
Digital Health Data Quality Issues: Systematic Review

Abstract
Background: The promise of digital health is principally dependent on the ability to 
electronically capture data which can be analysed to improve decision making. Yet, the 
ability to effectively harness data has proven elusive, which has largely been due to the 
quality of data captured. Despite the importance of data quality (DQ), an agreed upon 
DQ taxonomy evades literature. When consolidated frameworks are developed, the 
dimensions are often fragmented, without consideration of the interrelationships 
between the dimensions or their resultant impact. 
Objective: The aim of this study was to develop a consolidated digital health DQ 
dimensions and outcomes framework, which provided insights into the three research 
questions: 1) What are the dimensions of digital health DQ? 2) How are the dimensions 
of digital health DQ related? And 3) What are the impacts of digital health DQ? 
Methods: Following PRISMA guidelines, a developmental systematic literature review 
was conducted of peer-reviewed literature focussing on digital health DQ in 
predominately hospital settings. A total of 227 relevant articles were retrieved that 
were inductively analysed to identify digital health DQ dimensions and outcomes. The 
articles were inductively analysed, using open coding, constant comparison, and card-
sorting with subject matter experts to identify the digital health DQ dimensions and 
digital health DQ outcomes. Subsequently, computer-assisted analysis was performed 
and verified by DQ experts to identify: the interrelationships between the DQ 
dimensions; and, relationships between DQ dimensions and outcomes. The analysis 
resulted in the development of the DQ dimensions and outcomes (DQ-DO) framework. 
Results: The digital health DQ-DO framework consists of 1) six dimensions of DQ: 
accessibility, accuracy, completeness, consistency, contextual validity, and currency; 2) 
interrelationships amongst the dimensions of digital health DQ, with consistency being 
the most influential dimensions impacting all other digital health DQ dimensions; 3) 
Five digital health DQ outcomes: clinical, clinician, research-related, business processes, 
and organizational outcomes; and 4) relationships between the digital health DQ 
dimensions and DQ outcomes; with the consistency and accessibility dimensions 
impacting all DQ outcomes. 
Conclusions: The DQ-DO framework developed in this study demonstrates the 
complexity of digital health data quality and the necessity for reducing digital health 
data quality issues. The framework further provides healthcare executives with holistic 
insights into DQ issues and resultant outcomes, which can help them prioritise which 
DQ-related problems to tackle. 

Keywords: Data quality; digital health; electronic health record; eHealth; systematic 
reviews.

Introduction

Background
The healthcare landscape is changing globally owing to substantial investments in 
health information systems which seek to improve healthcare outcomes [1]. Despite the
rapid adoption of health information systems [2] and the perception of digital health as 



a panacea [3] for improving healthcare quality, the outcomes have been mixed [4, 5]. As 
Reisman [6] notes, despite substantial investment, effort, and widespread application of
digital health, many of the promised benefits have yet to be realized.

The promise of digital health is principally dependent on the ability to electronically 
capture data which can be analysed to improve decision making at local, national [6], 
and global levels [7]. However, the ability to harness data effectively and meaningfully 
has proven difficult and elusive, which has largely been due to the quality of data 
captured. Darko-Yawson and Ellingsen [8] highlight that digital health has resulted in 
more bad data rather than improving the quality of data. It is widely accepted that the 
data from digital health are plagued by accuracy and completeness concerns [9-12].  
Poor data quality (DQ) can be detrimental to continuity of care [13], patient safety [14], 
clinician productivity [15], and research [16]. 

To assess DQ, scholars have developed numerous DQ taxonomies, which evaluate the 
extent to which the data contained within digital health systems adhere to multiple 
dimensions (i.e., measurable components of DQ). Weiskopf and Weng [17] identified 
five dimensions of DQ spanning completeness, correctness, concordance, plausibility, 
and currency. Subsequently,  Weiskopf et al. [18] refined the typology to consist of only 
three dimensions: completeness, correctness, and currency. Similarly, Puttkammer et al.
[13] focused on completeness, accuracy, and timeliness, whereas Kahn et al. [19] 
examined conformance, completeness, and plausibility. Others identified ‘fitness of use’ 
[20] and the validity of data to a specific context [21] as key DQ dimensions. Overall, 
there are wide ranging definitions of DQ, with an agreed upon taxonomy evading the 
literature. In this paper, through synthesising literature, we define data quality as the 
extent to which digital health data is accessible, accurate, complete, consistent, 
contextually valid, and current. When consolidated frameworks are developed, the 
dimensions are often treated in a fragmented way, with little attempt to understand the 
relationships between the dimensions, and the resultant outcomes. This is 
substantiated by Bettencourt-Silva et al. [22] who indicated that DQ is not 
systematically or consistently assessed. 

Research Aims and Questions
Failure of health organisations to leverage high quality data will compromise the 
sustainability of an already strained healthcare system [23]. Therefore, we undertook a 
systematic literature review to answer the following research questions: 1) What are 
the dimensions of digital health DQ? 2) How are the dimensions of digital health DQ 
related? And 3) What are the impacts of digital health DQ? The aim of this research is to 
develop, from synthesizing literature, a consolidated digital health DQ dimensions and 
outcomes framework, which demonstrates the DQ dimensions and their 
interrelationships as well as their impact on core healthcare outcomes. The 
consolidated data quality dimensions and outcomes framework will be beneficial to 
both research and practice. For researchers our review consolidates digital health DQ 
literature and provides core areas for future research to rigorously evaluate and 
improve digital health DQ. For practice, this study provides healthcare executives and 
strategic decision makers with insights into both the criticality of digital health DQ 
through exemplifying the impacts and the complexity of digital health DQ through 
demonstrating the interrelationships between the dimensions.



