we have that the probability that an

execution of Nlive starting from Nlive.m0 = [q0] ends up into a livelock is 1 −

OUTCOME-PROB(Nlive, {[q1], [q5]}) = 1 − ρa − ρf = ρb, which is in fact the proba-

bility of firing t02 from the initial marking. ◁

6. Computing Specification and Trace Probabilities

We now further leverage the connection between bounded LSPs and discrete-time

Markov chains (cf. Definition 23), to deal with the computation of specification prob-

abilities. A specification is a compact description of (possibly infinitely many) traces

of interest, and the problem is about measuring what is the probability that a trace pro-

duced by the bounded LSP of interest indeed belongs to the specification. This problem

is also known under the name of qualitative model checking [6, Ch. 10], to stress that

the specification is qualitative, i.e., non-probabilistic.

To solve the problem, we borrow the main idea from [6, Ch. 10] that underlies

the construction of the cross-product stochastic transition system that describes all and

only the behaviour that belong to both the specification and the bounded LSP under

scrutiny. However, we have to adapt this construction to reflect two distinctive features

of our setting:

• traces have a finite length, and this has to be taken into account in the choice of

formalism for describing the specification, as well as when constructing the cross-

product;

• the behaviour described by the specification are traces, while those of the bounded

LSP are paths over transitions that also include silent steps, a mismatch that has to

be resolved before constructing the cross product.

We proceed by fixing and justifying the formalism we use to represent specifications.

We then formalise the problem of specification probability, and describe how to solve

37

it in three steps: (i) infusing silent steps in the specification; (ii) computing the cross-

product of the altered specification and the reachability graph of the bounded LSP; and

(iii) solving an outcome probability problem on the cross product.

Finally, we show that the solution of the specification probability problem yields,

as a by-product, the solution of the trace probability problem (as described in Defini-

tion 20).

6.1. Automata-Based Specifications

As already pointed out, a specification intentionally describes a (possibly infinite)

set of desired finite-length traces. Such traces are defined over the task names in A

(without τ). As a natural formalism to capture such specifications, we employ (deter-

ministic) finite-state automata. To avoid confusion between the sequences accepted by

automata and paths/traces of LSPs, we use the standard term of words for automata.

Definition 26 (DFA). A deterministic finite-state automaton (DFA) over L is a tuple

A = ⟨L, S, s0, Sf , δ⟩, where:

• L is a finite alphabet of symbols;

• S is a finite set of states, with s0 ∈ S the initial state and Sf ⊆ S the set of final

states;

• δ : S×L → S is a transition transition function that, given a state s ∈ S and a label

l ∈ L, returns the successor state δ(s, l). ◁

Definition 27 (Word, acceptance, language). Given a finite alphabet L, a word over

L is a finite sequence of symbols from L∗. A DFA A over L accepts a word σ =

l0, . . . , ln if there exists a sequence of states s0, . . . , sn+1 such that:

• s0 = A.s0;

• sn+1 ∈ Sf ;

• for every i ∈ {0, . . . , n}, we have si+1 = δ(si, li).

The language L(A) of A is the set of all words accepted by A. ◁

38

s0 s1

A \ {open}

open

A \ {ship}
ship

(a) Every open is followed by pay

s0 s1

s2A \ {can}

rej
A \ {pay}

pay

A

(b) At some point rej and then pay

s0 s1

s2A \ {fin,acc}

fin
A

acc

A

(c) Acc only possible after fin

Figure 7: DFAs of three properties for the order-to-cash example. A single edge labelled by a set A of task
names compactly describes a set of edges, each labelled by a task name from A.

Remark 3. Dealing with DFAs in turn provides an operational solution for dealing

with a wide range of formalisms to specify traces:

• It expresses all non-deterministic automata (NFAs), as each NFA can be encoded

into a corresponding DFA [30].

• For the same reason [30], it expresses all regular expressions.

• It expresses all declarative specifications formalised in Linear Temporal Logic over

finite traces (LTLf) or the richer Linear Dynamic Logic over finite traces (LDLf), as

such logics have an automata-theoretic characterisation based on NFAs/DFAs [18,

17].

• In turn, it expresses all specifications captured in Declare [50, 48], possibly extended

with meta-constraints [17]. ◁

Example 14. Figure 7 shows three specifications of interest for our running example.

Specifically:

• The DFA in Figure 7(a) captures those words where every time an order is opened,

it is later shipped (possibly executing other tasks in between).

• The DFA in Figure 7(b) captures those words where the other is eventually rejected

and later paid.

• The DFA in Figure 7(c) captures those words where if an order is accepted, then it

has been previously finalised. ◁

39

6.2. Defining and Solving the Specification Probability Problem

Noticing that words over A correspond to traces of LSPs, we are now ready to

define the specification probability problem.

Problem 3 (SPEC-PROB(N , A)).

Input: bounded LSP N , DFA A over A;

Output: probability PN (A) =
∑

σ path through Ns.t. σ∈L(A) PN (σ). ◁

To solve the problem, we need to account for three different aspects:

1. deal with the mismatch between paths over N and words accepted by A;

2. single out all and only those paths through N that are also words accepted by A;

3. compute the collective probability of all such traces.

We tackle these three aspects with three corresponding steps.

Silenced DFA. Given a specification DFA describing desired words over A, we trans-

form it into a corresponding DFA describing corresponding sequences of labels over Σ.

The idea is to make the resulting DFA continues to describe the same desired traces, but

accepts padding their visible steps with an arbitrary number of silent steps in between.

Definition 28 (Silenced DFA). Given a DFA A = ⟨A, S, s0, Sf , δ⟩ over A, its si-

lenced DFA Ā is the DFA ⟨Σ, S′, s′0, S
′
f , δ

′⟩ over Σ satisfying the following conditions:

• states (including initial and final ones) are identical to A, that is, S′ = S, s′0 =

s0, and F ′ = F ;

• δ′ expands δ by introducing a τ -labelled self-loop in each state, that is, δ′ =

δ ∪ {⟨s, τ⟩ → s | s ∈ S} ◁

Figure 8 shows the silenced DFAs corresponding to the DFAs in Figure 7.

We now establish a key correspondence between DFAs and their silenced versions,

when characterising traces of an LSP.

Lemma 2. Let N be an LSP, and A be a DFA over A. For every model trace σ of N

and for every path η of N inducing σ, we have that σ is accepted by A if and only if

the sequence of labels N .N.ℓ(η) is accepted by Ā. ◁

40

s0 s1

A \ {open}

open

A \ {ship}
ship

τ τ

(a) Every open is followed by pay

s0 s1

s2A \ {can}

rej
A \ {pay}

pay

A

τ τ

τ

(b) At some point rej and then pay

s0 s1

s2A \ {fin,acc}

fin
A

acc

A

τ τ

τ

(c) Acc only possible after fin

Figure 8: Silenced DFAs corresponding to the three DFAs in Figure 7.

Proof. The claim directly follows from Definitions 10 and 28, noticing that the differ-

ence between a trace σ induced by a path η and the sequence of labels l = N .N.ℓ(η)

is that l may insert arbitrarily many τ symbols at the beginning and and of σ, as well

as between every consecutive tasks appearing therein. ⊣

Product stochastic transition system. Given a bounded LSP N and a DFA B over Σ,

we use RG(N) and B to construct a product stochastic transition system generates all

and only those paths through N whose label sequences are accepted by B, retaining

the probabilities of those paths through N . This can be done by the standard product

automaton construction, with the only difference that we need to retain the stochastic

information coming from N . We then use this as a basis to solve the specification

probability problem, relying on silenced-DFAs.

