
Significant Stochastic Dependencies in Process Models

Sander J.J. Leemansa,∗, Lisa L. Mannela, Natalia Sidorovab

aRWTH, Aachen, Germany
bEindhoven University of Technology, the Netherlands

Abstract

Process mining aims to artificially derive meaningful information from event logs
recorded from information systems that support business processes in organisa-
tions. In many real-life processes, decisions do not only depend on the current
state of the model, but also on decisions made earlier in the process. Such de-
pendencies challenge process mining techniques: Petri nets are limited to hard
dependencies (non-free-choice constructs). In this paper, we study stochastic
dependencies, which model that the likelihood of decisions in a process may
change dynamically based on earlier decisions. We introduce a modelling for-
malism that supports stochastic dependencies by extending stochastic labelled
Petri nets, we study symmetries of this formalism, introduce a stochastic process
discovery technique that discovers such models and we adapt two conformance
checking techniques to validate the discovered models. The techniques have been
implemented, and evaluated on computational feasibility and applicability. Fi-
nally, we show that the quality of our new models can compete with existing
discovery techniques, and we show that stochastic dependencies are present in
existing real-life logs and may lead to new types of insights.

Keywords: process mining, stochastic process mining, stochastic process
discovery, model dependencies, long-distance dependencies

1. Introduction

Many processes in organisations are supported and monitored by informa-
tion systems. These systems track the process executions and store extensive
information on various aspects of the process. Such data can be extracted in
the form of an event log – a collection of sequences of events that represent
the execution of process activities for cases in the process. The research area
of process mining focuses on automatically or semi-automatically deriving in-
sights and intelligence from event logs which can be used to better understand
and to improve the process, or to predict ongoing cases. Particularly, in the

∗Corresponding author
Email addresses: s.leemans@bpm.rwth-aachen.de (Sander J.J. Leemans),

lisa.mannel@rwth-aachen.de (Lisa L. Mannel)

Preprint submitted to Elsevier May 2, 2023

sub-field of process discovery the goal is to automatically identify relevant re-
lations between the activities of the process, such as choices, concurrency and
loops, and represent them in a process model. A process model can then be
used in further analysis, for instance for performing root-cause analysis using
automated simulation or for recommending interventions in ongoing cases to
optimise outcomes.

For both of these examples, it is not sufficient that the model only con-
tains the control flow, that is, the possible sequences of activities. Additionally,
the model should also express the likelihood of behaviour: the impact of per-
formance issues in a process depends on the relative frequency of the issue;
simulations require knowledge of the distribution of choices; and recommend-
ing interventions requires knowledge of the likelihood of outcomes further down
the process. Stochastic process models, such as stochastic labelled Petri nets
(SLPNs), express such a stochastic perspective: whenever the model must make
a choice between executing two transitions, the relative weight of each transi-
tion indicates their likelihood of occurring next. Stochastic process discovery
techniques aim to discover a stochastic process model from an event log.

Most existing stochastic process models, including SLPNs, and most discov-
ery techniques assume that decision points in the process are independent, i.e.,
a decision made at one point in the process does not impact later decisions.
However, in real-life processes, this assumption is unrealistic: one cannot as-
sume all decisions in the process to be completely independent of each other.
For example, in a manufacturing process, the likelihood of detecting the first
defect at an inspection might be lower than the likelihood of detecting a second
defect after the first defect is repaired; in a sales process, actions taken by the
organisation can influence the likelihood of making a sale; and in a process of
a student attempting exams for a course, passing an exam a second time might
have a lower probability than passing the exam the first time.

In Petri nets, complex dependencies can be modelled using non-free choice
constructs. These constructs represent hard dependencies: rigid constraints of
the control-flow, where making a decision restricts the possible choices that
can be made afterwards. Several discovery algorithms have been proposed to
discover Petri nets including such constructs, e.g. [1, 2], however these techniques
provide no indication of the reliability of their conclusions and do not provide
statistical guarantees of the discovered constructs. Furthermore, real world
dependencies are not always hard: A student who successfully passed an exam
might still take part in the re-examination in order to improve the grade, even if
the probability of choosing for a re-examination is low for this student (and he
will pass the re-examination with a high probability). A student who failed the
exam will most likely take part in the re-examination, and the probability he
will pass the re-examination is not that high. Soft dependencies (or stochastic
dependencies) describe influences that a decision or an outcome of an earlier
action has on the likelihood of future behaviour.

Models describing stochastic dependencies, particularly dynamic changes of
the related likelihoods, can enable a process owner to gain valuable insights
which traditional stochastic models are unable to provide. For instance, con-

2

register for exam
1

fail exam
0.5 ∗ 1.5|fail exam|

re-register exam
4 ∗ 0.05|pass exam|

pass exam
0.5 · 10|pass exam|

conclude studies
1

Figure 1: Motivational example for stochastic dependencies.

sider the motivational example shown in Figure 1, which models the study path
of students for a particular exam. In general, students may take the exam ar-
bitrarily often: they may re-register for another attempt both after failing (in
order to pass the course) and after passing (to try improving their grade). Fi-
nally, pass or fail, a student can decide to conclude their studies of this subject.
Most traditional control-flow discovery techniques will have no trouble to dis-
cover a model representing this behaviour, and stochastic discovery algorithms
can assign likelihoods to the various paths, e.g. by showing that in 40% of cases
the registration for exam is followed by passing it and in 60% by failing.

Instead of suggesting that the probability to pass the exam is the same for a
student who is taking it for the first time as the one of the student who already
passed it, the model shown in Figure 1 includes stochastic dependencies which
reveal correlations between events. It shows, e.g., that passing the exam de-
creases the likelihood of re-registering (every execution of ’pass exam’ decreases
the base probability of re-registration, which is 4, due to multiplication with
0.05|pass exam|) but strongly increases the likelihood of passing the exam again.
Similarly, according to this model, the more often a student fails, the lower the
probability of that student to pass this exam. Clearly, such dependencies carry
information that can lead to valuable insights and contribute significantly to the
understanding of the underlying process, but they cannot be derived by existing
discovery techniques or stochastic process discovery techniques.

In this paper, we introduce several techniques to study stochastic depen-
dencies. We propose stochastic labelled Petri nets with stochastic dependencies
(SLPN-SD) – a new modelling formalism that extends the idea presented in [3]
to represent stochastic dependencies in stochastic labelled Petri nets and in-
vestigate its inherent symmetries. Such SLPNs describe a stochastic language,
which describes not only which traces the net supports, but also how likely each
trace is. We prove that the class of stochastic languages that can be modelled
by SLPN-SDs is strictly larger than the class expressible by SLPNs.

Furthermore, we introduce a discovery algorithm that returns an SLPN-SD
based on a given event log and a Petri net. The symmetries studied before are
used to not only improve the performance of this algorithm but also to reduce the

3

complexity of the discovered model without changing the stochastic language it
represents. Notably, we ensure the stochastic dependencies included in the final
model are indeed significant by including statistical significance testing within
the discovery procedure.

The proposed discovery algorithm is implemented in the ProM framework [4]
and evaluated twofold on real-life data. First, we qualitatively demonstrate the
new types of insights that can be derived using our approach. Second, we
quantitatively study the computational feasibility of applying our approach to
real-life event logs, and the quality of the discovered SLPN-SDs compared to
existing stochastic discovery techniques. The quality of the models is measured
using two adapted stochastic conformance checking techniques, as well as using
simplicity. We will find that new types of statistically significant insights can be
gained that cannot be derived from SLPNs, and that our approach is competitive
with existing approaches.

In summary, key contributions of this paper include:

• A new stochastic process modelling formalism (SLPN-SD);

• A study of symmetries in SLPN-SDs;

• A stochastic process discovery technique that discovers SLPN-SDs from
an event log and a Petri net;

• Two adapted conformance checking techniques that compare an SLPN-SD
to an event log;

• A publicly available implementation of all techniques.

In the remainder of this paper, we discuss related work in Sect. 2 and provide
preliminaries in Sect. 3. In Sect. 4 we introduce our new modelling formalism
and analyse its symmetries. The discovery method is described in Sect. 5. We
evaluate the approach in Sect. 6 and provide a discussion on the approach in
Sect. 7; Sect. 8 concludes the paper.

2. Related Work

The representation and discovery of dependencies between past and future
behaviour of process executions has been investigated before in several settings,
resulting in a variety of approaches with different prerequisites, goals, advan-
tages and limitations.

Hard dependencies, also called long-term, implicit, non-local or indirect de-
pendencies as well as non-local constraints, have been investigated quite exten-
sively and in the context of standard Petri nets they can be expressed using
non-free choice constructs. While they are related to our research in that they
find and model dependencies between past and future behaviour, it is clear that
the correlations we aim to express go beyond that. Hard dependencies can be
interpreted as a subset of stochastic dependencies where probabilities are set
to either 0 or 1. In contrast, the combination of standard stochastic Petri nets

4

and hard dependencies could be used to model some stochastic dependencies:
certain transitions may enable other transitions which, using non-free-choice
constructs, influence the stochastic perspective of later decisions. However, this
is unlikely to be readable by human analysts, and does not support loops.

Hard dependencies are supported by several existing discovery algorithms.
For instance, heuristic approaches such as Heuristic Miner [5], Fodina [6] and
Fusion Miner [7], as well as genetic approaches [8]. By their nature, state-
based [9, 10, 11]) or language-based [12] region theory are able to discover hard
dependencies. Other algorithms able to mine hard dependencies are certain
α-Miner variants [13], eST-Miner [14], approaches based on T -Invariants [15],
Maximum Pattern Miner [16], local process mining [17] and AGNEs Miner [18].
Approaches that repair a given Petri net such as [19, 20] may add hard depen-
dencies to existing Petri nets.