This paper is structured as follows: first, we provide details of the systematic literature 
review method; second, in line with the research questions, we present our three key 
findings: 1) DQ dimensions; 2) DQ interrelationships; and 3) DQ outcomes; third, we 
compare the output of our findings to previous literature and discuss the implications of
this work. 

Method
We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) and Webster and Watson’s [24] guidelines for systematic literature reviews.  
Specifically, consistent with Templier and Paré [25], this systematic literature review 
was developmental in nature with the goal of developing a consolidated digital health 
DQ framework. 

Literature Search and Selection 
To ensure the completeness of the review [24] and consistent with interdisciplinary 
reviews, the literature search spanned multiple fields and databases (i.e., PubMed, 
Public Health, Cochrane, SpringerLink, EBSCOhost (Medline and PsycINFO), ABI/Inform,
AISel, Emerald Insight, IEEE Xplore digital library, Scopus, and ACM Digital Library). The
search was conducted in October, 2021 and was not constrained by year of publication 
because the concept of data quality has a long-standing academic history. The search 
terms were reflective of our research topic and research questions. To ensure 
comprehensiveness, the search terms were broadened by searching their synonyms. 
For example, we used search terms, such as ‘electronic health record’, ‘digital health 
record’, ‘e-health’, ‘electronic medical record’, ‘EHR’, ‘EMR’, ‘data quality, ‘data 
reduction’, ‘data cleaning’, ‘data pre-processing', ‘information quality’, ‘data cleansing’, 
‘data preparation’, ‘intelligence quality’, ‘data wrangling’, and ‘data transformation’. 
Keywords and search queries were reviewed by the reference librarian and subject 
matter experts in digital health (appendix 1). 

The papers returned from the search were narrowed down in a four-step process 
(Figure 1Error: Reference source not found). In the identification step 5177 studies 
were identified through multiple database searches with 3856 duplicates removed 
resulting in 1321 articles. The 1321 articles were randomly divided into six batches, 
which were assigned to separate researchers who applied the inclusion and exclusion 
criteria (Table 1). As a result of abstract screening 896 articles were excluded, resulting 
in 425 articles remaining. Following a similar approach to the abstract screening, the 
425 articles were again randomly divided into six batches and assigned to one of six 
researchers to read and assess the relevance of the article in line with the selection 
criteria. The assessment of each of the 425 articles was then verified by the research 
team resulting in the final set of 227 relevant articles. During this screening phase (i.e., 
abstract and full-text), daily meetings were held with the research team with any 
uncertainties raised and discussed until consensus was reached by the team as to 
whether the article should be included or excluded from the search. In line with 
Templier and Paré [25], as this systematic literature review was developmental in 
nature rather than an aggregative meta-analysis, quality appraisals were not performed 
on the individual articles.



Table 1. Inclusion and exclusion criteria
Inclusion Exclusion Criteria

Specifically focuses on data quality in 
digital health. 

Development of algorithms for 
advanced analytics techniques (e.g., 
machine learning, artificial intelligence)
without application within hospital 
settings. 

Empirical papers or review articles 
where conceptual frameworks were 
either developed or assessed.

Descriptive papers without a 
conceptual framework or empirical 
analysis. 

Considers digital health within hospital 
settings.

Focused only on primary care (e.g., 
general practice)

Published in peer reviewed outlets 
within any timeframe

Pre go-live considerations (e.g., 
software development) 

Published in English Theses and non-peer reviewed (e.g., 
white papers, editorials).

Figure 1. PRISMA Inclusion Process



Literature Analysis 
The relevant articles were imported in NVivo (v.12) where analysis was iteratively 
performed.  To ensure reliability and consistency in coding, a coding rule book [26] was 
developed and progressively updated to guide the coding process. The analysis process 
involved six steps (Figure 2).

In the first step of the analysis, the research team performed open coding [26] where 
relevant statements from each article were extracted using verbatim codes while 
allowing initial grouping of similar concepts [27]. The first round of coding resulted in 
1298 open codes. Second, the open codes were segmented into two high level themes, 
the first group contained 1044 open codes pertaining directly to DQ dimensions (e.g., 
data accuracy); the second group contained 254 open codes related to DQ outcomes 
(e.g., financial outcomes). 

In the third step, through constant comparison [28] the 1044 raw DQ codes were 
combined into 29 DQ sub-themes based on commonalities (e.g., contextual DQ, fitness 
for use, granularity, relevancy, accessibility, availability). In the fourth step, again 
through performing iterative and multiple rounds of constant comparison, the 254 open
codes related to DQ outcomes were used to construct 22 initial DQ outcome sub-themes 
(e.g., patient safety, clinician-patient relationship, continuity of care). The DQ outcomes 
sub-themes were further compared to each other resulting in 5 DQ outcome dimensions
(e.g., clinical, business process, research-related, clinician, and organisational). For the 
DQ sub-themes, constant comparison was performed facilitated by the card sorting 
method [29] where an expert panel of 8 DQ researchers formed into four groups 
assessed the sub-themes for commonalities and differences. The expert groups 
presented their categorisation to each other until a consensus was reached. This 
resulted in a consolidated set of six DQ dimensions (accuracy, consistency, 
completeness, contextual validity, accessibility, and currency). Appendix 2 provides an 
example of how the open codes, were reflected in sub-themes, and themes.

After identifying the DQ dimensions and outcomes, the next stage of coding progressed 
to identifying the interrelationships (Step 5) between the DQ dimensions as well as the 
relationships (Step 6) between the DQ dimensions and DQ outcomes. To do so, the 
matrix coding query function using relevant Boolean operators (AND, Near) in NVivo 
was performed. The outcomes of the matrix queries were reviewed and verified by an 
expert researcher in the health domain. 