Definition 29 (Product system). Let N be a bounded LSP with RG(N) =

⟨S1, s10, S
1
f , ϱ

1, p1⟩, and B = ⟨Σ2, S2, s20, S
2
f , δ

2⟩ a DFA over Σ. The product sys-

tem ΥB
N of N and B is a stochastic transition system ⟨S, s0, Sf , ϱ, p⟩ whose states are

pairs of states from S1 × S2, and whose components are defined by mutual induction

as the minimal sets satisfying the following conditions:

1. s0 = ⟨s10, s20⟩, s0 ∈ S;

2. for every state ⟨s1, s2⟩ ∈ S and every label l ∈ Σ2 such that

(i) ⟨s1, t1, s1′⟩ ∈ ϱ1 for some s1
′ ∈ S1 and transition t1 ∈ N .N.T with

N .N.ℓ(t1) = l, and

(ii) δ2(s2, l) = s2
′ for some s2

′ ∈ S2,

41

and taking s′ = ⟨s1′, s2′⟩ we have:

(a) s′ ∈ S,

(b) ⟨s, t1, s′⟩ ∈ ϱ,

(c) p(⟨s, t1, s′⟩) = p1(⟨s1, t1, s′1⟩),

(d) if s1′ ∈ S2
f and s2

′ ∈ S2
f , then s′ ∈ Sf . ◁

Remark 4. The product system as per Definition 29 is not a complete stochastic tran-

sition system: there may be states whose successor probabilities do not add up to one.

However, it can be made complete as follows:

• introduce a fresh, non-final sink state ssink, and introduce a new net transition

tsink that is not used in the input LSP;

• for every state s in the product system such that the sum of the probabilities of its

outgoing edges correspond to p < 1, add an edge between s and ssink, labelling

it with tsink and assigning probability 1− p to it.

As we will see next, we are going to use the (Markov chain underlying the) product

system for calculating probabilities. Hence, this completion can be avoided (as state

ssink would get assigned a probability of 0). ◁

Specification probability as outcome probability. We are now ready to bring every-

thing together, exploiting the notions of silenced DFAs and product systems to show

how the SPEC-PROB problem can be reduced to OUTCOME-PROB, invoked on ΥĀ
N ,

considering all its final states.

Theorem 4. For every bounded LSP N and DFA A over A, we have that

SPEC-PROB(N , A) = OUTCOME-PROB(ΥĀ
N ,ΥĀ

N .Sf). ◁

Proof. First of all, we recall the definition of SPEC-PROB, considering that the prob-

ability of a model trace of N is the sum of the probabilities of the paths through

N inducing that trace: SPEC-PROB(N , A) =
∑

σ model trace of Ns.t. σ∈L(A) PN (σ) =

42

∑
η path through N inducing σs.t. σ∈L(A) PN (η). By Lemma 2, we have that the accep-

tance of a trace by A can be lifted to acceptance of the label sequence in-

duced by its corresponding paths over Ā. This yields: SPEC-PROB(N , A) =∑
η path through Ns.t. N .N.ℓ(η)∈L(A) PN (η). By Definition 29, the paths mentioned in this

sum are precisely those of ΥĀ
N . By the same definition, we also know that the proba-

bilities of such paths as assigned by ΥĀ
N are the same as those assigned by N . Hence:

SPEC-PROB(N , A) =
∑

η path through ΥĀ
N
PΥĀ

N
(η) = OUTCOME-PROB(ΥĀ

N ,ΥĀ
N .Sf). ⊣

6.3. Computing Trace Probabilities

As already pointed out, a key problem in stochastic conformance checking [32, 7]

is that of computing the probability of a trace in a stochastic setting. Starting from

Definition 20, we cast such a problem in the context of bounded LSPs as follows:

Problem 4 (TRACE-PROB(N , σ)).

Input: Bounded LSP N , trace σ over A;

Output: Probability PN (σ). ◁

To solve this problem, we straightforwardly encode a trace σ into a corresponding

DFA over A that accepts exactly σ. We call this the trace DFA of σ:

Definition 30 (Trace DFA). Given a trace σ = a0, . . . , an over A, its trace DFA Aσ

is the DFA ⟨A, S, s0, Sf , δ⟩ over A such that:

1. S = {s0, . . . , sn+1} contains n+ 1 states;

2. Sf = {sn+1};

3. for every i ∈ {0, . . . , n}, δ(si, ai) = si+1 (and nothing else is in δ). ◁

This immediately yields the following key result:

Theorem 5. For every bounded LSP N and every trace σ over A∗, we have that

TRACE-PROB(N , σ) = SPEC-PROB(N , Aσ). ◁

Proof. Direct from the definitions of the problems, noticing that L(Aσ) = {σ}. ⊣

43

s0

s1

s2

s3

s4

s5

open

fin

acc

fin

rej

(a) Aσar

s0

s1

s2

s3

s4

s5

τ

τ

τ

τ

τ

τ

open

fin

acc

fin

rej

(b) Āσar

ms,
s0

m1,
s1

1open

m2,
s11

τ

ρs1

τ

m3,
s1ρs2

τ

ρi2

τ

m4,
s2

ρffin

m6,
s2ρs4

τ

m7,
s3

1acc

m3,
s3ρi3

τ m2,
s3

ρi2

τ

ρs2

τ m1,
s3

ρs1

τ
1
τ

m4,
s4

ρffin

m5,
s4ρs3

τ

m5,
s5

1rej

mc,
s1

ρc1

τ

m5,
s2

ρs3

τ

mc,
s3

ρc1

τρc2τ

m5,
s6

ρs4

τ

(c) product system Υ
Āσar

RG(Norder)

Figure 9: (a) Trace DFA and (b) silenced trace DFA for trace σ = open, fin, acc, fin, rej, and (c) product
system with the reachability graph of Figure 5; the portion of the transition system that cannot reach the final
state is greyed out.

Example 15. Consider the trace σar = open, fin,acc, fin, rej from Example 5. We

now compute the probability that Norder generates trace σar, where an order is filled,

finalised, accepted, then modified, finalised again, and this second time rejected. Fol-

lowing the described technique, we first transform σar into its trace DFA Aσar , and

then further into its silenced trace DFA Āσar
. This is shown in Figures 9(a) and (b). We

then compute the product system Υ
Āσar

RG(Norder)
of Āσar

and RG(Norder) (from Figure 5),

obtaining the (incomplete, cf. Remark 4) stochastic transition system of Figure 9(b)

- notice how silent transitions unfold in this transition system. Finally, we construct

44

E{⟨7,5⟩}
Υ

Āσar
RG(Norder)