Stochastic process discovery techniques include techniques that add a stochas-
tic perspective to an existing model, such as the GDT_SPN Miner [21] and the
weight estimators [22]. Toothpaste Miner [23] discovers a stochastic model from
scratch. These techniques express the likelihood of behaviour, but do this stat-
ically: earlier decisions have no influence on the distribution of later decisions.

The idea of incorporating historical information to adjust the probabilities
of future behaviour, particularly based on which activities have been executed
and how often, has been a topic in some previous works.

The approach proposed in [3] adds guards which allow an enabled transition
to fire only if the current history of the trace satisfies definable requirements.
However, these guards represent hard dependencies, i.e., they lack the stochastic
component. Furthermore, silent transitions are not supported in [3].

In [24] the authors suggest a similar idea of transition probabilities based on
history and [25, 26] apply it in the context of discovery of simulation models.
A number of abstractions on history, like property projection, event projection,
window abstraction, multiset, set and cardinality abstractions are proposed.
The generalized logit model for multinomial response is used to predict the
probabilities. However, a limited class of Petri nets is considered there: free-
choice and without silent transitions.

Declarative process models, such as Declare [27] can inherently express hard
dependencies. A recent extension adds probabilities: a constraint must hold
in a certain fraction of behaviour [28], and as such, can express some stochas-
tic dependencies. This is one of the closest approaches to our work, though,
unlike [28], our formalism is imperative and can express dependencies on loops.

In the context of process mining, causal analysis aims to derive the influence
that decisions or interventions in a process have on other decisions [29], time
performance [30, 31] or process outcomes [32, 33] of processes. The causal
influence of decisions on later decisions has been studied in [29] for directly
follows models and process trees, however focuses on insights for users, considers
only these sub-classes of Petri nets, and does not define a modelling formalism
for stochastic dependencies. Nevertheless, it is intuitive to combine stochastic
dependencies with causal dependencies, and future research may reveal how to
interpret causal and associational relations.

5

In [32, 34] the input format is a so-called Action-Response-Logs. Causal
relations between pairs of action and response type events and future behaviour
are investigated. Our work focuses on traditional event logs and correlation
rather than causation, however, the ideas presented in [32] may become relevant
for future extensions.

In the context of the discovery algorithm presented in this work, we apply a
series of statistical tests to verify the significance of the discovered dependencies.
A notable related technique is lasso [35], a variable selection and regularization
method, which could be applied instead of the significance test to select an
interesting subset of dependencies.

3. Preliminaries

In this section, we define existing concepts and introduce notation.

3.1. Multisets
Given a set of elements Σ, a multiset M : Σ → N maps the elements of Σ

to the natural numbers. For instance, [a2, b3] is a multiset having two a’s and
three b’s.

Let M1, M2 be multisets, then (M1]M2)(e) = M1(e) + M2(e) is the
multiset union; (M1 \- M2)(e) = max(0,M1(e)−M2(e)) is the multiset differ-
ence; M1 F M2 ≡ ∀e M1(e) ≤ M2(e); and |M1 | =

∑
e M1(e) is the size of

the multiset. Furthermore, by considering the set of elements having a non-zero
mapping, the standard set-based relations ⊂, ⊆, \ and ∈ apply. Let MΣ denote
the set of all multisets over Σ.

3.2. Petri nets
A labelled Petri net is a tuple (P, T, F,Σ, λ,M0), in which P is a finite set of

places, T is a finite set of transitions such that P ∩ T = ∅, F is a flow relation
F F (P × T) ∪ (T × P), Σ is a finite alphabet of activities such that τ /∈ Σ,
λ : T → Σ∪{τ} is a transition labelling function, M0 ∈ MP is an initial marking
(a multiset of places denoting the state of the net).

For a transition t, let t• denote the multiset of outgoing places of t: t• = [p |
(t, p) ∈ F]. Symmetrically, •t = [p | (p, t) ∈ F].

We assume the default semantics of Petri nets here: the net starts in the
initial marking M0 which indicates tokens on places. A transition t ∈ T is
enabled in a marking M if •t F M . Let E(M) be the set of enabled transitions
in marking M . An enabled transition t can fire in a marking M , which brings
the system to a new marking M] t• \- •t atomically. On firing, if λ(t) 6= τ , then
the activity λ(t) is emitted. A path is a sequence of transitions that brings the
net from M0 to a marking in which no transition is enabled; the corresponding
projection using transition labels λ and leaving out transitions mapped to τ is
a trace. The set of all traces supported by a net is its language [36]. Finally,
in context of a particular Petri net, let R denote the set of reachable markings
from M0.

6

3.3. Coverability
Let (P, T, F,Σ, λ,M0) be a labelled Petri net. An ω-marking is a mapping

of places to the natural numbers and ω, which indicates a number that can be
arbitrarily large. Using ω+1 = ω, ω−1 = ω, and n < ω for all natural numbers
n, the enabling and transition firing rules extend to ω-markings, as well as the
multiset relations F, D and ∈. A coverability graph consists of ω-markings as
nodes. For any path such that M0

t1−→ . . .
tk−→ Mk

tk+1−−−→ . . .
tn−→ Mn such that

Mk D Mn, the node M̄n of the coverability graph corresponding to marking Mn

is defined as follows: ∀p∈P∧Mk(p)<Mn(p)M̄n(p) = ω, and M̄n(p) = M(p) for all
other places. An edge M

t−→ M ′ for ω-markings M , M ′ and t ∈ T is present if
t ∈ E(M) and M ′ = M] t• \- •t. A coverability graph is thus a finite abstract
representation of the entire state space of a potentially unbounded Petri net, in
which the number of tokens in unbounded places is summarised using ω.

3.4. Stochastic Petri Nets
A stochastic labelled Petri net (SLPN) (P, T, F,Σ, λ,M0, w) extends a la-

belled Petri net with a function w that indicates the likelihood that a transition
fires. One option to define w is by w : T → R+. In a given marking M with
the set E(M) of enabled transitions, the likelihood that t ∈ E(M) fires is

w(t)∑
t′∈E(M) w(t′) [36]. The probability of a path is the product of the probabilities

of all its transitions, and lifted to traces, the weighted set of all traces of an
SLPN is its stochastic language.

An SLPN has close resemblances with stochastic Petri nets, which express an
exponentially distributed time delay on their transitions. In this paper, we only
consider the weights of transitions (which equal the parameter of the exponential
distribution). A main conceptual difference between stochastic Petri nets and
SLPNs is that SLPNs support silent transitions, which do not take time but do
have a weight.

We assume that from each marking that is reachable from the initial state
with non-zero probability, a final marking (that is, a marking in which no tran-
sitions are enabled) can be reached with non-zero probability. That is, we only
consider SLPNs without livelocks.

4. Stochastic labelled Petri nets with stochastic long-distance depen-
dencies

In this section, we first introduce our variant of SLPNs with stochastic de-
pendencies (SLPN-SD), after which we discuss symmetries in the formalism,
discuss loops, and show that it strictly increases expressivity over SLPNs.

4.1. SLPN-SDs
We take SLPNs and modify the definition of their weight function to intro-

duce the dependency of the weight on the execution sequence that resulted in
the current marking. Intuitively, these weight functions express for a transition

7

t a base weight Φt, multiplied by weight adjustments ϕt,t′ for each execution of
a transition t′. A multiset abstraction is applied to the execution sequence to
define this new weight function.

Definition 1 (Stochastic labelled Petri net with stochastic dependencies). A
stochastic labelled Petri net with stochastic dependencies (SLPN-SD) is a tuple
(P, T, F,Σ, λ,M0, w), in which (P, T, F,Σ, λ,M0) is a labelled Petri net and
w : T ×MT → R is a weight function of the form w(t,M) = Φt ·

∏
t′∈T ϕ

M(t′)
t,t′

with Φt > 0 and ϕt,t′ > 0 for any t, t′ ∈ T and M ∈ MT .

The semantics of SLPN-SDs resembles the semantics of SLPNs [36], the
only difference being that one needs to keep track of the executed transitions [3].
Thus, the state of an SLPN-SD is the markingM and a multisetMp of executed
transitions, i.e. of the path prefix that led to M .

The SLPN-SD starts in the state (M0, []). In a state (M,Mp), the proba-
bility of firing transition t ∈ E(M) is w(t,Mp)∑

t′∈E(M) w(t′,Mp)
. Firing t leads to the

state (M] t• \- •t,Mp][t]). Note that M in (M,Mp) reached from (M0, []) is
uniquely defined by Mp.

Fig. 2a shows an example; parameters equal to 1 may be omitted. The
transition d has a stochastic dependency on transition a: the base weight Φd

is 1, while the weight adjustment ϕd,a is 2 and the other weight adjustments
equal 1. We write, e.g., 2|a| at transition d to indicate that ϕd,a = 2. That is,
the weight of d is 1 if d got enabled after executing transition c, but it equals
2 if transitions a and b were executed first. Formally, the weight function w of
transition d is w(d, [a|a|, b|b|, c|c|, d|d|, e|e|]) = 1 · 2|a| · 1|b| · 1|c| · 1|d| · 1|e|. The
stochastic language of this net is [〈a, b, d〉 1

3 , 〈a, b, e〉 1
6 , 〈c, d〉 1

4 , 〈c, e〉 1
4].

4.2. Symmetries
SLPN-SDs with equivalent control-flow structures may still have equivalent

stochastic languages even if they have certain syntactical differences in their
stochastic dependencies. Our aim is to discover SLPN-SDs that enable better
process comprehension. Including less dependencies in the resulting SLPN-
SD improves model simplicity, and hence model comprehension. Therefore, we
are interested in reducing the number of dependencies. To achieve that, we
consider models with control flow patterns that yield symmetries in stochastic
behaviour and we steer the discovery process to a simpler model with equivalent
stochastic behaviour. In this section, we study control flow constructs for which
base weights and weight adjustments can be modified without changing the
stochastic behaviour to make use of them in model discovery in Section 5.