Throughout the analysis, steps were performed to provide credibility into our findings. 
Firstly, prior to commencing the analysis, the research team members who were 
extracting the verbatim codes initially independently reviewed three common articles, 
then convened to review any variations in coding. In addition, they reconvened multiple
times a week to discuss their coding and update the codebook to ensure a consistent 
approach was followed. Coder corroboration was performed throughout the analysis 
with two experienced researchers independently verifying all verbatim nodes until 
consensus was reached [26]. Subsequent coder corroboration was performed by two 
experienced researchers to ensure the open codes accurately mapped to the themes and
the dimensions. This served to provide internal reliability. Steps were also performed to
improve external reliability [107]. Namely, the card-sorting method provided an expert 



appraisal. In addition, the findings were presented to and confirmed by three digital 
healthcare professionals. 

Figure 2. Analysis Process

Results

The vast majority of relevant articles were published in journal outlets (n=169), 
followed by conference proceedings (n=42), and book sections (n=16). The 169 journal 
articles were published in 107 journals, with 12% of the journals publishing more than 
one study (illustrated in Figure 3). The complete breakdown of how many articles have 
been published within each outlet is detailed in Appendix 3. 

Step 6: Nvivo assisted 
relationships identification

Step 5: NVivo assisted 
interrelationship 
identification

Step 4: Constant 
comparison within 
subtheme (supported by 
card sorting)

Step 3: Constant 
comparison within topic

Step 2: Segment codes into 
relevant themes

Step 1: Extraction of Open 
Codes

Open codes

(n=1298)

DQ dimensions codes 

(n=1044)

DQ sub-themes

(n=29)

DQ Dimensions

(n=6)

Interrelationships amongst 
DQ dimensions

Relationships between DQ dimensions and outcomes

DQ outcomes codes 

(n=254)

DQ outcomes sub-themes

(n=22)

DQ outcomes

(n=5)
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Figure 3: List of top 12% journals 

Overall, as illustrated in Figure 4, the interest in digital health data quality has been 
increasing over time, with sporadic interest prior to 2006. 
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Below, we provide an overview of the DQ definitions, DQ dimensions, their 
interrelationships, and outcomes to develop a consolidated digital health DQ 
framework.

Data Quality Definitions
Multiple definitions of DQ are discussed in the literature (Appendix 4). There is no 
consensus on a single definition of DQ, however analysis of the definitions reveals two 
perspectives, which we label as the 1) context-agnostic perspective, and 2) context-
aware perspective. The context-agnostic perspective defines DQ based on a set of 
dimensions regardless of the context within which the data is used. For instance, as [30]
notes “documentation and contents of data within an electronic medical record (EMR) 
must be accurate, complete, concise, consistent and universally understood by users of 
the data, and must support the legal business record of the organization by maintaining 
the required parameters such as consistency, completeness and accuracy.” Conversely 
the context-aware perspective evaluates the dimensions of DQ with recognition of the 
context within which the data is being used. For instance, as [31, 32] notes DQ is “the 
degree to which data satisfy the requirements defined by the product-owner 
organization”, and can be reflected through its dimensions such as completeness and 
accuracy. 

Data Quality Dimensions
In total, 30 sub-themes were identified, which were grouped into six DQ dimensions: 
accuracy, consistency, completeness, contextual validity, accessibility, and currency 
(Table 1, Appendix 5). Consistency (n=164), completeness (n=137), and accuracy 
(n=123) are the main DQ dimensions. Comparatively, less attention has been paid to 
accessibility (n=28), currency (n=18), and contextual validity (n=26). 

Table 2. Description of the DQ dimensions
Dimension Description Sub-Themes

Accuracy “The degree to which data reveal 
the truth about the event being 
described”. [33] 

Validity, correctness, integrity, 
conformance, plausibility, 
veracity, accurate diagnostic data

Consistency  “Absence of differences between 
data items representing the same 
objects based on specific 
information requirements. 
Consistent data contain the same 
data values when compared 
between different databases”. 
[33] 

Inconsistent data capturing, 
standardisation,
concordance, uniqueness, data 
variability, temporal variability, 
system differences, semantic 
consistency, structuredness, 
representational consistency

Completeness “The absence of data at a single 
moment over time or when 
measured at multiple moments 
over time”. [34]

Missing data, level of 
completeness, 
representativeness, 
fragmentation, breadth of 
documentation

Contextual 
Validity

Assessment of DQ is “dependent 
on the task at hand” [18]. 

Contextual DQ, fitness for use, 
granularity, relevancy

Accessibility The extent to which it is “feasible 
it is for users to extract the data 

Accessible DQ, availability



of interest” [18]
Currency “The degree to which data 

represent reality from the 
required point in time” [35]

Timeliness

Data Quality Dimension: Accessibility 
The accessibility dimension (n=28, 12.3%) is composed of both the accessibility (n=15) 
and availability sub-themes reflecting the feasibility for users to extract data of interest 
[18].  Scholars regularly view the accessibility sub-theme favourably with the increased 
adoption of electronic health record systems (EHRs) overcoming physical and 
chronological boundaries associated with paper records by allowing access to 
information from multiple locations at any time [36, 37]. Top et al. [36] notes that EHR 
made it possible for nurses to access patient data, resulting in improved decision 
making. Rosenlund et al. [38] further notes that EHRs benefit healthcare professionals 
through providing increased opportunities for searching and utilising information. The 
availability sub-theme is an extension of the accessibility sub-theme and examines 
whether the data exists and whether the data is in a format that is readily usable [39]. 
For instance, Dentler et al. [39] notes that pathology reports although accessible are 
recorded in a non-structured, free-text format making it challenging to readily use the 
data. While structured data may make data more available, Yoo et al. [40] highlights that
structured data entry in the form of drop-down lists and check boxes tend to reduce the 
narrative description of patients' medical conditions. While not explicitly investigating 
accessibility, Makeleni and Cilliers [33] also note the challenges associated with 
structured data entry. 