. Recalling that by definition ρs1 + ρs2 = 1, we then get:

x55 = 1

x44 = ρs3x54 = ρs3x55 = ρs3

x23 = ρs1x13 + ρs2x33 = ρs1x23 + ρs2x33 =
ρs2

1− ρs1
x33

x33 = ρfx44 + ρi2x23 = ρfρs3 +
ρi2ρs2
1− ρs1

x33 =
ρfρs3
1− ρi2

x42 = ρs4x62 = ρs4x73 = ρs4ρi3x33 =
ρs4ρi3ρfρs3
1− ρi2

x31 = ρi2x21 + ρfx42 = ρi2x21 +
ρfρs4ρi3ρfρs3

1− ρi2

x21 = ρs1x11 + ρs2x31 = ρs1x11 + ρs2ρi2x21 +
ρs2ρfρs4ρi3ρfρs3

1− ρi2
=

=
ρs1

1− ρs2ρi2
x11 +

ρs2ρfρs4ρi3ρfρs3
(1− ρi2)(1− ρs2ρi2)

x00 = x11 = x21 =
ρs1

1− ρs2ρi2
x00 +

ρs2ρfρs4ρi3ρfρs3
(1− ρi2)(1− ρs2ρi2)

=
ρs2ρfρs4ρi3ρfρs3

(1− ρi2)(1− ρs2ρi2)

1− ρs2ρi2
ρs2(1− ρi2)

=
ρfρs4ρi3ρfρs3
(1− ρi2)

2

which yields the solution to the TRACE-PROB(Norder, σ) problem. If all transi-

tion weights have the same value (as in Example 10), we get as result probability

1/3·1/2·1/3·1/3·1/2
(1−1/3)2 = 1

48 ∼ 0.02. ◁

We close with an important observation: a variant of the specification probability

technique can be used to realize a form of white-box outcome prediction, to compute

the probability of a given outcome given a partial, observed trace σ that describes an

ongoing process execution. This is done through SPEC-PROB, making sure that the

set of final markings of the input net coincides with the outcome of interest, and that

the input DFA encodes the language corresponding to all the traces that have σ as

prefix. The latter can be done by a minor modification of the trace DFA of σ, where

the final state has a self-loop for every element of A. This technique can be used, e.g.,

to show that in our running example, as soon as a trace contains a payment, then the

45

final outcome consisting of the happy completion state is expected to be reached with

probability 1.

7. Stochastic Compliance with Probabilistic Declare

We now employ the verification machinery from Section 6.2 to deal with proba-

bilistic temporal properties. In particular, we introduce stochastic compliance, where

the stochastic behaviour induced by a bounded LSP is contrasted with a set of proba-

bilistic temporal constraints, each expressing a qualitative specification paired with a

condition on the expected probability that the specification is indeed satisfied. Since

multiple probabilistic constraints can be given, combined conditions on the probability

of their satisfaction/violation must be obtained. To systematically handle this, we rely

on the ProbDeclare language from [42], which extends the well-known Declare lan-

guage [50, 48] with constraint probabilities. Before defining and solving our stochastic

conformance problem, we briefly recall ProbDeclare.

7.1. Probabilistic Declare

Declare is a constraint-based declarative language for modelling flexible processes

[50, 48]. The acceptable behaviours supported by a process are implicitly characterised

using LTLf constraints: a Declare specification consists of a set of LTLf constraints,

which must be all respected in a complete process execution. This comes with a crisp

interpretation of constraints: a complete trace satisfies a Declare specification if it sat-

isfies every constraints contained therein. For an overall introduction of Declare and

corresponding key analysis and process mining tasks, the interested reader is referred

to [20].

By exploiting a probabilistic version of LTLf as underlying temporal logic [41], the

crisp semantics of Declare has been lifted to an uncertain one in [42], opening up a full

range of new tasks for (probabilistic) declarative process mining [4]. In the resulting

ProbDeclare framework, each constraint comes with a probability condition identify-

ing a set of probabilities for which a trace generated by the process satisfies that con-

straint. More precisely, the semantics is based on stochastic languages, which assign a

probability mass to each trace in a (possibly infinite) set, as recalled in Definition 24.

46

Specifically, a stochastic language satisfies a probabilistic constraint if, considering

only those traces in the language that satisfy the constraint, their overall probability

mass satisfies the probability condition attached to the constraint. This makes ProbDe-

clare a natural candidate to express probabilistic temporal properties over livelock-free

bounded LSPs, whose model traces with their probabilities indeed capture stochastic

languages (cf. Corollary 4).

In ProbDeclare, probabilities are assigned to traces, compatibly with the semantics

of bounded LSPs. On the other hand, as recalled in Remark 3, the task of computing

the probability that a bounded LSP meets a specification provided with a DFA can be

seamlessly used to capture the case where the specification is given in LTLf . Hence,

we do not need to introduce LTLf in the context of the current article - we simply rely

on informal presentation of constraints, formalizing them directly using DFAs. For a

thorough introduction to LTLf and its automata-theoretic characterisation, see [18, 17].

The main question for ProbDeclare is how to characterise which stochastic lan-

guages satisfy a set of probabilistic constraints, considering how the temporal and

probability components of each constraint interact with those of the others. We re-

call from [4] the necessary definitions to obtain such a characterisation.

Definition 31 (Probabilistic constraint). A probabilistic constraint over A is a triple

⟨φ, ▷◁, p⟩, where: (i) φ is an LTLf formula over A representing the constraint formula;

(ii) ▷◁ ∈ {=, ̸=,≤,≥, <,>} is the constraint probability operator; (iii) p is a rational

value in [0, 1] representing the constraint probability. ◁

Definition 32 (ProbDeclare specification). A ProbDeclare specification is a set D of

probabilistic constraints over A. ◁

Differently from [42, 4], we do not single out crisp constraints from genuinely

probabilistic constraints. This is just for simplicity of presentation, recalling that a crisp

constraint φ can be represented as the corresponding probabilistic constraint ⟨φ,=, 1⟩.

Definition 33 (ProbDeclare satisfaction relation). A stochastic language Ψ satisfies

a ProbDeclare specification D if for every probabilistic constraint ⟨φ, ▷◁, p⟩ ∈ D, we

47

have that: ∑
σ∈A∗ s.t. σ∈L(Aφ)

Ψ(σ) ▷◁ p

where Aφ is the (minimal) DFA capturing the language of φ. ◁

Example 16. Consider the order-to-cash process of our running example. We intro-

duce a ProbDeclare specification Dorder containing three probabilistic constraints:

• Φpr is a crisp constraint expressing that the not coexistence between pay and ack

reject (namely that pay and ack reject cannot both occur in the same trace) must

hold with probability 1;

• Φop is a probabilistic constraint expressing that the response from open to pay

(namely that whenever open occurs then pay later occurs as well) must hold with a

probability ≥ 1
20 ;

• Φor is a probabilistic constraint expressing that the response from open to ack re-

ject (namely that whenever open occurs then ack reject later occurs as well) must

hold with a probability ≤ 1
4 . ◁

7.2. Checking Stochastic Compliance

To check whether a livelock-free bounded LSP stochastically complies with a Prob-

Declare specification, we simply verify whether the stochastic language induced by the

LSP indeed satisfies all probabilistic constraints with their probability conditions.

Problem 5 (S-COMPLIES(N ,D)).

Input: livelock-free bounded LSP N , ProbDeclare specification D;

Output: yes if the induced stochastic language of N (as per Definition 25) satisfies D

in the sense of Definition 33, no otherwise. ◁

We can solve this problem through iterated calls to the SPEC-PROB problem, using

the DFA of each probabilistic constraint, and checking whether the returned probability

satisfies the probability condition associated to that constraint.