We describe several such symmetries, using the concept of groups of tran-
sitions: any two transitions t and t′ belong to the same group iff there is a
reachable state such that t and t′ are both enabled. Formally speaking, a set
G ⊆ T of transitions is called a group if it is a minimal nonempty set such that
for every reachable marking M , E(M) ⊆ G or E(M) ∩G = ∅. Two groups are
either disjoint or they are equal, implying that groups form a partitioning of the

8

a
1

b
1

c

1

d
1 · 2|a|

e

1

(a) Example SLPN-SD.

a
1

b
1

c

1

d
5 · 2|a|

e

5

(b) Base weight scaling.

a
1

b
1

c

1

d
1 · 2|a|5|c|

e

1 · 5|c|

(c) Adjustment weight scaling.

a
1

b
1

c

1

d
1 · 2|a|

e

1 · 2|d|

(d) Unvariate transition.

a
1

b
1

c

1

d
1 · 2|b|

e

1

(e) Equivalent alternatives.

a
1

b
1

c

1

d
2 · 0.5|c|

e

1

(f) Alternatives.

Figure 2: Stochastic-language equivalent SLPN-SDs.

set T of transitions. In our example SLPN-SD Fig. 2a, the groups are {a, c},
{b} and {d, e}. We do not aim to, and we cannot, be exhaustive in symmetries,
as these may arise from the model’s structure.

Symmetry S1 The base weight Φt of all transitions t ∈ G in a group G can be
scaled by a positive number f . This does not change the stochastic behaviour,
as for any state (M,M), the probability of firing a transition u ∈ G does not

change: If E(M) ⊆ G then f Φu(ϕu,t)
Mp(t)∑

v∈E(M) (f Φv(ϕv,t)
Mp(t))

=
f Φu ϕ

Mp(t)

u,t

f
∑

v∈E(M) (Φv ϕ
Mp(t)

v,t)
=

Φu ϕ
Mp(t)

u,t∑
v∈E(M) (Φv ϕ

Mp(t)

v,t)
, otherwise E(M) ∩G = ∅ and no u ∈ G is enabled. Fig. 2b

shows an example: {d, e} is a group of transitions and the base weights of d and
e have been scaled by 5.

Symmetry S2 Given an arbitrary transition t, a group G and a positive num-
ber f , the adjustment weight ϕu,t of all transitions u ∈ G can be scaled by
f without changing the stochastic behaviour of the model, as for any reach-
able state (M,Mp) and a transition u ∈ E(M) ∩ G, the probability to fire u

is Φu(f ϕu,t)
Mp(t)∑

v∈E(M) Φv ·(f ϕv,t)
Mp(t) =

Φu fMp(t) ϕ
Mp(t)

u,t

fMp(t)
∑

v∈E(M) Φv ϕ
Mp(t)

v,t

=
Φu ϕ

Mp(t)

u,t∑
v∈E(M) Φv ϕ

Mp(t)

v,t

.

Fig. 2c shows an example: ϕd,c and ϕe,c have both been scaled with 5.

Symmetry S3 Consider two transitions t, t′. If there is a number c such that
before every enablement of t, t′ is executed precisely c times, a symmetry is

9

a

1

b 1 · 0.5|b|

1

(a) Negative feedback loop.

a

1

b 1 · 2|b|

1

(b) Positive feedback loop.

Figure 3: Examples of (different) SLPN-SDs with loops.

present. Formally, given t, t′ ∈ T , if ∃c∈N such that for every reachable state
(M,Mp), t ∈ E(M) ⇒ Mp(t

′) = c, then changing Φt and ϕt,t′ to Φ′
t and ϕ′

t,t′

such that Φt(ϕt,t′)
c = Φ′

t(ϕ
′
t,t′)

c does not change the stochastic behaviour of the
model. Fig. 2d shows an example: ϕe,d is 2, but as d is never executed before e
(that is, c of our formalisation is 0), ϕe,d has no influence.

Symmetry S4 Given transitions t, u, v, if u and v are executed equally many
times in any reachable marking enabling t, then the adjustment weights ϕt,u and
ϕt,v are interchangeable. Formally, given transitions t, u, v, if Mp(u) = Mp(v)
for any reachable state (M,Mp) such that t ∈ E(M), then changing ϕt,u, ϕt,v to
ϕ′
t,u, ϕ

′
t,v such that ϕt,u ϕt,v = ϕ′

t,u ϕ
′
t,v does not change the stochastic behaviour

of the model. Fig. 2e shows an example: d has a dependency on a, but obviously
this can be (even partially) shifted to a dependency on b.

Symmetry S5 Consider a transition t and a set of transitions X such that∑
x∈X Mp(x) = 1 for any reachable state (M,Mp) in which t ∈ E(M), i.e.

exactly one of the transitions from X must be executed once before executing
t. Then we can scale Φt by an arbitrary positive number f , while scaling ϕt,x

by 1
f for every x ∈ X, without changing the stochastic behaviour of the model.

Thus Φ′
t = f Φt and ϕ′

t,x =
ϕt,x

f for all x ∈ X, and for a state (M,Mp) with
Mp(u) = 1 for some u ∈ X and Mp(x) = 0 for all x ∈ X \ {u} we have:

Φ′
t

∏
x∈X(ϕ′

t,x)
Mp(x) = f Φt

ϕt,u

f

∏
x∈X\{u}(ϕ

′
t,x)

0 = Φt

∏
x∈X ϕ

Mp(x)
t,x

In particular, by taking f = ϕt,u for some u ∈ X, we can replace Φt with Φt ϕt,u,
and ϕt,x with ϕt,x

ϕt,u
for every x ∈ X, thus obtaining ϕt,u = 1.

Fig. 2f shows an example where this symmetry is applied: to reach a state
enabling d, either a or c needs to be executed exactly once. Therefore, we can
change ϕd,a from 2 to 1 (dividing by 2), multiply Φd by 2 and divide ϕd,c by 2,
thus changing it from 1 to 0.5.

4.3. Loops
Our definition of SLPN-SDs allows for stochastic dependencies in loops:

transitions may depend on transitions that form a loop with them. Fig. 3
shows two examples. In each SLPN-SD, the initial weight of b is 1, and for
every execution of b, its weight decreases by half (Fig. 3a) or increases twofold

10

(Fig. 3b). Thus, these SLPN-SDs model negative resp. positive feedback loops:
each time the loop is taken, the probability to execute b another time changes.

Intuitively, stochastic dependencies in loops can be used to model rework in
business processes: we would argue that it is highly unlikely that the probabil-
ity of performing more rework would be independent of previously performed
rework. For instance, if exiting a loop reflects passing a quality control check,
then it would be highly unlikely that performing a repair has no influence what-
soever on the quality control afterwards (and thus on the probability of exiting
the loop after rework).

The stochastic language of the SLPN-SD with a positive feedback loop in
Fig. 3b is

[〈a〉 1
1 ·

1
2 , 〈a, b〉 1

1 ·
1
2 ·

1
3 , 〈a, b, b〉 1

1 ·
1
2 ·

2
3 ·

1
5 , . . .] or [〈a, bn〉

1
2n+1 ·

∏n
k=1

2k

2k+1 | n ∈ N]

The probability to exit the loop decreases exponentially with the number of
the executions of b. Theoretically, it never becomes 0, however, it becomes
extremely unlikely to finish in practice. This model may challenge simulation
tools that randomly find a path through the model by weighted chance until an
end state is reached.

4.4. Expressiveness
Next, we prove that SLPN-SD is a proper extension of SLPN. That is, the

stochastic language of every SLPN can be expressed by a SLPN-SD, but there
are SLPN-SDs whose stochastic language cannot be expressed by an SLPN.

Theorem 1 (SLPN → SLPN-SD). For every SLPN, there is an SLPN-SD with
the same stochastic language.

Proof. We transform the SLPN with weight function w into a SLPN-SD by
defining Φt = w(t) and ϕt,t′ = 1 for any t, t′ ∈ T .

Theorem 2 (SLPN-SD 6→ SLPN). There are SLPN-SDs for which there is no
SLPN with the same stochastic language.

Proof. There is no SLPN with the same stochastic language as our SLPN-SD
in Fig. 3. The weight of b changes to a new, larger value after each execution
of b. Thus, one needs to model an infinite number of weights for transition b.
Infinitely many copies of transition b would be needed in an SLPN to mimic this
behaviour, since every transition has a fixed weight. As an SLPN has a finite
set of transitions, there cannot be such an SLPN.

5. Discovery

To discover an SLPN-SD from an event log and a Petri net, we perform the
steps illustrated in Figure 4: we first align the log to obtain the sequences of
transitions that were most likely executed for the log. Second, we reconstruct
the choices made in the traces. Third, we select which parameters are necessary

11

align construct
choice data

select
parameters

estimate
weights

symplify
model

log

model

Figure 4: Discovery approach.

to express the weight functions in the SLPN-SD. Fourth, we estimate the weight
function. Fifth, we simplify the SLPN-SD.

In this section, we will use a running example consisting of a log with 300
traces [〈a, b, d〉99, 〈a, b, e〉50, 〈c, d〉75, 〈c, e〉75, 〈a, b, d, d〉1], and the Petri net in
Fig. 2a (assuming we do not know the weight parameters).

5.1. Computing Alignments
We apply alignments [37] to the log and model, which will find a least-edits

way to replay each trace from the log on the model. Thus, for each log trace,
alignments find a corresponding path through the model. In the following, we
will use these paths: sequences of transitions. For our running example, we
obtain [〈a, b, d〉100, 〈a, b, e〉50, 〈c, d〉75, 〈c, e〉75]. Please, note that these are paths
rather than traces: the steps are transitions of the model and not their labels.