Data Quality Dimension: Accuracy 
The accuracy dimension (n=123, 54%) is composed of seven sub-themes, correctness 
(n=42), validity (n=23), integrity (n=19), plausibility (n=17), accurate diagnostic data 
(n=13), conformance (n=7), and veracity (n=2). Accuracy refers to the extent  to which 
data reveals the truth about the event being described [33] and conforms to its actual 
value [41].  

Studies often referred to accuracy as the ‘correctness’ of data, which is the degree to 
which data correctly communicates the parameter being represented [35]. Conversely, 
others focus on plausibility, the extent to which data points are believable [42]. While 
accuracy concerns were present for all forms of digital health data, some studies 
focused specifically on inaccuracies with diagnostic data, where “the accurate and 
precise assignment of structured [diagnostic] data within EHRs is crucial” [43], which is 
“key to supporting secondary clinical data” [44]. 

To assess accuracy, the literature regularly asserts that data needs to be validated 
against metadata constraints, system assumptions, and local knowledge [19] and 
conform to structural and syntactical rules. According to Kahn et al. [19], Sirgo et al. 
[45], conformance focusses on compliance of data with internal or external formatting, 
relational, or computational definitions. Accurate, verified, and validated data, as well as
data conforming to standards contributes to integrity of data.  Integrity requires that the
data stored in health information systems is accurate and consistent, where the 
“improper use of [health information systems] can jeopardise the integrity of a patient’s
information” [33]. An emerging sub-theme of accuracy was the veracity of data, which 
represents uncertainty in the data due to inconsistency, ambiguity, latency, deception, 



and model approximations [21]. It is particularly important in the context of the 
secondary use of big data, where “data veracity issues can arise from attempts to 
preserve privacy, …and is a function of how many sources contributed to the data.” [46] 

Data Quality Dimension: Completeness 
The completeness dimension (n=114, 50%) is composed of six sub-themes: missing 
data (n=66), level of completeness (n=25), representativeness (n=13), fragmentation 
(n=8), and breadth of documentation (n=2). A well-accepted definition of data 
completeness considers four perspectives: documentation (the presence of 
observations regarding a patient in data), breadth (the presence of all desired forms of 
data), density (the presence of a desired frequency of data values over time), and 
predictive (the presence of sufficient data to predict an outcome) [47]. Our analysis 
revealed that these four perspectives, while accepted, are rarely systematically 
examined in extant literature, rather papers tend to discuss completeness or the lack 
thereof as a whole.

Missing data is a prominent sub-theme and represents a common problem in EHR data. 
For instance, Gloyd et al. [48] argue that incomplete, missing and implausible data “was 
by far the most common challenge encountered”. Scholars regularly identified that data 
fragmentation contributed to incompleteness, with a patient’s medical record deemed 
incomplete due to data being required from multiple systems and EHRs [18, 49-55]. 
“Data were also considered hidden within portals, outside systems, or multiple EHRs, 
frustrating efforts to assemble a complete clinical picture of the patient” [50]. More 
positive perspectives pertaining to data completeness focus on the level of completeness,
with studies reporting relatively high completeness rates in health datasets [37, 39, 56-
59]. For data to be considered complete it needs to be captured at sufficient breadth and
depth over time [12, 18]. 
Some studies have proposed techniques to improve completeness, which include: 
developing fit-for-purpose user interfaces [60-62], standardizing documentation 
practices, [63, 64], automating documentation [65], and performing quality control [64].

In some instances, the level of completeness and extent of missing data differed 
depending on the nature of the patient [15, 16, 18, 20, 46, 51, 59, 66-72], which we 
classified into the sub-theme of representativeness. It has been found that there is “a 
statistically significant relationship between EHR completeness and patient health 
status” [70] with more data recorded for sick patients compared to less acute patients.  
This aligns strongly with the sub-theme of contextual validity.

Data Quality Dimension: Consistency 
The consistency dimension (n=157, 69%) is composed of ten sub-themes: inconsistent 
data capturing (n=33), standardisation (n=28), concordance (n=22), uniqueness (n=14),
data variability (n=14), temporal variability (n=13), system differences (n=12), semantic
consistency (n=10), structuredness (n=7), and representational consistency (n=4).

Inconsistent data capturing is a prevalent sub-theme caused by the manual nature of 
data entry in healthcare settings [46], especially when data involves multiple times, 
teams, and goals [73]. Inconsistent data capturing results in data variability and 
temporal variability. Data variability refers to inconsistency in the data captured within 
and between health information systems, whereas temporal variability reflects 
inconsistencies that occur over time and may be due to changes to policies or medical 



guidelines [20, 48, 74-79]. Semantic inconsistency (i.e., data with logical contradictions) 
and representational inconsistency (i.e., data variations due to multiple formats) can also 
result from inconsistent data capturing [80].

Standardization in terms of terminology, diagnostic codes, and workflows [64] are 
proffered to minimise inconsistency in data entry, yet in practice there is a “lack of 
standardized data and terminology” [9] and “even with a set standard in place not all 
staff accept and follow the routine” [64]. The lack of standardisation is further 
manifested due to health information system differences across settings [81]. As a result 
of the differences between systems, concordance - the extent of “agreement between 
elements in the EHR, or between the EHR and another data source” is hampered [82].

Inconsistent data entry can be further caused by redundancy within the system due to 
structured versus unstructured data [83], which we label as the sub-theme 
‘structuredness’ and duplication across systems [66, 78, 84-87], which we label as the 
sub-theme ‘uniqueness’.  While structured data entry, “facilitates information retrieval” 
[36] and is “in a format that enables reliable extraction” [18], the presence of 
unstructured fields leads to data duplication efforts, hampering uniqueness as data is 
recorded in multiple places with varying degrees of granularity and level of detail. 