48

Theorem 6. Consider a livelock-free bounded LSP N and a ProbDeclare specifica-

tion D. Then S-COMPLIES(N ,D) returns yes if and only if for every probabilistic

constraint ⟨φ, ▷◁, p⟩ ∈ D, we have that SPEC-PROB(N , Aφ) ▷◁ p. ◁

Proof. Fix a probabilistic constraint ⟨φ, ▷◁, p⟩ ∈ D. By Definitions 33 and 25, we have

that ∑
σ∈A∗ s.t. σ∈L(Aφ)

PN (σ) =
∑

σ model trace of N s.t. σ∈L(Aφ)

PN (σ)

Indeed, notice that the stochastic language induced by N is so that PN (σ) > 0 only if

σ is a model trace of N . This sum is, in turn, equal to PN (Aφ), which, by definition,

is the output of SPEC-PROB(N , Aφ). ⊣

Example 17. Consider Norder under the assumption that all weights are equal (i.e., the

working hypothesis of Example 10). We now show that under this assumption Norder

stochastically complies with the ProbDeclare specification Dorder from Example 16.

We can do so by simply applying Theorem 6. To witness semantic compliance, we

notice the following:

• Every model trace of Norder contains either pay, or ack reject, or none of the

two, and thus satisfies the not coexistence between pay and ack reject; by 3, we

know that the sum of the probability values of all model traces of Norderis indeed

1 (as requested by the probabilistic constraint Φpr ∈ Dorder).

• Considering the structure of RG(Norder), we have that model traces satisfying the

response from open to pay are simply those that culminate in final marking [qh].

By Example 10, we know that the overall probability of such model traces is 1
11 ,

which is indeed ≥ 1
20 (as requested by the probabilistic constraint Φop ∈ Dorder);

• Considering the structure of RG(Norder), we have that model traces satisfying the

response from open to reject are simply those that culminate in final marking

[qr]. By Example 10, we know that the overall probability of such model traces

is 6
11 , which is indeed ≤ 1

4 (as requested by the probabilistic constraint Φor ∈

49

Dorder). ◁

In case S-COMPLIES returns a negative answer, the standard Earth Mover’s Dis-

tance can be used to measure the deviation between the probability distribution by

the livelock-free bounded LSP under scrutiny, and what expected by the probabilistic

constraint in the reference ProbDeclare specification. To do so, one has to follow the

approach in [4], computing the different scenarios induced by the ProbDeclare speci-

fication and their probabilities. This realises a form of stochastic delta analysis.

8. A Practical Application & its Evaluation

To illustrate the practical applicability and feasibility of the verification problem,

we implemented it, and used this implementation in a previously incomplete stochastic

conformance measure.

8.1. Implementation

Our solutions to the trace and temporal properties probability have

been implemented as plug-ins of the ProM framework [26], as part of the

StochasticLabelledPetriNets package. This package provides stochastic

PNPs as first-class objects in ProM, an import plug-in, an export plug-in and a

visualiser. The package further contains an implementation of the trace probability

approach (cf. Section 6.3): given a trace, this approach constructs an explicit product

stochastic transition system, after which a linear problem is solved using Lpsolve [9]

to obtain the trace probability. Besides a trace, the implementation provides the

machinery to accept any type of DFA.

This code is intended for developers, however we used it to complete an existing

method: Unit Earth Movers’ Stochastic Conformance (uEMSC) [39]1. This stochastic

conformance checking measure expresses the difference between a stochastic process

model and an event log, which are for our purposes seen as two distributions of traces.

Intuitively, the measure indicates the amount of earth (i.e. probability mass) that needs

to be moved to transform one of the distributions into the other. From [39], uEMSC

1Notice that uEMSC is then complete for bounded models only.

50

log discovery stochastic
discovery

measure
model

resample

stochastic

model

Figure 10: Feasibility evaluation set-up.

Table 1: Details of the set-up of the feasibility evaluation.

(a) Logs.

BPIC11 [21] BPIC11
BPIC12-approvals [22] BPIC12-a
BPIC12-approvals and work [22] BPIC12-aw
BPIC13-closed problems [55] BPIC13-cp
BPIC13-incidents [56] BPIC13-i
BPIC13-open problems [57] BPIC13-op
BPIC17-offers [23] BPIC17-o
BPIC18-parcel document [25] BPIC18-6
BPIC20-domestic declarations [24] BPIC20-dd
BPIC20-international declarations [24] BPIC20-id
BPIC20-prepaid travel costs [24] BPIC20-pt
BPIC20-request for payment [24] BPIC20-rf
MIMIC services [31][36, A] mimic-serv
MIMIC transfers [31][36, A] mimic-trans
Road fines [40] roadfines
Sepsis cases [43] sepsis

(b) Discovery techniques for control flow.

Inductive Miner - infrequent (0.8) [34] trans-
formed to a Petri net

IMf

Directly Follows Model Miner (0.8) [38] trans-
formed to a Petri net

DFM

Flower Model – a model consisting of any be-
haviour of the observed alphabet

FM

(c) Stochastic discovery techniques.

Frequency-based estimator [13] FBE
Bill Clinton estimator [13] BCE
Alignment-based estimator [13] ABE

(d) Measures.

Number of traces, events, activities in log log
Number of transitions, silent transitions in
control-flow model

transitions

Earth Movers’ Conformance Checking [32]
model sample up to 50 000 traces

EMSC

Unit Earth Movers’ Conformance Checking
(Sec. 8.1)

uEMSC

of a log L and a stochastic process model N is 1−
∑

σ∈L max(L(σ)− PN (σ), 0), in

which L(σ) denotes the likelihood of trace σ in L. Before, approximations of PN (σ)

were necessary to compute this otherwise rather simple function [32, 7].

The – now complete – uEMSC implementation is available in the ProM frame-

work [26] as the “Compute unit Earth-movers’ stochastic conformance (log-model)”

plug-in, part of the “EarthMoversStochasticConformanceChecking” package.

8.2. Applicability and Feasibility

In this section, we empirically show the applicability of our solution of the ver-

ification problem. We do this by using our solution as a trace-probability predictor

method in the uEMSC method, which was previously incomplete. Unit Earth Movers’

Stochastic Conformance (uEMSC) takes an event log and a stochastic process model

(in our cases, a labelled stochastic Petri net). uEMSC considers both the log and the

stochastic model as a distribution over traces. Then, it considers the earth movers’ dis-

tance of these distributions: how much effort does it take to transform one distribution

51

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

uEMSC

E
M

SC

(a) Measured values.

101 102 103 104
101

104

107

uEMSC run time (ms)

E
M

SC
ru

n
tim

e
(m

s)

(b) Run time.

Figure 11: Results of our feasibility experiment (only complete logs included). Dashed lines denote equality.
Colours indicate IMf, DFM and FM.

into the other, in terms of moved probability mass and the distance over which it has

to be moved. The uEMSC measure considers a unit distance between traces – traces

are either equivalent or different – and thus is a measure of the agreement in stochastic

languages of log and model. In uEMSC, our solution of the verification problem was

included to assess the probability of a given trace in the model.

8.2.1. Set-up

In this section, we illustrate the practical applicability of this implementation, using

an experiment, summarised in Figure 10 and detailed in Table 1. We take a number of

publicly available real-life event logs, and apply a control flow discovery technique

to obtain a process model (guaranteed bounded and without stochastic perspective).