5.2. Constructing Choice Data
The second step is to reconstruct the choices made in the model. To this

end, we construct all states reached when executing the log, using prefixes of all
paths resulting from the alignments computation; we abstract the prefix to a
multiset Mp of transitions. Due to the marking equation, Mp uniquely defines
the marking M of the state (M,Mp). For each Mp present in the alignments,
we record E = E(M) of the corresponding marking M as well as the multiset
Mn of transitions executed in the log immediately after this prefix. For our
running example, the choice data is shown in Table 1a.

Formally, we start with the empty choice data C = ∅, go along every align-
ment and update the choice data as follows: for each prefix p followed by the
execution of a transition t, we consider the multiset abstraction Mp of p with
the corresponding set of enabled transitions E, and add (Mp, E, [t]) to C if
(Mp, E,Mn) was not present in C for any Mn, otherwise we update the value
of this Mn to Mn][t].

5.3. Selecting parameters
In an SLPN-SD, for every transition t there is a base weight parameter Φt

and for every pair of transitions t, t′ there is an adjustment weight parameter
ϕt′,t. As the aim is to discover SLPN-SDs, all of this quadratic number of
parameters needs to be assigned a value. To limit computational complexity
(for the discovery algorithm) and model complexity (for human analysts), it is
beneficial to reduce the number of parameters that need to be considered. In this
section, we describe several strategies that reduce the number of parameters,
without limiting the expressive power of the SLPN-SD’s stochastic perspective.

12

prefix enabled next transition
Mp E Mn

[] {a, c} [a150, c150]
[a] {b} [b150]
[c] {d, e} [d75, e75]
[a, b] {d, e} [d100, e50]

(a) Choice data.

. Φ. ϕ.,aϕ.,bϕ.,cϕ.,dϕ.,e

a R1 R1 R1 R1 R1 R1
b R1 R1 R1 R1 R1 R1
c - R2 R2 R2 R2 R2
d R1 R1 R1 R1 R1 R1
e - - R3 - R2 R2

(b) Parameters, and which reduction removes it.

a executed: 0 1

e chosen 75 50
e not chosen 75 100

c executed: 0 1

e chosen 50 75
e not chosen 100 75

(c) χ2 observations.

Mp Mn t equality

[] [a150, c150] a 150
300 = Φa

Φa+Φc

c 150
300 = Φc

Φa +Φc

[a] [b150] b 150
150 = Φb

Φb

[c] [d75, e75] d 75
150 =

Φd·ϕd,c

Φd·ϕd,c+Φe ·ϕe,c

e 75
150 =

Φe ·ϕe,c

Φd ·ϕd,c +Φe ·ϕe,c

[a, b] [d100, e50] d 100
150 =

Φd·ϕd,a·ϕd,b

Φd·ϕd,a·ϕd,b+Φe ·ϕe,a ·ϕe,b

e 50
150 =

Φe ·ϕe,a ·ϕe,b

Φd ·ϕd,a ·ϕd,b +Φe ·ϕe,a ·ϕe,b

(d) Equations; removed by R5; fixed parameters.

Table 1: Discovery steps for our running example.

Technically, when we ‘remove’ a parameter, we replace it with a constant 1.
For an adjustment parameter ϕt,t′ = 1, this means that there is no dependency
modelled as t′ has no influence on t. Consequently, we do not need to show these
parameters to the user. For a base weight parameter Φt = 1, we argue that this
makes it easier to interpret the base weight parameters of other transitions: the
user would not need to perform mental multiplications to determine the weight.

In the following, we describe several reductions for parameters, in which C
denotes the choice data.

5.3.1. Groups
In a typical Petri net, there might be transitions that are never enabled

together, thus belonging to different groups as described in Sect. 4.2. For each
group of transitions, a weight function can be defined in isolation.

13

To determine whether two transitions t, t′ may be enabled at the same time,
several options apply:

1. From the model, t and t′ are independent if they belong to two different
groups of transitions, as defined in Sect. 4.2. Groups of transitions can
be computed on an adjusted coverability graph, where we change the
condition on introducing a new node M to the graph: normally, it is the
existence of M ′ in the graph already such that M ′ F M . Instead, we
also require that there exists M F M such that E(M ′) = E(M). For
(bounded or unbounded) nets without arc weights, this ensures that we
see every E.

2. From the choice data C, ∃(Mp,E,Mn)∈C(t ∈ E ∧ t′ ∈ E) is a sufficient
condition to conclude that t and t′ are not independent. If we assume that
the choice data C contains all sets E at least once, then it is a necessary
condition as well. In safe nets, the assumption can be weakened by taking
•t ∩ •t′ = ∅ as a necessary condition.

For our running example, the groups {a, c}, {b} and {d, e} can be identified
and considered in isolation.

5.3.2. Symmetries
We can leverage some symmetries described in Sect. 4.2 to further reduce

the number of parameters, and thus limit the search space of weight function
discovery.

Reduction R1 Using symmetries S1 and S2, from each group G we may select
one arbitrary transition t and fix all its parameters:

for one t ∈ G (1)
do Φt := 1 ∧ ∀t′ ϕt,t′ := 1 (2)

In our example, this reduction allows us to fix the parameters indicated by
R1, shown in Table 1b.

Reduction R2 If in any prefix Mp in which transition t′ is enabled, a transi-
tion t is executed precisely a fixed number of times, then by Symmetry S3 we
can fix ϕt,t′ :

for all t, t′ (3)
such that ∃c∈N∀(Mp,E)(t

′ ∈ E ⇒ Mp(t) = c) (4)
do ϕt,t′ := 1 (5)

To determine the domain of (Mp, E), two options apply:

14

(a) We can check the property by constructing the coverability graph of the
model. For each node in this graph, we keep the number of times t was
executed in reaching that node. If we add an edge in the coverability graph,
we check whether the two to-be connected nodes have the same number of
ts annotated (or, the target has one more if the edge denotes the execution
of t). If this makes the node inconsistent, we mark it as such and propagate
the inconsistency. Whenever in a node t′ is enabled, the number of times
t was executed should be consistent, and equal to c.

(b) From the choice data, we can consider all encountered (Mp, E,Mn) ∈ C.
This assumes that enough tuples (Mp, E) have been observed to derive c
and conclude that at enablement of t′, t is always executed c times.

In our example, this reduction allows us to fix the parameters indicated by
R2, shown in Table 1b.

Reduction R3 If for every execution of a transition t, we observe that two
transitions u, v are always executed the same number of times, and this number
is always either 0 or 1, then by Symmetry S4 we can fix either ϕt,u or ϕt,v:

for all t, {u, v} (6)
such that ∀(Mp,E)t ∈ E ⇒ Mp(u) = Mp(v) ∧Mp(u) ∈ {0, 1} (7)

do ϕt,u := 1 (8)

While Symmetry S4 targets any number of times, as long as u and v are
executed the same number of times. If this number is 0 or 1, then ϕt,v could be
fixed by any other reduction without issues. Thus, by limiting this reduction to
the 0 or 1 case, we can apply it independently of the other reductions.

To determine the domain of (Mp, E), two options apply:

(a) From the model, we can obtain the property by constructing a coverability
graph. In this graph, we keep an extra variable in each node indicating
the difference between the number of executions of u and v. If an edge
is added to an existing node, the annotated differences are compared; if
they are inconsistent, the node is marked as such and the inconsistency is
propagated. In every coverability node in which t is enabled, this difference
must be consistent and equal to 0.

(b) From the choice data, we can consider all encountered (Mp, E,Mn) ∈ C
and verify the property directly. This assumes that enough tuples (Mp, E)
have been observed to derive the property.

In our example, this reduction allows us to fix the parameters indicated by
R3, shown in Table 1b.

The symmetries relevant for these reductions show that the parameter that
gets fixed is redundant in respect to some other parameter. Then, it is not a

15

problem if the other parameter is fixed as well by another reduction, as any be-
haviour related to the fixed parameter can be fully expressed by using the other
parameter. Therefore, these reductions can be arbitrarily combined, though not
repeated. In future work, it may even be a good idea to reduce the search for
parameters to fix based on the parameters that are already fixed.

5.3.3. Significance
In order to ensure that all reported dependencies are significant, we apply a

set of statistical tests.
An adjustment weight parameter ϕt,t′ indicates an association between tran-

sitions t and t′. Let X be a random variable indicating whether t was executed
from a state enabling t, and let Y be a random variable indicated the number
of times t′ was executed along the path leading to this state. To verify that X
and Y are indeed associated, we perform a statistical test, with null-hypothesis
that X and Y are independent.

Each enabling of t in the choice data constitutes one observation for X and
Y . Formally, the number of times that X = true, Y = i is∑

(Mp,E,Mn)∈C∧t∈E∧Mp(t′)=i

Mn(t)

The number of times that X = false, Y = i is∑
(Mp,E,Mn)∈C∧t∈E∧Mp(t′)=i

|Mn | −Mn(t)

If for any Y = i, either X = true or X = false has less than 5 observations,
that Y = i is removed; if this leaves less than two Y = i, then the parameter
ϕt,t′ is fixed, due to a lack of data.

On these observations, we perform a χ2 test [38] with a user-chosen thresh-
old α, divided by the total number of tests according to the Bonferroni correc-
tion [39].

Reduction R4 If the statistical test rejects the null-hypothesis, then there is
sufficient evidence of the alternative hypothesis, which states that X and Y are
dependent and thus that t and t′ are associated. If not, we fix ϕt,t′ .