Data Quality Dimension: Contextual Validity 
The contextual validity dimension (n=26, 11%) is composed of four sub-themes: fitness 
for use (n=11), contextual DQ (n=9), granularity (n=4), and relevancy (n=2). Contextual 
validity requires a deep understanding of the context which gives rise to data [46], 
including technical, organisational, behavioural, and environmental factors [88].

Contextual DQ is often described as ‘fitness of use’ [20] for which understanding the 
context in which data is collected is deemed important [18, 51]. Another factor that 
contributes to data being fit for use is granularity of data. Adequate granularity of 
timestamps [89], patient information [16], and data present in EHR (e.g., diagnostic 
code [16]) was considered important to make data fit for use. Finally, for data to be fit 
for use it needs to be relevant. As indicated by Schneeweiss and Glynn [69], for data to 
be meaningful healthcare databases need to contain relevant information of sufficient 
quality, which can help answer specific questions. The literature clearly demonstrates 
the need to take context into consideration when analysing data and the need to adapt 
technologies to the healthcare context so that appropriate data is collected for reliable 
analysis to be performed.

Data Quality Dimension: Currency 
The currency dimension (n=18, 8%) was formed by the single sub-theme of timeliness.  
Currency or timeliness, is defined in Afshar et al. [35] and Makeleni and Cilliers [33] as 
the degree to which data represents reality from the required point in time. From an 
EHR perspective, the data should be up to date, available, and reflect the profile of the 
patient at the time the data is accessed [35, 90].  Lee et al. [42] extends this to include 
the recording of an event at the time it occurs such that a value is deemed current if it is 
representative of the clinically relevant time of the event. Frequently mentioned causes 
for lack of currency of data include: (i) recording of events (long) after the event 
actually occurred  [52, 64, 91, 92], (ii) incomplete recording of patient characteristics 
over time [16], (iii) system/interface design not matching workflow and impeding 
timely recording of data [64],  (iv) mixed mode recording – paper and electronic [64], 



and (v) lack of timestamp metadata meaning the temporal sequence of events is not 
reflected in the recorded data [16]. 

Interrelationships between the Data Quality Dimensions
As illustrated in Figure 5 and evidenced in Appendix 6, interrelationships were found 
between the digital health DQ dimensions. 

Figure 5. Interrelationships between DQ Dimensions

Consistency influenced all DQ dimensions. Commonly these relationships were 
expressed in terms of the presence of structured and consistent data entry prompting 
complete and accurate data to be entered into the health information system, which 
provides more readily accessible and current data for healthcare professionals when 
treating patients.  As Roukema et al. [37] notes “structured data entry applications can 
prompt for completeness, provide greater accuracy and better ordering for searching 
and retrieval, and permit validity checks for DQ monitoring, research, and especially 
decision support”. When data is entered inconsistently it impedes the accuracy of the 
medical record and the contextual validity for secondary uses of data [67].

Accessibility of data was found to influence the currency dimension of DQ. When data is 
not readily accessible it seldom satisfies the timeliness of information for healthcare or 
research purposes [39]. Currency also influenced the accuracy of data. In a study 
investigating where DQ issues in EHR arise , it was found that “false negatives and false 
positives in the problem list sometimes arose when the problem list … [was] out-of-
date, either because a resolved problem was not removed or because an active problem 
was not added” [51]. 



Completeness further influenced the accuracy of data as [33] notes “data should be 
complete to ensure it is accurate”. The presence of inaccurate data was regularly linked 
to information fragmentation [49], incomplete data entry [86], and omissions [42]. 
Completeness also influenced contextual validity as it is necessary to have all the data 
available to complete specific tasks [32]. When it comes to the secondary use of EHR 
data, evaluation of “completeness becomes extrinsic, and is dependent upon whether or 
not there are sufficient types and quantities of data to perform a research task of 
interest” [70].

Accuracy and contextual validity exhibited a bidirectional relationship with each other. 
The literature suggests that accuracy influences contextual validity, however data 
cannot simply be extracted from structured form fields, free text fields will also need to 
be consulted. For instance, Kim and Kim [93] identifies “it is sometimes thought that 
structured data are more completely optimized for clinical research. However, this is 
not always the case, particularly given that extracted EMR data can still be unstable and 
contain serious errors.” Conversely, other literature suggests that when only a segment 
of information regarding a specific clinical event (i.e., contextual validity) is captured 
inaccuracy can result [16]. 

Outcomes of Digital Health Data Quality
The analysis of literature identified five types of digital health DQ outcomes: 1) clinical, 
2) business process, 3) clinician, 4) research related, and 5) organisational outcomes 
(Appendix 7).  Through utilising NVivo’s built-in crosstab query coupled with subject 
matter expert analysis, it was identified that different DQ dimensions were related to 
DQ outcomes in different ways (Table 3). Currency was the only dimension that did not 
have a direct effect on DQ outcomes. However, as discussed later (Figure 6), it is 
plausible that currency affects DQ outcomes through impacting other DQ dimensions. 
Below, we discuss each DQ dimension and their respective outcomes.

 Table 3. The Relationships between DQ Dimensions and Data Outcomes
DQ Dimension Outcomes*

Research Organisational Business 
Process

Clinical Clinician

Accessibility X X X X X
Accuracy X X
Completeness X X X X
Consistency X X X X X
Contextual 
Validity
Currency

*Note: X denotes relationship between DQ dimension and outcome is reported in literature.
Blank cells denote that there is no evidence to support the relationship.