To avoid measuring on training data, the event log is resampled 10 times. To each

resampled log and the discovered control-flow model, we apply a stochastic process

discovery technique to obtain a stochastic process model. Then, the quality of this

model is assessed with respect to the original log using several measures.

8.2.2. Results

Figure 11 shows a summary of the results; Table A.2 in Appendix A shows the

results in detail.

52

8.2.3. Discussion

Measured values. When comparing uEMSC with EMSC on the values in Figure 11a,

the first observation is that uEMSC has many more low measures, even quite a few

being around 0, and none below the dashed equivalence line. This is due to the trace-

based nature of uEMSC vs. the event-based nature of EMSC: for a too-low EMSC

value, uEMSC stays close to 0, as only events can be mapped but the probabilistic

overlap in traces is negligible.

An exception, visible in Figure 11a, are some points where EMSC is high (over 0.8)

but uEMSC is still 0; these points are from BPIC2018-6 DFM FBE, BPIC2018-6 DFM

BCE, BPIC20-id DFM FBE and BPIC20-id DFM BCE. All of these involve the FBE

and BCE stochastic discovery techniques, while ABE does not exhibit this pattern. A

reason can be found in that FBE puts a weight of 1 for each silent transition and BCE

puts a value close to 1 on the silent transitions.

In DFM models, silent transitions are only used for termination, such that these

transitions with a weight close to 1 are competing against visible transitions with a

weight close to their execution frequency (which is in the 10-thousands). Thus, on the

one hand uEMSC assigns a low score to any trace in these models, which gets rounded

to 0 eventually. EMSC on the other hand is much less sensitive to this single weight

as it takes a sample of behaviour of the model.

Run time. Both uEMSC and EMSC were feasible for the vast majority of log-model

combinations of this experiment: as can be seen in Figure 11b, for most logs uEMSC’s

run time was at most a few seconds, while EMSC required up to a day.

There are exceptions: BPIC11, for which uEMSC required up to half an hour or

did not return a result in our main memory available (40GB). In particular for BPIC11

IMf, there were 345 silent transitions, leading to a too-large state space to be explored

in the product stochastic transition system. EMSC takes in general much longer, with

BPIC12-AW IMf FBE and BCE running out of memory.

A notable case where uEMSC ran longer than EMSC is mimic-serv IMf FBE and

mimic-serv IMf BCE, where uEMSC takes 5-6 seconds, while EMSC only needs a

few miliseconds. Figure 12 shows this model. In this model, there is firstly a choice

53

Figure 12: mimic-serv IMf BFE model.

between on the one hand executing the visible transition NB with weight 7819 and on

the other hand a large block of parallel behaviour, which starts with a silent transition of

weight 1. EMSC samples only one trace from this model, with probability mass 7819
7820 .

This leads to an answer quickly, whereas uEMSC performs an analysis on the large

product stochastic transition system due to the 55 partly concurrent silent transitions.

9. Conclusion

We have introduced (bounded) labelled stochastic processes, an extension of gener-

alized stochastic Petri nets with (possibly duplicated) labels and silent transitions, and

defined their finite-trace execution semantics. We have shown how different analysis

techniques combining behaviors and their probabilities can be solved through a com-

bination of techniques from Markov chains and their qualitative verification, suitably

adapted and refined to deal with this challenging setting. All techniques are imple-

mented in the StochasticLabelledPetriNets plug-in of ProM.

Our approach lazily handles silent transitions when intersecting the set of paths

characterised by a labelled stochastic process (including silent steps), with the traces

of interest (predicating on visible activities only). To specify traces of interest, we

employ deterministic finite-state automata. By recalling that temporal logics on fi-

nite traces such as LTLf and LDLf have an automata-theoretic characterization based

on deterministic finite-state automata [18, 17], our approach provides, for the first

time, an technique for model checking stochastic processes against such finite-trace

LTLf /LDLf specifications.

54

When computing the probability of model traces, this is in contrast with ad-hoc

probability computation techniques developed in the context of stochastic automata

with ε-moves in natural language processing [29]. There, silent steps are filtered out

in an eager way, using ad-hoc algorithms. A natural follow-up of this work is then

to comparatively assess our lazy approach with such eager algorithm. On a similar

note, we intend to conduct a more extensive experimental evaluation, with the aim of

assessing the usage of well-established state-of-the-art probabilistic model checkers

(such as Prism2 and Storm3) to deal with our analysis tasks.

Notably, our approach seamlessly generalise to the case where weights/rates are

not exact but come with a confidence interval: one just needs to transform the system

of equations used for computing outcome probabilities into a corresponding system of

inequalities. The next step is then to consider this and other extensions of the model,

in particular looking into richer nets with nondeterministic transition effects and their

mapping to Markov decision processes, nets with non-Markovian behaviors, and nets

equipped with different distributions on durations/delays. This calls for a fine-grained

analysis of the same problems studied here in such richer settings, where often an-

alytical methods are out of reach and have to be replaced by approximate/numerical

techniques or simulation.

Acknowledgments

We thank Werner Nutt for interesting discussions on exponential random variables

and their interplay.

References

[1] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-

elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing,

John Wiley and Sons (1995)

2https://www.prismmodelchecker.org
3https://www.stormchecker.org

55

https://www.prismmodelchecker.org
https://www.stormchecker.org

[2] Ajmone Marsan, M.: Stochastic petri nets: an elementary introduction. In:

Rozenberg, G. (ed.) Advances in Petri Nets 1989. LNCS, vol. 424, pp. 1–29.

Springer (1988)

[3] Alkhammash, H., Polyvyanyy, A., Moffat, A., Garcı́a-Bañuelos, L.:

Entropic relevance: A mechanism for measuring stochastic process

models discovered from event data. Inf. Syst. 107, 101922 (2022).

https://doi.org/10.1016/j.is.2021.101922, https://doi.org/10.1016/j.

is.2021.101922

[4] Alman, A., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic declarative

process mining. Inf. Syst. 109, 102033 (2022)

[5] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:

automated discovery of accurate and simple business process models from event

logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

[6] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

[7] Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic trace align-

ment. In: ICPM. pp. 9–16. IEEE (2021)

[8] Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R.: A tool for probabilistic

trace alignments. In: CAiSE Forum. Springer (2021)

[9] Berkelaar, M., Eikland, K., Notebaert, P.: lp solve 5.5, open

source (mixed-integer) linear programming system. Software (May 1

2004), http://lpsolve.sourceforge.net/5.5/, available at

¡http://lpsolve.sourceforge.net/5.5/¿. Last accessed Dec, 18 2009

[10] Bruni, R., Melgratti, H.C., Montanari, U.: Concurrency and probability: Remov-

ing confusion, compositionally. Log. Methods Comput. Sci. 15(4) (2019)

[11] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm

for discovering process trees. In: Proceedings of the IEEE Congress on Evolu-

tionary Computation, CEC 2012, Brisbane, Australia, June 10-15, 2012. pp. 1–

56

https://doi.org/10.1016/j.is.2021.101922
https://doi.org/10.1016/j.is.2021.101922
http://lpsolve.sourceforge.net/5.5/