For our running example, the observations are summarised in Table 1c. For
both, the χ2 value is 8.57; the p-value 0.003. For our adjusted α of 0.05/2 =
0.025, both are significant. Hence, both a and c have a statistically significant
impact on e and thus the ϕe,a and ϕe,c adjustment weight parameters should
not be fixed.

5.4. Estimating the weight function
The next step is to use the remaining parameters to estimate the weight

function of the SLPN-SD. We start from the choice data C: for each triple
(Mp, E,Mn), we add an equality that states that the likelihood of a transition

16

seen in Mn should match the weight as posed by the parameters of the weight
function:

∀(Mp,E,Mn)∈C∀t∈E
Mn(t)

|Mn |
=

Φt ·
∏

t′∈Mp
ϕ
Mp(t

′)
t,t′∑

t′′∈Mn
Φt′′ ·

∏
t′∈Mp

ϕ
Mp(t′)
t′′,t′

(9)

The weight function is then given by a solution for which the equations hold
as closely as possible. In determining this closeness, the size |Mn | is consid-
ered. This is a non-linear optimisation problem, for which standard solvers are
available to approximate an optimal solution.

In (9), we use the information of the model of which transitions were enabled
(t ∈ E). However, we obtain the prefixes (Mp) from the choice data. These
prefixes could be derived from the model using a state space exploration, how-
ever we cannot obtain the number of times each enabled transition was executed
(Mp) from a control-flow model: there is no such information available if the
corresponding prefix was not observed in the log.

As a further reduction, we can observe that not all equations are necessary:

Reduction R5 The equations come in conjugated sets: for each (Mp, E,Mn)
in the choice data C, the equation for one arbitrary transition t ∈ Mn adds no
further information and can be removed.

For our running example, the equations are shown in Table 1d; dropped
equations and fixed parameters are indicated. Simplified, these equations are:
1
2 = 1

1+Φc
; 1

2 = 1
1+Φe ·ϕe,c

; and 2
3 = 1

1+Φe ·ϕe,a
. An optimal solution is Φc = 1,

Φe =
1
3 , ϕe,c = 3 and ϕe,a = 1.5.

5.5. Heuristic Model Simplification
Some of the symmetries identified in Section 4.2 are challenging to leverage

before optimisation – in interplay with other symmetries, too many parameters
fixed means that the SLPN-SD loses expressivity –, but can be used afterwards
in post-processing reductions. The final reductions are applied to change the
SLPN-SD without changing its behaviour; that is, each reduction transforms a
set of parameters, in order to make as many parameters 1 as possible.

Reduction R6 Symmetry S5 can be used as follows: if before every enable-
ment of t, precisely one of a set of transitions X is executed (11), then we can
scale on weight adjustment parameter ϕ to 1, amongst scaling several other
parameters. As the other affected parameters are scaled as well, we only apply
this reduction if these are not 1 already (12).

for all t,X (10)
such that ∀(Mp,Mn)∈C Mn(t) > 0 ⇒

∑
t′∈X Mp(t

′) = 1 (11)
∧ ∀t′∈X ϕt,t′ 6= 1 (12)

pick a v ∈ X (13)
and do ∀u∈X,u 6=v ϕt,u := ϕt,u/ϕt,v ∧ Φt := Φt ϕt,v ∧ϕt,v := 1 (14)

17

Figure 5: Screenshot of an SLPN-SD in the ProM framework.

For our running example, we apply R6 as follows: t = e, X = {a, c}. Then,
we pick v = c and end up with Φc = 1, Φe = 1, ϕe,c = 1 and ϕe,a = 1

2 .

6. Evaluation

In this section, we evaluate our approach threefold: we show its compu-
tational feasibility using an implementation, illustrate the new insights it may
provide, and evaluate the practical applicability of the technique and the quality
of the models with respect to other stochastic discovery techniques.

6.1. Implementation
SLPN-SDs, a discovery technique, a conformance checking technique, two

visualisations, a file importer and a file exporter have been implemented as plug-
ins of the ProM framework [4] in the LongDistanceDependencies package. The
source code is available at http://svn.win.tue.nl/repos/prom/Packages/
LongDistanceDependencies/Trunk.

Figures 5 and 6 show screenshots of the two visualisations. The first visu-
alisation shows the weight parameters in full detail. The second visualisation
abstracts from the precise values and only shows the base weights and the type of
dependency: an incoming red arc indicates a lowering (< 1) adjustment weight,
while an incoming green arc indicates an increasing (> 1) adjustment weight.

In our implementation of the discovery method, we use the choice data for the
symmetries: no coverability graph computations are performed – these remain
future work. The optimisation is likely non-convex, and therefore we can only
approximate an optimal solution, using the Levenberg-Marquardt method. This
method does not support constraints to require parameters to be positive, so on
encountering of a negative value we truncate to 0. We apply the optimisation
in two passes: first, only the base weight Φ parameters are estimated with
an initialisation of 1. Second, the base weight Φ and adjustment weight ϕ
parameters are estimated, initialised with the found Φ parameters. Intuitively,
this will first find the “average” values of Φ in a smaller search space, after which
the ϕ are fine-tuned to include the dependencies.

18

http://svn.win.tue.nl/repos/prom/Packages/LongDistanceDependencies/Trunk
http://svn.win.tue.nl/repos/prom/Packages/LongDistanceDependencies/Trunk

Figure 6: Part of SLPN-SD of the BPIC20 Request for Payment event log (activity labels
abbreviated).

6.2. Insights
To illustrate the practical insights that can be obtained using stochastic

dependencies, we applied our discovery technique to an event log (the BPIC20-
Request for Payment log), and a control-flow model obtained by applying the
Directly Follows Model Miner [40] to this log. The discovered model was con-
verted to a Petri net and our stochastic dependencies discovery technique was
applied.

Fig. 6 shows the resulting SLPN-SD; activities have been abbreviated. The
control-flow model by itself – in blue – shows the possible paths in the model. In
this perspective, we can identify a rework loop of rejection by the administration.
Adding the stochastic perspective on top – the base weights in white – yields
insights into the likelihoods of behaviour. The stochastic perspective shows, for
instance, that after submission by an employee, the likelihood of approval by
the supervisor is 0.2468

0.2468+1+0.1899 = 17%.
The approach of this paper adds stochastic dependencies on top of the

stochastic perspective, thereby making the stochastic behaviour dynamic. In
Fig. 6, a rejection by the administration correlates with several changes in proba-
bilities further on in the process. That is, every time that a request gets rejected

19

Figure 7: SLPN-SD of of the BPIC2013 - open problems event log.

by the administration: (1) another rejection by the administration becomes less
likely (indicated by the red arc to itself), and (2) approval by a supervisor (in-
stead of by the administration) becomes more likely (indicated by the green
arc to final approval by supervisor). At another decision point in the model,
after approval by administration, approval by the supervisor is less likely if the
payment request was first rejected by the administration. An explanation, and
a potential insight, would be that in case of a rejection by the administration,
supervisors escalate to the budget owner before taking a decision themselves.
This insight is not only statistically significant, but quantified as well in the
alternative visualisation (not shown): the weight of approval by a supervisor
gets multiplied by 0.74 for each rejection by the administration: without pre-
ceding rejection 63% is approved by the supervisor, with 1 preceding rejection
this is 56%. In order to obtain this insight, it is necessary to not only consider
the control flow perspective and the stochastic perspective, but also stochastic
dependencies, as provided by our approach.

A second example is given in Figure 7. We take a log extracted from a
problem management system of Volvo IT Belgium, which shows the lifecycle
of reported IT incidents [41]. The control-flow model was discovered using the
Directly Follows Model Miner, and translated to a Petri net; notice that the
model contains many duplicated transitions in its Petri net translation. We
applied our approach to this log and the Petri net; the results are visualised in
Figure 7.

An interesting part of this SLPN-SD is the loop of Awaiting Assignment
and In Progress: combined, these stochastic dependencies form a positive
feedback loop of factor 1.654 * 0.863 = 1.427. A potential insight that could
be derived from these stochastic dependencies is that problems that are ‘shifted
around’ a lot do not get solved even after being assigned but instead go back
to being ‘shifted around’: the more shifted around, the more likely to be even
more shifted around.

This example also shows that positive feedback loops are not necessarily

20

Figure 8: Part of SLPN-SD of the BPIC2012 - a log.

an inherent problem to SLPN-SD: even though Awaiting Assignment has a
positive feedback loop, as part of the same loop In Progress does not become
more likely, thus the exit probability (silent transition 14) does not get more
unlikely with each execution of the loop.

A third example is shown in Figure 8. This log describes a loan applica-
tion process, and the control flow model indicates several control-flow depen-
dencies, such as that A_ACCEPTED can only be executed if A_PREACCEPTED was
executed. From the SLPN-SD, we can observe that the decision to execute
A_ACCEPTED and to execute A_FINALIZED have no significant stochastic depen-
dency, as no green or red arc is drawn between these transitions. The main
decision is the last one in the process: A_DECLINED and A_CANCELLED have
high base weights, which make executing the parallel block of A_ACTIVATED,
A_APPROVED and A_REGISTERED (with weight 1) extremely unlikely. However,
both A_DECLINED and A_CANCELLED have a strong negative stochastic depen-
dency: if A_FINALIZED is executed, then both options are multiplied by very
low adjustment weight parameters (3 · 10−10 and 9 · 10−12). This is a clear
dependency, and where the control flow model does not show it, the stochastic
dependencies of SLPN-SD do.

A further set of stochastic dependencies can be found in the parallel block:
these activities are automatic, and even though they appear in all possible orders
in the log, not only can weights be found – A_APPROVED is most likely to happen
first –, but the likelihood of the second to-be executed activity changes with the
first one.