We identified that the accessibility DQ dimension influenced clinical, clinician, business 
process, research-related, and organisational outcomes.  In terms of clinical outcomes, 
Roukema et al. [37] indicates that EHRs through improving accessibility and legibility of
healthcare data significantly enhances the quality of patient care.  The increased 
accessibility of medical records during the delivery of patient care is further proffered 



to benefit clinicians through reducing data entry burden [36].  Conversely, inconsistency
in the availability of data across health settings increases clinician workload, as Wiebe 
et al. [15] notes “given the predominantly electronic form of communication between 
hospitals and general practitioners in Alberta, the inconsistency in availability of 
documentation in one single location can delay processes for practitioners searching for
important health information”. When data is accessible and available it can improve 
business processes (e.g., quality assurance) and  research-related (e.g., outcomes-
oriented research) outcomes and is able to support organisational outcomes with 
improved billing and financial management [94]. 

The literature demonstrates that data accuracy influences clinical outcomes [14, 66, 95] 
and research-related outcomes [14, 96], as Wang et al. [14] describes, “errors in 
healthcare data are numerous and impact secondary data use and potentially patient 
care and safety”. Downey et al. [66] observe the negative impact on quality of care (i.e., 
clinical outcomes) resulting from incorrect data and state “manual data entry remains a 
primary mechanism for acquiring data in EHRs, and if the data is incorrect then the 
impact to patients and patient care could be significant” [66]. Poor data accuracy also 
diminishes the quality of research outcomes. Precise data is beneficial in producing high 
quality research outcomes as Gibby [96] explains, “computerized clinical information 
systems have considerable advantages over paper recording of data, which should 
increase the likelihood of their use in outcomes research. Manual records are often 
inaccurate, biased, incomplete, and illegible”. Closely related to accuracy, contextual 
validity is an important DQ dimension which considers the fitness for research as stated 
by Weiskopf et al. [70] “[w]hen repurposed for secondary use, however, the concept of 
“fitness for use” can be applied”. 

The consistency DQ dimension was related to all DQ outcomes. It was commonly 
reported that inconsistency in data negatively impacts the reusability of EHR data for 
research purposes hindering research-related outcomes and negatively impacting 
business processes and organizational outcomes. For example, Kim et al. [97] 
acknowledge that inconsistent data labelling in EHR systems may hinder accurate 
research results noting, “a system may use local terminology that allows unmanaged 
synonyms and abbreviations. …  If local data are not mapped to terminologies, … 
performing multicentre research would require extensive labour”. Alternatively, von 
Lucadou et al. [16] indicates the impact of inconsistency on clinical outcomes reporting 
that the existence of inconsistencies in captured data “could explain the varying number
of diagnoses throughout the encounter history of some subjects”. Whereas, Diaz-Garelli 
et al. [43] demonstrate the negative impact that inconsistency has on clinicians in terms 
of increased workload. 

Incomplete EMR data was found to impact clinical outcomes (e.g., reduced quality of 
care), business process outcomes (e.g., interprofessional communication), research-
related (e.g., research facilitation), and organizational outcomes (e.g., key performance 
indicators related to readmissions) and research related outcomes[15]. For example, 
while reviewing the charts of 3011 non-obstetric inpatients, Wiebe et al. [15] found that
missing discharge summary within an EHR “can present several issues for healthcare 
processes, including hindered communication between hospitals and general 
practitioners, heightened risk of readmissions, and poor usability of coded health data”, 
among other widespread implications. Liu et al. [98] further reports that “having 



incomplete data on patients’ records has posed the greatest threat to patient care”. Due 
to the heterogenous nature (with multiple data points) of EHR data, Richesson et al. [20]
emphasise that access to large, complete data will allow clinical investigators “to detect 
smaller clinical effects, identify and study rare disorders, and produce robust, 
generalisable results”.  

Discussion
The following sections describe the three main findings of this research: 1) 
identification of the dimensions of data quality, 2) the interrelationships between the 
dimensions of data quality, and 3) the outcomes of data quality. As described in the 
‘Summary of Key Findings’ section, these three findings led to the development of the 
DQ Dimensions and Outcomes (DQ-DO) framework. Subsequently, we compare the DQ-
DO framework with related work. This leads to the generation of implications for future 
research. The discussion concludes with a reflection of the limitations of this study.

Summary of key findings
In summary, we unearthed three core findings. Firstly, we identified six dimensions of 
DQ within the digital health domain: consistency, accessibility, completeness, accuracy, 
contextual validity, and currency. These dimensions were synthesised from 30 sub-
themes described in the literature. We found that consistency, completeness, accuracy 
are the predominant dimensions of DQ. Comparatively speaking, limited attention has 
been paid to the dimensions of accessibility, currency, and contextual validity.   
Secondly, we identified interrelationships between these six dimensions of digital 
health DQ (Table 2). The literature indicates that data inconsistencies can influence all 
other DQ dimensions. The accessibility of data was found to influence the currency of 
data. Completeness impacts accuracy and contextual validity, with these dimensions 
serving as dependent variables and exhibiting a bidirectional relationship with each 
other. Thirdly, we identified five types of data outcomes (Table 2, Appendix 7): 
research-related, organisational, business process, clinical, and clinician. Consistency 
was found to be a very influential dimension impacting all types of DQ outcomes.  
Contextual validity on the other hand, was shown to be particularly important for data 
reuse (e.g. performance measurement, outcome-oriented research etc.).  Whilst 
currency does not directly impact any outcomes, it impacts the accuracy of data, which 
impacts clinical and research-related outcomes. Therefore, if currency is not resolved, 
accuracy issues would still prevail. If the objective is to improve organisational 
outcomes, consistency, accessibility, and completeness were shown to be important 
considerations.  Through consolidating our three core findings, we developed a 
consolidated DQ Dimensions and Outcomes framework, DQ-DO (Figure 6).