8. IEEE (2012). https://doi.org/10.1109/CEC.2012.6256458, https://doi.

org/10.1109/CEC.2012.6256458

[12] Burke, A., Leemans, S., Wynn, M.: Stochastic process discovery by weight esti-

mation. In: PQMI (10 2020)

[13] Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight

estimation. In: Leemans, S.J.J., Leopold, H. (eds.) Process Mining Workshops -

ICPM 2020 International Workshops, Padua, Italy, October 5-8, 2020, Revised

Selected Papers. Lecture Notes in Business Information Processing, vol. 406,

pp. 260–272. Springer (2020). https://doi.org/10.1007/978-3-030-72693-5 20,

https://doi.org/10.1007/978-3-030-72693-5_20

[14] Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering stochastic process mod-

els by reduction and abstraction. In: Buchs, D., Carmona, J. (eds.) Ap-

plication and Theory of Petri Nets and Concurrency - 42nd International

Conference, PETRI NETS 2021, Virtual Event, June 23-25, 2021, Proceed-

ings. Lecture Notes in Computer Science, vol. 12734, pp. 312–336. Springer

(2021). https://doi.org/10.1007/978-3-030-76983-3 16, https://doi.org/

10.1007/978-3-030-76983-3_16

[15] Burke, A., Leemans, S.J.J., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede,

A.H.M.: Stochastic process model-log quality dimensions: An experimental

study. In: Burattin, A., Polyvyanyy, A., Weber, B. (eds.) Proceedings of the

4th International Conference on Process Mining, (ICPM 2022). pp. 80–87. IEEE

(2022)

[16] Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic Petri

nets: A definition at the net level and its implications. IEEE Trans. on soft. eng.

19(2), 89–107 (1993)

[17] De Giacomo, G., De Masellis, R., Maggi, F.M., Montali, M.: Monitoring con-

straints and metaconstraints with temporal logics on finite traces. ACM TOSEM

(2022)

57

https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1007/978-3-030-72693-5_20
https://doi.org/10.1007/978-3-030-76983-3_16
https://doi.org/10.1007/978-3-030-76983-3_16

[18] De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces. In: Proceedings IJCAI. AAAI Press (2013)

[19] Desel, J., Reisig, W.: Place/transition Petri nets. In: Lectures on Petri Nets I:

Basic Models: Advances in Petri Nets. pp. 122–173. Springer, Springer (1998)

[20] Di Ciccio, C., Montali, M.: Declarative process specifications: Reasoning, dis-

covery, monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining

Handbook, Lecture Notes in Business Information Processing, vol. 448, pp. 108–

152. Springer (2022)

[21] van Dongen, B.: Real-life event logs - Hospital log (3 2011).

https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54,

https://data.4tu.nl/articles/dataset/Real-life_event_

logs_-_Hospital_log/12716513

[22] van Dongen, B.: BPI Challenge 2012 (4 2012).

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2012/12689204

[23] van Dongen, B.: BPI Challenge 2017 - Offer log (2 2017).

https://doi.org/10.4121/uuid:7e326e7e-8b93-4701-8860-71213edf0fbe,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2017_-_Offer_log/12705737

[24] van Dongen, B.: Bpi challenge 2020 (Mar 2020).

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51,

https://data.4tu.nl/collections/BPI_Challenge_2020/

5065541/1

[25] van Dongen, B., Borchert, F.F.: BPI Challenge 2018 (3 2018).

https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2018/12688355

58

https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355

[26] van Dongen, B.F., et al.: The ProM framework: A new era in process mining

tool support. In: Applications and Theory of Petri Nets. vol. 3536, pp. 444–454

(2005)

[27] Durrett, R.: Essentials of Stochastic Processes. Springer, third edn. (2016)

[28] Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical

Society, 2nd edn. (1997)

[29] Hanneforth, T., De La Higuera, C.: Epsilon-removal by loop reduction for finite-

state automata over complete semirings. Studia Grammatica 72, 297–312 (2010)

[30] Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. 3rd edn. (2007)

[31] Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.w.H., Feng, M., Ghassemi,

M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: Mimic-iii, a freely

accessible critical care database. Scientific data 3(1), 1–9 (2016)

[32] Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochastic

process mining: Earth movers’ stochastic conformance. Inf. Syst. 102, 101724

(2021)

[33] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-

structured process models from event logs - A constructive approach. In: Colom,

J.M., Desel, J. (eds.) Application and Theory of Petri Nets and Concurrency -

34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,

2013. Proceedings. Lecture Notes in Computer Science, vol. 7927, pp. 311–

329. Springer (2013). https://doi.org/10.1007/978-3-642-38697-8 17, https:

//doi.org/10.1007/978-3-642-38697-8_17

[34] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-

structured process models from event logs containing infrequent behaviour. In:

BPM Workshops. LNBIP, vol. 171 (2013)

59

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17

[35] Leemans, S.J.J., Maggi, F.M., Montali, M.: Reasoning on labelled petri

nets and their dynamics in a stochastic setting. In: Di Ciccio, C., Dijk-

man, R.M., del-Rı́o-Ortega, A., Rinderle-Ma, S. (eds.) Proceedings of the

20th International Conference on Business Process Management (BPM 2022).

Lecture Notes in Computer Science, vol. 13420, pp. 324–342. Springer

(2022). https://doi.org/10.1007/978-3-031-16103-2 22, https://doi.org/

10.1007/978-3-031-16103-2_22

[36] Leemans, S.J.J., Mannel, L.L., Sidorova, N.: Significant stochastic dependencies

in process models. Inf. Syst. 118, 102223 (2023)

[37] Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware conformance checking: An

entropy-based approach. In: Advanced Information Systems Engineering. pp.

217–233. Springer (2020)

[38] Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:

Exploration & a case study. In: ICPM (2019)

[39] Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic

conformance checking. In: Proceedings of the BPM Forum. vol. 360, pp. 127–

143 (2019)

[40] de Leoni, M.M., Mannhardt, F.: Road Traffic Fine Management Process (2

2015). https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5,

https://data.4tu.nl/articles/dataset/Road_Traffic_

Fine_Management_Process/12683249

[41] Maggi, F.M., Montali, M., Peñaloza, R.: Temporal logics over finite traces with

uncertainty. In: Proceedings of the 34th AAAI Conference on Artificial Intelli-

gence (AAAI 2020). pp. 10218–10225 (2020)

[42] Maggi, F.M., Montali, M., Peñaloza, R., Alman, A.: Extending temporal business

constraints with uncertainty. In: Proceedings of BPM. LNCS, vol. 12168, pp. 35–

54. Springer (2020)

60

https://doi.org/10.1007/978-3-031-16103-2_22
https://doi.org/10.1007/978-3-031-16103-2_22
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249

[43] Mannhardt, F.: Sepsis Cases - Event Log (12 2016).