These illustrations showed the types of insights that can be derived from
SLPN-SDs, which are not derivable from the control flow or the stochastic per-
spective: SLPN-SDs show dynamic changes in the stochastic perspective.

6.3. Model quality
In this experiment, we evaluate whether the SLPN-SDs of this paper can

compare with the SLPNs discovered by existing stochastic discovery techniques
on stochastic model quality. Fig. 9 shows the experimental set-up, where Tab. 2
shows further details. We start with a set of real-life logs, from which we

21

log discovery

resampled training log

stochastic
discovery measuremodel stoch.

model

Figure 9: Quantitative evaluation set-up.

Table 2: Details of the experimental set-up.

(a) Logs

BPIC12-approvals [42] BPIC12-a
BPIC13-closed problems [43] BPIC13-cp
BPIC13-open problems [41] BPIC13-op
BPIC17-offers [44] BPIC17-O
BPIC20-domestic declarations [45] BPIC20-dd
BPIC20-international declarations [45] BPIC20-id
BPIC20-prepaid travel costs [45] BPIC20-pt
BPIC20-request for payment [45] BPIC20-rf
Example of Sect. 5 example log
MIMIC services [46]Appendix A mimic-serv
MIMIC transfers [46]Appendix A mimic-trans
Sepsis cases [47] sepsis
BPIC2018-parcel document [48] BPIC2018-6
Road fines [49] roadfines

(b) Control-flow discovery.

Inductive Miner - infrequent (0.8) [50] transformed
to a Petri net

IMf

Directly Follows Model Miner (0.8) [40] transformed
to a Petri net

DFM

(c) Stochastic discovery techniques.

Alignment-based estimator [23] ABE
Frequency-based estimator [23] FBE
This paper without reductions or dependencies SDwr
This paper SD

(d) Measures.

Number of transitions in control-flow model transitions
Number of non-1 weights or dependencies weights
Stochastic model discovering time (excl.
control-flow)

time

Unit Earth Movers’ Conformance Check-
ing [36]

uEMSC

first discover control-flow models using standard control-flow process discov-
ery techniques. Second, we resample each log to avoid evaluating on training
data. From each of these resampled logs, combined with a discovered control-
flow model, we discover a stochastic model using several stochastic discovery
techniques. Lastly, we measure the quality of the models on the original logs
using several stochastic-based measures, including a measure of stochastic qual-
ity (uEMSC [36]) and a measure of simplicity of the stochastic model (number
of non-1 weights or dependencies). To nullify random effects, the procedure is
repeated 10 times and averages are reported.

Computational Feasibility. The experiments were performed on an AMD EPIC
2GHz CPU with 40GB RAM available. The logs mentioned in Tab. 2 are those
for which at least SDwr or SD could be computed for all 10 repetitions. The
results have been included in Tab. B.4.

To provide a full picture of the computational feasibility of the technique, we
also report on the attempted logs for which our techniques were not successful.
Logs for which neither SDwr or SD could be computed for some or all of the 10
repetitions were:

• BPIC11 [51]; for this log, no alignments could be computed with our
computing resources, and henceforth only FBE proved feasible.

• For the BPIC13-incidents [52] log, a couple of models were discovered (IMf-
SD 1, IMf-SDwr 4, DFM-SD 2, DFM-SDwr 5); for the other repetitions,

22

0 50 100 150 200 250

100

102

104

106

108

rank

ru
n
tim

e
(m

s)

FBE
ABE
SDwr
SD

Figure 10: Run times in our qualitative experiment.

Table 3: Summary of our quantitative results.

stochastic algorithm lowest weights highest uEMSC pareto-optimal
FBE 13 1 11
ABE 0 11 3
SDrw 8 9 16
SD 8 21 22

our optimiser did not converge, as e.g. one of the groups for DFM-SD
had, with 7 transitions, 99 parameters to optimise.

• For the Sepsis [47] log, we could only obtain 3 SLPN-SDs for DFM-SD:
time was the limiting factor here.

For the log mimic-serv, our discovery techniques successfully discovered all
models. However, for IMf-SDwr and IMf-SD, the uEMSC measure did not
complete and ran out of time.

Fig. 10 shows the distribution of stochastic discovery run times in the exper-
iment. Observing the run time of the stochastic discovery techniques, we can
observe that FBE is by far the fastest technique, as it does not compute align-
ments or perform any other type of optimisation. Second, the ABE technique
applies alignments and then uses the frequencies of the observed transition fir-
ings as weights. As both SDwr and SD include alignments before starting the
numerical optimisation, naturally these techniques require more time. While
reaching a maximum of 9 days, half the models was discovered in 10 seconds or
less.

23

Results. Tab. 3 summarises the results; for more details, please refer to Tab. B.4
in Appendix B. SD, our new technique that discovers SLPN-SDs, is the clear
winner: of the tested techniques, it has the highest uEMSC the most often and
discovers a pareto-optimal model in 22 of the 25 complete set-ups.

As SD considers a quadratic number of potential parameters in an SLPN-SD,
one would expect over-fitting to be a potential challenge. In the experiments, we
aimed to address over-fitting by not measuring uEMSC on the training data,
but on a re-sampled event log. We see the effect of the re-sampling in the
example log: a manual verification shows that the model discovered by IMf is
our example control-flow model, however due to the re-sampling, uEMSC is 0.97
instead of 1, as the discovered SLPN-SD is close, but not entirely equal to, our
example input model.

As a baseline, we included our technique without reductions and stochastic
dependencies (SDwr): all adjustment weight parameters were fixed to 1, such
that only the base weight parameters remain. We see two effects in Tab. 3: it
reduces the number of weights unequal to 1 compared to ABE (the optimiser
does not need all parameters to express the stochastic behaviour and leaves some
at 1), and it does not always achieve an as high uEMSC as ABE (due to the
optimiser not guaranteeing optimality and other factors, discussed in Sect. 7).

FBE often has the lowest number of weights, due to it not assigning weights
to silent transitions at all; thus in any IMf model, it has the lowest number
of non-1 weights. The 0.00 uEMSC values for FBE were double-checked: they
are in the order of 10−7, due to the technique assigning the number of times a
transition was executed to each visible transition and 1 to each invisible tran-
sition. This yields a very low probability for any trace that must take a silent
transition where also a visible transition is enabled, leading to the low scores on
the trace-based uEMSC measure.

For Sepsis - IMf, we suspect a different reason for the uEMSC measures
being quite low: the IMf model of the Sepsis log contains a large concurrent
block (5 branches of which 2 contain loops). This yields such a high number of
potential traces, each having a non-zero probability, that any trace seen in the
log has a quite low probability of actually occurring according to the discovered
stochastic models. SD here has the advantage of having more leverage to putting
stochastic structure in the concurrent behaviour.

We conclude that our approach has the potential to outperform existing
stochastic approaches, at the cost of longer run times.

7. Discussion

The stochastic dependencies reported by our discovery technique can be
interpreted as follows. Take transitions a and b, and a reported adjustment
weight parameter ϕa,b 6= 1, obtained using a certain significance level α. Then,
a and b are dependent with 1 − α certainty, and the best explanation of the
relation between a and b is that with every execution of a, the weight of b
increases ϕa,b-fold, under assumption of: (1) exponentially increasing weights

24

(Def. 1) (2) an optimal result of the optimiser used in our implementation,
which is not guaranteed, (3) correctness of the input process model and event
log, and (4) the event log containing enough information – where the precise
notion of completeness is subject of future research. Please note that this is an
associational result and not a causal statement: from the technique presented
in this paper we can not conclude that by increasing the likelihood of a we can
increase the likelihood of b.

Even though the base and adjustment weights are a best explanation, many
degrees of freedom exist to express a single stochastic language, as shown in
Sec. 4.2. As such, it may be challenging to interpret the values of the dependen-
cies or to compare strengths of dependencies, even within the same SLPN-SD.
Therefore, we chose not to indicate relation strength in our attemptly intuitive
visualisation (Fig. 6). We argue that this challenging interpretability is shared
with non-free choice constructs in Petri nets. Furthermore, please note that our
method assumes a Petri net as input and adds complexity on top of it. Thus,
for real-life cases for which an understandable Petri net is not available, our
method will be challenged for understandability as well.

In Sec. 5.3, we introduced several reductions, which apply a symmetry to
several parameters in order to fix a parameter and make the problem search
space smaller. This yields a certain freedom in selecting parameters, which we
argue can be leveraged using the following principles: (1) some of the parameters
that may be fixed may already have been fixed by other reductions, thus these
are best avoided to maximise the number of fixed parameters; (2) a weight
of, or a dependency of or on, a silent transition is a preferable candidate to
fix, as interpreting such dependencies or weights may be challenging: silent
transitions are abstract modelling formalism constructs that may have only
indirect interpretations in real-life processes.

Special care should be taken when applying the method proposed in this
paper repeatedly: the statistical significance quantifies the uncertainty of the
reported dependencies, but still the reported dependencies may be due to ran-
dom chance. That is, spurious dependencies may be reported, especially when
applying the approach of this paper repeatedly. As such, it remains impor-
tant to validate the obtained dependencies using domain knowledge and apply
Occam’s razor: the simplest explanation is typically the best.

8. Conclusion

Considering the stochastic perspective in process models aids process optimi-
sation and support efforts in organisations. The stochastic behaviour of real-life
processes is often not static: the likelihood of alternatives in a process may
depend on decisions taken earlier in the process. To capture dynamic stochas-
tic perspectives we extended SLPNs with stochastic dependencies (SLPN-SDs),
where the weight of a transition may depend on earlier-executed transitions. We
described several symmetries that yield behaviour-equivalence classes of SLPN-
SDs, and we showed how these can be used to reduce SLPN-SDs during and after
discovery. We proved that SLPN-SDs have a strictly larger expressivity than

25

SLPNs, and introduced a technique to discover SLPN-SDs from an event log
and a standard process model. As such, this technique is a stochastic process
discovery technique. The discovery technique and two corresponding confor-
mance checking techniques have been implemented in an open-source tool. The
approach was evaluated on several real-life logs and shown to be able to pro-
vide insights that are not possible with standard SLPNs and to, in some cases,
produce higher-quality models than existing techniques, in terms of EMSC with
respect to test logs, and simplicity, in terms of relevant parameters.