Figure 6. Consolidated Digital Health Data Quality Dimensions and Outcomes (DQ-DO) 
Framework 

Comparison to literature
Our findings extend previous studies on digital health DQ in three ways. Firstly, through
our rigorous approach, we identified a comprehensive set of DQ dimensions, which both
confirms and extends existing literature. For instance of Weiskopf and Weng [17] 
identified five DQ dimensions including completeness, correctness, concordance, 
plausibility, and currency, all of which are present within our DQ framework, although 
in some instances, we use slightly different terms (referring to correctness as accuracy 
and concordance as consistency). Extending the framework of Weiskopf and Weng [17],
we view plausibility as a sub-theme of accuracy, disentangle accessibility from 
completeness, and we also stress the importance of contextual validity per Richesson et 
al. [20]. Others have commonly had a narrower perspective of DQ focusing on 
completeness, correctness, and currency [18], or on completeness, timeliness, and 
accuracy [13]. In other domains of digital health, such as physician-rating systems, 
Wang and Strong’s [99] data quality dimensions of intrinsic, contextual, 
representational, and accessibility have been adopted. Such approaches to assessing 
data quality are appropriate although it removes a level of granularity that is necessary  
to understanding relationships and outcomes.  This is particularly necessary given the 
salience of consistency in our data set and the important role it plays in generating 
outcomes. 



Secondly, unlike previous studies on DQ dimensions, we also demonstrate how these 
dimensions are all related to each other. By analysing the interrelationships between 
these DQ dimensions, we can determine how a particular dimension influences another 
and in which direction this relationship is unfolding. This is an important implication 
for digital health practitioners as whilst several papers have examined how to validate 
[57] and resolve data quality issues [16],  to resolve issues with a specific DQ dimension 
requires awareness of the interrelated DQ dimensions. For instance, to improve 
accuracy, one also needs to consider improving consistency and completeness. 

Thirdly, although previous studies describe how DQ can impact a particular outcome 
(e.g., [18, 100, 101]), they largely focus broadly on data quality, or a specific dimension 
of data quality, or on a specific outcome. For instance, Sung et al. [102] notes that poor 
quality data were a prominent barrier hindering adoption of digital health systems. 
Conversely, Kohane et al. [103] focus on research-related outcomes in terms of 
publication potential and identified that incompleteness and inconsistency can serve as 
core impediments. To summarise, the DQ-DO framework (Figure 6) developed through 
this review provides not only the dimensions and the outcomes but also the 
interrelationships between these dimensions and how they influence outcomes. 

Implications for Future Work

Implication 1: Equal Consideration across Data Quality 
Dimensions
This study highlights the importance of each of the six DQ dimensions: consistency, 
accessibility, completeness, accuracy, contextual validity, and currency. These 
dimensions have received varying attention in the literature.  Although we observe that 
some DQ dimensions such as accessibility, contextual validity, and currency are 
discussed less frequently than others, it does not mean that these dimensions are not 
important for assessment. This is evident in Figure 6, which identifies that all DQ 
dimensions except for currency directly influence DQ outcomes. Whilst we did not 
identify a direct relationship between the currency of data and the six types of data 
outcomes it is likely that the currency of data influences the accuracy of data, which 
subsequently influences the research-related and clinical outcomes.  Future research, 
including consultation with a range of stakeholders, needs to further delve into 
understanding the under-researched DQ dimensions. For instance, both currency and 
accessibility of data are less frequently discussed dimensions in the literature yet, with 
the advances in digital health technologies, both have become highly relevant for real-
time clinical decisions [21, 104].

Implication 2: Empirical Investigations of the Impact of the Data 
Quality dimensions
The DQ-DO framework identified in this study has been developed through a rigorous 
systematic literature review process, which synthesised literature related to digital 
health DQ. To extend this study, we advocate for empirical mixed-methods case studies 
to validate the framework, including an examination of the interrelationships between 
DQ dimensions and DQ outcomes, based on real-life data and consultation with a variety
of stakeholders. To identify the presence of issues with DQ dimensions within digital 
health system logs existing approaches could be used [57, 105]. The DQ-outcomes could
be assessed by extracting pre-recorded key performance indicators from case hospitals 
and be triangulated with interview data to capture patients, clinicians, and hospitals 



perspectives of impacts of DQ. This could then be incorporated into a longitudinal study,
where data collection is performed prior to and after a DQ improvement intervention 
being performed, which would provide efficacy to the digital health DQ intervention. 

Implication 3: Understanding the Root Causes of Data Quality 
Challenges
Although this study provides a first step towards a more comprehensive understanding 
of DQ dimensions for digital health data and their influences on outcomes, it does not 
explore potential causes of such DQ challenges. Without understanding the reasons 
behind these DQ issues, the true potential of evidence-based healthcare decision-
making remains unfulfilled. Future research should examine the root causes of DQ 
challenges in healthcare data with a view to prevent such errors from occurring in the 
first place. One framework that may prove useful to illuminating the root-causes of DQ 
is the Odigos framework, which indicates that DQ issues emanates from the social world
(i.e., macro and situational structures, roles, and norms), material world (e.g., quality of 
the EHR system and technological infrastructure), and the personal world (e.g., 
characteristics and behaviours of healthcare professionals) [105]. These insights could 
then be incorporated into a data governance roadmap for digital hospitals.

Implication 4: Systematic assessment and remedy of Data Quality
Issues
Though prevention remains better than the cure (see previous limitation), not all DQ 
errors can be prevented or mitigated. It is common for many healthcare organisations 
to dedicate resources to data cleaning in order to obtain high quality data in a timely 
manner and this will remain necessary (though hopefully to a lesser degree). Some 
studies (e.g., [18]) advocate evidence-based guidelines and frameworks for a detailed 
assessment of the quality of digital health data. However, there is little work focusing on
a systematic and automated way of assessing and remedying common DQ issues. Future
research should also focus on evidence-based guidelines, best practices, and automated 
means to assess and remedy digital health data. 