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460,

https://data.4tu.nl/articles/dataset/Sepsis_Cases_

-_Event_Log/12707639

[44] Marsan, M.A.: Stochastic petri nets: an elementary introduction. In: European

workshop on applications and theory in Petri nets. pp. 1–29. Springer (1988)

[45] Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets

for the performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–

122 (1984)

[46] Molloy, M.K.: On the integration of delay and throughput measures in distributed

processing models (1982)

[47] Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Transac-

tions on Computers 31, 913–917 (1982)

[48] Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:

Declarative specification and verification of service choreographies. ACM Trans.

on the Web 4(1) (2010)

[49] Natkin, S.O.: Les Reseaux de petri stochastiques et leur application de

l’evaluation des systemes informatiques (1980)

[50] Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for

loosely-structured processes. In: Proceedings of the 11th IEEE International En-

terprise Distributed Object Computing Conf. (EDOC). pp. 287–300. IEEE Com-

puter Society (2007)

[51] Polyvyanyy, A., Kalenkova, A.A.: Monotone conformance checking for partially

matching designed and observed processes. In: ICPM. pp. 81–88 (2019)

[52] Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone

precision and recall measures for comparing executions and specifications of dy-

namic systems. ACM Trans. Softw. Eng. Methodol. 29(3), 17:1–17:41 (2020)

61

https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

[53] Rogge-Solti, A., Mans, R., Aalst, W., Weske, M.: Repairing Event Logs Using

Timed Process Models. In: OTM 2013 Workshops. LNCS, vol. 8186, pp. 705–

708. Springer (2013)

[54] Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri

nets with arbitrary delay distributions from event logs. In: BPMW13. pp. 15–27

(2013)

[55] Steeman, W.: BPI Challenge 2013, closed problems (4 2013).

https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2013_closed_problems/12714476

[56] Steeman, W.: BPI Challenge 2013, incidents (4 2013).

https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2013_incidents/12693914

[57] Steeman, W.: BPI Challenge 2013, open problems (4 2013).

https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da,

https://data.4tu.nl/articles/dataset/BPI_Challenge_

2013_open_problems/12688556

Appendix A. Evaluation Results

Table A.2: Results of the evaluation.

Log discovery sto.dis. log transitions EMSC uEMSC
traces events activities silent time (ms) time (ms)

BPIC11 IMf FBE 1143 150291 624 580 345 - - - -
BCE 1143 150291 624 580 345 - - - -
ABE - - - - - - - - -

DFM FBE 1143 150291 624 4295 35 0.22 307 002 0.0000 69 541
BCE 1143 150291 624 4295 35 0.22 292 145 0.0000 69 110
ABE - - - - - - - - -

FM FBE 1143 150291 624 627 3 0.19 11 724 000 0.0032 1 809 636
BCE 1143 150291 624 627 3 0.19 12 497 634 0.0032 1 762 811
ABE 1143 150291 624 627 3 0.14 104 537 0.0003 1 801 286

BPIC12-a IMf FBE 13087 60849 10 15 5 0.65 53 0.1870 42
BCE 13087 60849 10 15 5 0.65 63 0.1870 42
ABE 13087 60849 10 15 5 0.86 62 0.4801 51

DFM FBE 13087 60849 10 16 3 0.85 53 0.7295 42
BCE 13087 60849 10 16 3 0.85 57 0.7295 41
ABE 13087 60849 10 16 3 0.96 56 0.8327 55

FM FBE 13087 60849 10 13 3 0.33 8 135 0.0016 59
BCE 13087 60849 10 13 3 0.33 6 131 0.0016 46
ABE 13087 60849 10 13 3 0.53 13 871 0.0017 42

62

https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556

Table A.2: Results of the evaluation.

Log discovery sto.dis. log transitions EMSC uEMSC
traces events activities silent time (ms) time (ms)

BPIC12-aw IMf FBE 13087 204638 16 44 28 - - 0.0000 1 154
BCE 13087 204638 16 44 28 - - 0.0000 1 084
ABE 13087 204638 16 44 28 - - 0.0025 1 794

DFM FBE 13087 204638 16 48 6 0.84 24 529 0.0000 723
BCE 13087 204638 16 48 6 0.84 24 714 0.0000 685
ABE 13087 204638 16 48 6 0.79 3 249 424 0.1395 732

FM FBE 13087 204638 16 19 3 - - 0.0000 2 547
BCE 13087 204638 16 19 3 - - 0.0000 2 612
ABE 13087 204638 16 19 3 - - 0.0000 2 591

BPIC13-cp IMf FBE 1487 6660 7 15 9 0.51 25 0.0143 28
BCE 1487 6660 7 15 9 0.55 42 0.0142 17
ABE 1487 6660 7 15 9 0.76 130 0.4175 21

DFM FBE 1487 6660 7 13 1 0.95 26 983 0.0002 15
BCE 1487 6660 7 13 1 0.95 24 674 0.0002 18
ABE 1487 6660 7 13 1 0.91 137 0.6547 15

FM FBE 1487 6660 7 10 3 0.49 708 0.0517 59
BCE 1487 6660 7 10 3 0.49 671 0.0517 66
ABE 1487 6660 7 10 3 0.63 1 223 077 0.0491 76

BPIC13-i IMf FBE 7554 65533 13 31 20 0.39 5 605 563 -0.0000 1 523
BCE 7554 65533 13 31 20 0.46 16 199 640 0.0000 1 621
ABE 7554 65533 13 31 20 0.79 8 709 087 0.0527 1 871

DFM FBE 7554 65533 13 24 2 0.88 3 931 804 0.0442 253
BCE 7554 65533 13 24 2 0.88 4 931 212 0.0442 264
ABE 7554 65533 13 24 2 0.80 6 735 050 0.1500 257

FM FBE 7554 65533 13 16 3 0.34 1 139 508 0.0048 843
BCE 7554 65533 13 16 3 0.34 1 782 487 0.0048 875
ABE 7554 65533 13 16 3 0.67 25 740 542 0.0050 895

BPIC13-op IMf FBE 819 2351 5 16 11 0.39 24 0.0056 37
BCE 819 2351 5 16 11 0.52 53 0.0709 30
ABE 819 2351 5 16 11 0.75 845 0.4269 29

DFM FBE 819 2351 5 17 5 0.70 185 299 0.2242 11
BCE 819 2351 5 17 5 0.71 169 801 0.2242 13
ABE 819 2351 5 17 5 0.92 173 0.7456 10

FM FBE 819 2351 5 8 3 0.70 127 0.3383 24
BCE 819 2351 5 8 3 0.70 145 0.3383 26
ABE 819 2351 5 8 3 0.73 209 141 0.3440 33

BPIC17-o IMf FBE 42995 193849 8 9 1 0.90 186 0.5390 170
BCE 42995 193849 8 9 1 0.90 185 0.5390 162
ABE 42995 193849 8 9 1 0.91 192 0.5811 162

DFM FBE 42995 193849 8 10 3 0.96 183 0.8419 168
BCE 42995 193849 8 10 3 0.96 181 0.8419 171
ABE 42995 193849 8 10 3 0.96 186 0.8419 168

FM FBE 42995 193849 8 11 3 0.31 971 0.0023 162
BCE 42995 193849 8 11 3 0.31 1 693 0.0023 150
ABE 42995 193849 8 11 3 0.50 14 026 0.0026 172

BPIC18-6 IMf FBE 14750 132963 10 24 15 0.55 1 225 049 0.0003 2 394
BCE 14750 132963 10 24 15 0.59 14 419 026 0.0003 2 556
ABE 14750 132963 10 24 15 0.83 5 879 827 0.0684 2 729

DFM FBE 14750 132963 10 16 1 0.88 20 288 0.0000 410
BCE 14750 132963 10 16 1 0.89 18 087 0.0000 402
ABE 14750 132963 10 16 1 0.85 3 547 940 0.2025 21 579