Future work includes additional symmetries and simplifications to further
increase readability, as well as improving visualisations or generating textual
summaries of stochastic dependencies in SLPN-SDs with lots of dependencies.
It would also be interesting to obtain the necessary information from a model
rather than from a log, where possible. Further development of sampling tech-
niques on positive-feedback loops will enable additional conformance checking
techniques. Furthermore, it would be interesting to study different models of
stochastic dependencies, for instance to support local semantics, additive weight
functions or different types of influence models, such as the sigmoid function
in combination with logistic regression; these influence models could also use
other available data beyond the execution history. Neural networks could pro-
vide value for recommendation purposes. Finally, further study into causal
dependencies may provide additional insights.

References

[1] A. Kalenkova, J. Carmona, A. Polyvyanyy, M. L. Rosa, Automated repair
of process models using non-local constraints, in: R. Janicki, N. Sidorova,
T. Chatain (Eds.), Application and Theory of Petri Nets and Concurrency,
Springer International Publishing, 2020, pp. 280–300.

[2] J. Yuan, C. Duan, Q. Wei, A novel process mining algorithm to discover
non-free choice construct from event logs, in: Proceedings of the 3rd In-
ternational Conference on Computer Science and Application Engineering,
CSAE 2019, Association for Computing Machinery, New York, NY, USA,
2019. doi:10.1145/3331453.3360956.
URL https://doi.org/10.1145/3331453.3360956

[3] K. M. van Hee, A. Serebrenik, N. Sidorova, W. M. P. van der Aalst, Working
with the past: Integrating history in Petri nets, Fundam. Informaticae
88 (3) (2008).

[4] B. F. van Dongen, et al., The ProM framework: A new era in process
mining tool support, in: Petri nets, Vol. 3536 of LNCS, 2005.

[5] A. J. M. M. Weijters, J. T. S. Ribeiro, Flexible heuristics miner (FHM),
in: CIDM, 2011.

[6] S. K. L. M. vanden Broucke, J. D. Weerdt, Fodina: A robust and flexible
heuristic process discovery technique, Decis. Support Syst. 100 (2017).

26

https://doi.org/10.1145/3331453.3360956
https://doi.org/10.1145/3331453.3360956
https://doi.org/10.1145/3331453.3360956
https://doi.org/10.1145/3331453.3360956

[7] J. D. Smedt, J. D. Weerdt, J. Vanthienen, Fusion miner: Process discovery
for mixed-paradigm models, Decis. Support Syst. 77 (2015).

[8] A. K. A. de Medeiros, A. J. M. M. Weijters, W. M. P. van der Aalst, Genetic
process mining: A basic approach and its challenges, in: BPM Workshops,
Vol. 3812, 2005.

[9] É. Badouel, L. Bernardinello, P. Darondeau, Petri Net Synthesis, Texts in
Theoretical Computer Science. An EATCS Series, 2015.

[10] J. Carmona, J. Cortadella, M. Kishinevsky, A region-based algorithm for
discovering Petri nets from event logs, in: BPM, Vol. 5240 of LNCS, 2008.

[11] W. M. P. van der Aalst, et al., Process mining: A two-step approach to
balance between underfitting and overfitting, SoSyM 9 (2010).

[12] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, A. Sere-
brenik, Process discovery using integer linear programming, Fundam. Inf.
94 (3–4) (2009).

[13] L. Wen, W. M. P. van der Aalst, J. Wang, J. Sun, Mining process models
with non-free-choice constructs, DMKD 15 (2007).

[14] L. L. Mannel, W. M. P. van der Aalst, Finding complex process-structures
by exploiting the token-game, in: Petri nets, Vol. 11522 of LNCS, 2019.

[15] T. Tapia-Flores, E. López-Mellado, A. P. Estrada-Vargas, J.-J. Lesage,
Discovering Petri net models of discrete-event processes by computing T-
invariants, IEEE TASE 15 (3) (2018).

[16] V. Liesaputra, S. Yongchareon, S. Chaisiri, Efficient process model discov-
ery using maximal pattern mining, in: BPM, Vol. 9253 of LNCS, 2015.

[17] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Mining local
process models, Journal of Innovation in Digital Ecosystems 3 (2) (2016)
183–196.

[18] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust process dis-
covery with artificial negative events, JMLR 10 (2009).

[19] A. A. Kalenkova, J. Carmona, A. Polyvyanyy, M. La Rosa, Automated
repair of process models with non-local constraints using state-based region
theory, CoRR abs/2106.15398 (2021).

[20] M. Chabrol, B. Dalmas, S. Norre, S. Rodier, A process tree-based algorithm
for the detection of implicit dependencies, in: RCIS, 2016.

[21] A. Rogge-Solti, W. M. P. van der Aalst, M. H. Weske, Discovering stochas-
tic Petri nets with arbitrary delay distributions from event logs, in: BPM
Workshops, LNBIP, 2014.

27

[22] A. Burke, S. J. J. Leemans, M. T. Wynn, Stochastic process discovery by
weight estimation, in: ICPM workshops, Vol. 406 of LNBIP, 2021.

[23] A. Burke, S. J. J. Leemans, M. T. Wynn, Discovering stochastic process
models by reduction and abstraction, in: Petri nets, Vol. 12734 of LNCS,
2021.

[24] H. Schonenberg, N. Sidorova, W. M. P. van der Aalst, K. M. van Hee,
History-dependent stochastic Petri nets, in: A. Pnueli, I. B. Virbitskaite,
A. Voronkov (Eds.), PSI 2009, Vol. 5947 of LNCS, Springer, 2009.

[25] J. Jian, Mining simulation models with correlations, Master’s thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands (2009).

[26] H. Schonenberg, J. Jian, N. Sidorova, W. van der Aalst, Business trend
analysis by simulation, in: B. Pernici (Ed.), Advanced Information Sys-
tems Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 515–529.

[27] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full support
for loosely-structured processes, in: EDOC, 2007.

[28] F. M. Maggi, M. Montali, R. Peñaloza, A. Alman, Extending temporal
business constraints with uncertainty, in: BPM, Vol. 12168 of LNCS, 2020.

[29] S. J. J. Leemans, N. Tax, Causal reasoning over control-flow decisions in
process models, in: CAiSE, Vol. 13295 of LNCS, 2022.

[30] M. S. Qafari, W. M. P. van der Aalst, Case level counterfactual reasoning in
process mining, in: S. Nurcan, A. Korthaus (Eds.), Intelligent Information
Systems - CAiSE Forum 2021, Melbourne, VIC, Australia, June 28 - July 2,
2021, Proceedings, Vol. 424 of Lecture Notes in Business Information Pro-
cessing, Springer, 2021, pp. 55–63. doi:10.1007/978-3-030-79108-7_7.
URL https://doi.org/10.1007/978-3-030-79108-7_7

[31] Z. D. Bozorgi, I. Teinemaa, M. Dumas, M. L. Rosa, A. Polyvyanyy, Pre-
scriptive process monitoring for cost-aware cycle time reduction, in: C. D.
Ciccio, C. D. Francescomarino, P. Soffer (Eds.), 3rd International Confer-
ence on Process Mining, ICPM 2021, Eindhoven, The Netherlands, October
31 - Nov. 4, 2021, IEEE, 2021, pp. 96–103. doi:10.1109/ICPM53251.2021.
9576853.
URL https://doi.org/10.1109/ICPM53251.2021.9576853

[32] J. J. Koorn, X. Lu, H. Leopold, N. Martin, S. Verboven, H. A. Reijers, Min-
ing statistical relations for better decision making in healthcare processes,
in: International Conference on Process Mining, 2022.

[33] M. Shoush, M. Dumas, Prescriptive process monitoring under resource con-
straints: A causal inference approach, in: J. Munoz-Gama, X. Lu (Eds.),

28

https://doi.org/10.1007/978-3-030-79108-7_7
https://doi.org/10.1007/978-3-030-79108-7_7
https://doi.org/10.1007/978-3-030-79108-7_7
https://doi.org/10.1007/978-3-030-79108-7_7
https://doi.org/10.1109/ICPM53251.2021.9576853
https://doi.org/10.1109/ICPM53251.2021.9576853
https://doi.org/10.1109/ICPM53251.2021.9576853
https://doi.org/10.1109/ICPM53251.2021.9576853
https://doi.org/10.1109/ICPM53251.2021.9576853
https://doi.org/10.1007/978-3-030-98581-3_14
https://doi.org/10.1007/978-3-030-98581-3_14

Process Mining Workshops - ICPM 2021 International Workshops, Eind-
hoven, The Netherlands, October 31 - November 4, 2021, Revised Selected
Papers, Vol. 433 of Lecture Notes in Business Information Processing,
Springer, 2021, pp. 180–193. doi:10.1007/978-3-030-98581-3_14.
URL https://doi.org/10.1007/978-3-030-98581-3_14

[34] J. J. Koorn, X. Lu, H. Leopold, H. A. Reijers, From action to response to
effect: Mining statistical relations in work processes, Inf. Syst. 109 (2022)
102035. doi:10.1016/j.is.2022.102035.
URL https://doi.org/10.1016/j.is.2022.102035

[35] L. Breiman, Better subset regression using the nonnegative garrote, Tech-
nometrics 37 (1995) 373–384.

[36] S. J. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, A. Polyvyanyy,
Stochastic process mining: Earth movers’ stochastic conformance, Inf. Syst.
102 (2021).

[37] W. M. P. van der Aalst, A. Adriansyah, B. F. van Dongen, Replaying his-
tory on process models for conformance checking and performance analysis,
DMKD 2 (2) (2012).

[38] K. Pearson, X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 50 (302) (1900) 157–175.

[39] C. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita, Pub-
blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali
di Firenze 8 (1936) 3–62.

[40] S. J. J. Leemans, E. Poppe, M. T. Wynn, Directly follows-based process
mining: Exploration & a case study, in: ICPM, 2019.

[41] W. Steeman, BPI Challenge 2013, open problems (4 2013). doi:10.4121/
uuid:3537c19d-6c64-4b1d-815d-915ab0e479da.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_
open_problems/12688556

[42] B. van Dongen, BPI Challenge 2012 (4 2012). doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/
12689204

[43] W. Steeman, BPI Challenge 2013, closed problems (4 2013). doi:10.4121/
uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_
closed_problems/12714476

29

https://doi.org/10.1007/978-3-030-98581-3_14
https://doi.org/10.1007/978-3-030-98581-3_14
https://doi.org/10.1016/j.is.2022.102035
https://doi.org/10.1016/j.is.2022.102035
https://doi.org/10.1016/j.is.2022.102035
https://doi.org/10.1016/j.is.2022.102035
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556
https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476

[44] B. van Dongen, BPI Challenge 2017 - Offer log (2 2017). doi:10.4121/
uuid:7e326e7e-8b93-4701-8860-71213edf0fbe.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_
-_Offer_log/12705737

[45] B. van Dongen, Bpi challenge 2020 (Mar 2020). doi:10.4121/uuid:
52fb97d4-4588-43c9-9d04-3604d4613b51.
URL https://data.4tu.nl/collections/BPI_Challenge_2020/
5065541/1

[46] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. Anthony Celi, R. G. Mark, Mimic-iii, a
freely accessible critical care database, Scientific data 3 (1) (2016) 1–9.

[47] F. Mannhardt, Sepsis Cases - Event Log (12 2016). doi:10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460.
URL https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_
Event_Log/12707639

[48] B. van Dongen, F. F. Borchert, BPI Challenge 2018 (3 2018). doi:
10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/
12688355

[49] M. M. de Leoni, F. Mannhardt, Road Traffic Fine Management Process (2
2015). doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.
URL https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_
Management_Process/12683249

[50] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discovering block-
structured process models from event logs containing infrequent behaviour,
in: BPM Workshops, Vol. 171 of LNBIP, 2013.

[51] B. van Dongen, Real-life event logs - Hospital log (3 2011).
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.
URL https://data.4tu.nl/articles/dataset/Real-life_event_
logs_-_Hospital_log/12716513

[52] W. Steeman, BPI Challenge 2013, incidents (4 2013). doi:10.4121/uuid:
500573e6-accc-4b0c-9576-aa5468b10cee.
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_
incidents/12693914

[53] S. J. J. Leemans, Filtertree: a repeatable branching xes editor, in: Inter-
national Conference on Process Mining - demo papers, 2022.

30

https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://doi.org/10.4121/uuid:7e326e7e-8b93-4701-8860-71213edf0fbe
https://doi.org/10.4121/uuid:7e326e7e-8b93-4701-8860-71213edf0fbe
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914

Appendix A. Log preparation

From the MIMIC [46] data, logs were constructed from the SERVICES.CSV
and TRANSFERS.CSV files as follows, using the FilterTree [53] tool:

SERVICES.CSV:

CSV to XES | HADM_ID
copy event a t t r i b u t e | ”CURR_SERVICE” ” concept : name”

TRANSFERS.CSV:

CSV to XES | HADM_ID
combine event a t t r i b u t e s | concept : name EVENTTYPE PREV_CAREUNIT
make event a t t r i b u t e a timestamp | OUTTIME ”yyyy−M−d H:mm: s s ”
copy event a t t r i b u t e | OUTTIME time : timestamp
annotate t r a c e with sum of event a t t r i bu t e va lue s | LOS
rename t ra c e a t t r i b u t e | ”LOS (sum)” co s t : t o t a l
remove empty t r a c e s |
s o r t events |
sample t r a c e s with seed | 0 .05 1

Appendix B. Quantitative experiment results

Table B.4: Results of the model-quality experiment.

Log discovery stochastic discovery transitions weights time (ms) uEMSC

BPIC12-a IMf FBE 15 10 110 0.19
ABE 15 15 137 0.48
SDwr 15 12 452 0.48
SD 15 19 11726852 0.76

DFM FBE 16 13 32 0.73
ABE 16 16 147 0.83
SDwr 16 5 349 0.83
SD 16 5 378 0.83

BPIC13-cp IMf FBE 15 6 32 0.01
ABE 15 15 104 0.42
SDwr 15 11 732 0.40
SD 15 41 392908 0.36

DFM FBE 13 12 3 0.00
ABE 13 13 108 0.65
SDwr 13 10 1970 0.65
SD 13 24 8611 0.71

BPIC13-op IMf FBE 16 5 2 0.01
ABE 16 16 99 0.43
SDwr 16 14 1281 0.41
SD 16 51 1588670 0.02

DFM FBE 17 12 2 0.22
ABE 17 17 43 0.75
SDwr 17 16 1034 0.75
SD 17 15 3461 0.75

BPIC17-o IMf FBE 9 8 94 0.54
ABE 9 9 400 0.58
SDwr 9 6 1536 0.58
SD 9 8 1423 0.53

DFM FBE 10 7 120 0.84
ABE 10 10 431 0.84
SDwr 10 3 1492 0.84
SD 10 2 1225 0.84

31

Table B.4: Results of the model-quality experiment.

Log discovery stochastic discovery transitions weights time (ms) uEMSC

BPIC20-dd IMf FBE 33 14 30 0.00
ABE 33 32 265 0.80
SDwr 33 24 2521 0.80
SD 33 38 15677 0.78

DFM FBE 9 8 35 0.58
ABE 9 9 134 0.81
SDwr 9 3 336 0.81
SD 9 2 1222 0.81

BPIC20-id IMf FBE 66 30 36 -0.00
ABE 66 64 2972 0.27
SDwr 66 47 30773 0.27
SD 66 96 58834200 0.38

DFM FBE 51 48 40 0.00
ABE 51 51 986 0.18
SDwr 51 39 49653 0.18
SD 51 199 108463726 0.57

BPIC20-pt IMf FBE 63 26 37 0.00
ABE 63 62 879 0.22
SDwr 63 50 10378 -
SD 63 109 124893709 -

DFM FBE 31 29 44 0.16
ABE 31 31 226 0.39
SDwr 31 20 1733 0.40
SD 31 40 9902 0.79

BPIC20-rf IMf FBE 29 15 52 -0.00
ABE 29 28 114 0.63
SDwr 29 20 948 0.63
SD 29 37 19271 0.78

DFM FBE 12 11 18 0.55
ABE 12 12 83 0.81
SDwr 12 5 472 0.81
SD 12 5 296 0.82

example log IMf FBE 5 5 40 0.92
ABE 5 5 5 0.92
SDwr 5 4 13 0.92
SD 5 3 89 0.97

DFM FBE 8 6 1 0.79
ABE 8 8 47 0.80
SDwr 8 3 15 0.80
SD 8 2 106 0.80

mimic-serv IMf FBE 55 19 112 0.00
ABE 55 55 1648 0.53
SDwr 55 52 5020753 -
SD 55 292 9669738 -

DFM FBE 19 10 56 0.72
ABE 19 19 420 0.81
SDwr 19 10 758 0.81
SD 19 9 819 0.81

mimic-trans IMf FBE 37 17 10 0.00
ABE 37 36 463 0.17
SDwr 37 32 4735 0.13
SD 37 72 293417 0.25

DFM FBE 37 33 44 0.51
ABE 37 37 273 0.59
SDwr 37 31 42047 0.59
SD 37 57 329444 0.65

Sepsis IMf FBE 29 14 47 -0.00
ABE 29 29 2359 0.00
SDwr 29 25 495648 0.00
SD 29 86 29143995 0.04

DFM FBE 77 67 51 0.00
ABE 77 77 2619 0.05
SDwr 77 74 18110531 0.05
SD - - - -

BPIC2018-6 IMf FBE 24 9 86 0.00
ABE 24 24 3075 0.07
SDwr 24 19 2938526 0.08
SD 24 105 126062338 0.14

DFM FBE 16 15 146 0.00
ABE 16 16 1225 0.20
SDwr 16 13 1363601 0.20
SD 16 79 19686010 0.67

32

Table B.4: Results of the model-quality experiment.

Log discovery stochastic discovery transitions weights time (ms) uEMSC

Roadfines IMf FBE 24 11 309 0.01
ABE 24 24 2025 0.29
SDwr 24 19 7849 0.37
SD 24 54 835911 0.88

DFM FBE 9 6 309 0.68
ABE 9 9 1152 0.82
SDwr 9 3 3636 0.82
SD 9 2 3614 0.82

33

	Introduction
	Related Work
	Preliminaries
	Multisets
	Petri nets
	Coverability
	Stochastic Petri Nets

	Stochastic labelled Petri nets with stochastic long-distance dependencies
	SLPN-SDs
	Symmetries
	Loops
	Expressiveness

	Discovery
	Computing Alignments
	Constructing Choice Data
	Selecting parameters
	Groups
	Symmetries
	Significance

	Estimating the weight function
	Heuristic Model Simplification

	Evaluation
	Implementation
	Insights
	Model quality

	Discussion
	Conclusion
	Log preparation
	Quantitative experiment results