FM FBE 14750 132963 10 13 3 0.28 4 074 955 0.0008 1 186
BCE 14750 132963 10 13 3 0.28 3 589 177 0.0008 1 181
ABE 14750 132963 10 13 3 0.64 85 640 171 0.0009 1 237

BPIC20-dd IMf FBE 10500 56437 17 33 17 0.40 25 320 0.0001 41
BCE 10500 56437 17 33 17 0.49 72 573 0.0001 46
ABE 10500 56437 17 33 17 0.93 53 0.8049 41

DFM FBE 10500 56437 17 9 1 0.84 50 0.5807 35
BCE 10500 56437 17 9 1 0.84 50 0.5807 37
ABE 10500 56437 17 9 1 0.92 61 0.8079 36

FM FBE 10500 56437 17 20 3 0.29 16 330 0.0019 60
BCE 10500 56437 17 20 3 0.29 15 637 0.0019 64
ABE 10500 56437 17 20 3 0.55 169 561 0.0012 65

BPIC20-id IMf FBE 6449 72151 34 66 36 0.51 14 278 269 -0.0000 99
BCE 6449 72151 34 66 36 0.53 8 095 583 -0.0000 80
ABE 6449 72151 34 66 36 0.78 1 494 0.2690 108

DFM FBE 6449 72151 34 51 3 0.86 22 502 0.0000 86
BCE 6449 72151 34 51 3 0.87 21 782 0.0000 75
ABE 6449 72151 34 51 3 0.82 41 291 0.1830 96

FM FBE 6449 72151 34 37 3 0.18 10 800 412 0.0000 622
BCE 6449 72151 34 37 3 0.18 11 029 039 0.0000 618
ABE 6449 72151 34 37 3 0.42 19 241 284 0.0000 665

63

Table A.2: Results of the evaluation.

Log discovery sto.dis. log transitions EMSC uEMSC
traces events activities silent time (ms) time (ms)

BPIC20-pt IMf FBE 2099 18246 29 63 37 0.46 2 710 449 0.0000 30
BCE 2099 18246 29 63 37 0.46 2 975 697 0.0000 27
ABE 2099 18246 29 63 37 0.80 2 770 0.2248 44

DFM FBE 2099 18246 29 31 2 0.67 61 0.1624 13
BCE 2099 18246 29 31 2 0.67 63 0.1624 12
ABE 2099 18246 29 31 2 0.89 62 0.3910 13

FM FBE 2099 18246 29 32 3 0.22 1 151 046 0.0006 109
BCE 2099 18246 29 32 3 0.22 1 250 116 0.0006 118
ABE 2099 18246 29 32 3 0.51 1 637 301 0.0002 127

BPIC20-rf IMf FBE 6886 36796 19 29 13 0.37 55 -0.0000 26
BCE 6886 36796 19 29 13 0.37 80 -0.0000 22
ABE 6886 36796 19 29 13 0.89 39 0.6262 32

DFM FBE 6886 36796 19 12 1 0.83 37 0.5483 24
BCE 6886 36796 19 12 1 0.83 51 0.5483 21
ABE 6886 36796 19 12 1 0.92 44 0.8118 23

FM FBE 6886 36796 19 22 3 0.30 16 568 0.0024 44
BCE 6886 36796 19 22 3 0.30 15 904 0.0024 47
ABE 6886 36796 19 22 3 0.55 116 739 0.0018 51

mimic-serv IMf FBE 58926 73343 20 55 35 0.07 71 0.0038 5 433
BCE 58926 73343 20 55 35 0.07 94 0.0038 5 784
ABE 58926 73343 20 55 35 0.74 1 697 889 0.5318 9 265

DFM FBE 58926 73343 20 19 9 0.83 65 0.7241 63
BCE 58926 73343 20 19 9 0.83 64 0.7241 57
ABE 58926 73343 20 19 9 0.86 66 0.8150 79

FM FBE 58926 73343 20 23 3 0.79 49 588 0.5790 204
BCE 58926 73343 20 23 3 0.79 50 026 0.5790 193
ABE 58926 73343 20 23 3 0.92 114 0.8051 185

mimic-trans IMf FBE 3019 13411 18 37 19 0.21 10 231 861 0.0003 53
BCE 3019 13411 18 37 19 0.22 3 675 148 0.0003 60
ABE 3019 13411 18 37 19 0.66 74 478 0.1681 66

DFM FBE 3019 13411 18 37 4 0.87 219 124 0.5112 49
BCE 3019 13411 18 37 4 0.87 106 450 0.5112 46
ABE 3019 13411 18 37 4 0.89 184 0.5877 52

FM FBE 3019 13411 18 21 3 0.39 620 518 0.0100 145
BCE 3019 13411 18 21 3 0.39 593 890 0.0100 145
ABE 3019 13411 18 21 3 0.59 1 309 639 0.0098 145

Roadfines IMf FBE 150370 561470 11 24 13 0.54 449 0.0139 394
BCE 150370 561470 11 24 13 0.54 443 0.0104 361
ABE 150370 561470 11 24 13 0.77 422 0.2940 392

DFM FBE 150370 561470 11 9 3 0.88 427 0.6840 408
BCE 150370 561470 11 9 3 0.88 407 0.6840 388
ABE 150370 561470 11 9 3 0.95 419 0.8196 417

FM FBE 150370 561470 11 14 3 0.42 13 637 0.0236 408
BCE 150370 561470 11 14 3 0.42 27 969 0.0236 426
ABE 150370 561470 11 14 3 0.52 146 820 0.0193 502

Sepsis IMf FBE 1050 15214 16 29 15 0.51 8 246 699 -0.0000 406
BCE 1050 15214 16 29 15 0.60 4 252 316 0.0000 408
ABE 1050 15214 16 29 15 0.70 1 926 387 0.0003 420

DFM FBE 1050 15214 16 77 10 0.63 6 517 108 0.0000 188
BCE 1050 15214 16 77 10 0.64 7 041 945 0.0000 188
ABE 1050 15214 16 77 10 0.78 1 253 417 0.0451 191

FM FBE 1050 15214 16 19 3 0.21 18 589 789 0.0000 351
BCE 1050 15214 16 19 3 0.21 20 377 324 0.0000 366
ABE 1050 15214 16 19 3 0.50 8 652 211 0.0000 364

64

	Introduction
	Related Work
	Labelled Stochastic Processes based on Petri Nets
	Labelled Petri Nets
	Immediate and Timed Transitions
	Labelled Stochastic Processes and their Finite-Trace Execution Semantics (Without Probabilities)
	Labelled Stochastic Processes and their Stochastic Behaviour

	Analysis of Bounded Stochastic Labelled Processes
	Computing Outcome Probabilities
	Absorbing Markov Chains
	Connecting LSPs to (Absorbing) Markov Chains
	Outcome Probability and Stochastic Languages for Livelock-free bounded LSPs
	Dealing with Livelocks

	Computing Specification and Trace Probabilities
	Automata-Based Specifications
	Defining and Solving the Specification Probability Problem
	Computing Trace Probabilities

	Stochastic Compliance with Probabilistic Declare
	Probabilistic Declare
	Checking Stochastic Compliance

	A Practical Application & its Evaluation
	Implementation
	Applicability and Feasibility
	Set-up
	Results
	Discussion

	Conclusion
	Evaluation Results