Limitations
This review is scoped to studying digital health data generated within a hospital setting 
and not to other healthcare settings. This is necessary because of the vast differences 
between acute health care settings and primary care. Future research should seek to 
investigate the digital health data of primary care settings to identify the DQ dimensions
and outcomes relevant to these settings.  In addition, this literature review has been 
scoped to peer-reviewed outlets, with “grey” literature excluded, which could have led 
to publication bias. Although this scoping may have missed some articles, it was 
necessary to ensure quality behind the development of the digital health DQ framework.
An additional limitation that may be raised by our method is that due to the sheer 
amount of articles returned by our search, we did not perform double coding (where 
independent researchers analyse the same article). To mitigate this limitation, steps 
were taken to minimise bias through conducting coder corroboration sessions and 
group validation as mentioned in the Methods section with the objective of improving 
internal and external reliability [107]. To further improve internal reliability two 
experienced researchers verified the entirety of the analysis in NVivo and for external 
reliability card sorting assessments were performed with data quality experts and the 
findings were presented and confirmed by three digital healthcare professionals. 



Furthermore, empirical validation of the framework is required, both in terms of real-
life data and input from a range of experts.

Conclusions 
The multidisciplinary systematic literature review conducted in this study resulted in 
the development of a consolidated digital health DQ framework comprised of six DQ 
dimensions, the interrelationships between these dimensions, six DQ outcomes, and 
relationships between these dimensions and outcomes. We identified four core 
implications to motivate future research: specifically researchers should:  1) pay equal 
consideration to all dimensions of data quality as the dimensions can both directly 
and/or indirectly influence DQ outcomes; 2) seek to empirically assess the DQ-DO 
framework using a mixed-methods case study design; 3) identify the  root causes of the 
digital health DQ issues; 4) develop interventions to  mitigate and prevent DQ issues 
from arising . The DQ-DO framework provides healthcare executives (e.g., chief 
information officers, chief clinical informatics officers) with insights into DQ issues, and 
which digital health-related outcomes they have an impact on - this can help them 
prioritise tackling DQ-related problems.
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Abbreviations

Acronym Explication Description
DQ Data Quality The extent to which digital health data is 

accessible, accurate, complete, consistent, 
contextually valid, and current.  

DQ 
Dimensions

Data Quality 
Dimensions

The components used to evaluate data quality 
(i.e., accessibility, accuracy, completeness, 
consistency, contextual validity, currency)

DQ-DO 
Framework

Data Quality – 
Data Outcomes 
Framework

The consolidated framework developed in this 
study demonstrating the interrelationships 
between data quality dimensions and their 
relationships with data quality outcomes. 

EHR Electronic Health 
Records

A longitudinal and electronic collection of 
patients’ clinical information available across case
settings [108].

EMR Electronic 
Medical Records

Synonymous to EHR.



Appendix 1: Verification of Search Strategy
Area Researchers

(CIs)
Subject Expert 1 Reference 

Librarian
Subject Expert
2

Co-
Researchers

Research Questions ☒ ☒ ☐ ☒ ☒

Keywords ☒ ☒ ☒ ☒ ☒

Subject Area /Domain ☒ ☒ ☒ ☒ ☐

Search Databases ☒ ☒ ☒ ☐ ☐

Journals ☒ ☒ ☒ ☒ ☒

Conferences ☒ ☒ ☒ ☒ ☒

Search Engine ☒ ☐ ☒ ☐ ☐

Relevance of Selected Seminal Articles ☒ ☒ ☐ ☒ ☒

R= Responsible, V= Verifier, C = Contributor





Appendix 2: Data Coding Structures





Appendix 3: Publication outlets
Outlet N*

Abdominal Radiology 1
American Journal of Emergency Medicine 1
American Journal of Law and Medicine 1
America's Conference on Information Systems 2017 1
AMIA Annual Symposium 16
AMIA Joint Summits on Translational Science Proceedings 2
Anesthesia and analgesia 1
Anesthesiology Clinics 1
Annals of Internal Medicine 1
Applied Clinical Informatics 4
Applied Network Science 1
Asian Bioethics Review 1
Asia-Pacific Conference on Business Process Management 1
Australasian Computer Science Week  2016 1
Australasian Conference on Information Systems 2
Australian Health Review 2
BioMedicine 1
BMC Emergency Medicine 3
BMC Health Services Research 2
BMC Infectious Diseases 1
BMC Medical Informatics and Decision Making 11
BMC Medical Research Methodology 1
BMC Medicine 1
BMC Pediatrics 1
BMJ 1
BMJ Open 2
Building Capacity for Health Informatics in the Future 1
Building Continents of Knowledge in Oceans of Data: The Future of Co-Created 
eHealth

1

Business & Information Systems Engineering 1
Canadian Journal of Diabetes 1
Clinical Epidemiology 1
Computer Methods and Programs in Biomedicine 3
Computers in Biology and Medicine 1
Decision Support Systems 2
Deeble Institute for Health Policy Research 1
Digital Personalized Health and Medicine 2
eGEMs 8
e-Health – For Continuity of Care 1
Electronic Journal of Health Informatics 1
Emergency Medicine Australasia 1
Endocrinol Metabolism 1
European Journal of Cardio-thoracic Surgery 1



Frontiers in Medicine 1
German Medical Data Sciences: Bringing Data to Life 1
GigaScience 1
Government Information Quarterly 1
Hawaii International Conference on System Sciences 4
Health Informatics Journal 2
Health Information Management Journal 1
Health Policy and Technology 1
Health Research Policy and Systems 1
Health Services Research 1
Healthcare 1
Healthcare Executive 1
Healthcare Quarterly 1
Healthcare Technology Letters 1
Hong Kong Law Journal 1
IEEE EMBS International Conference on Biomedical and Health Informatics 
2016

1

IEEE International Conference on Healthcare Informatics 2018 1
IEEE International Symposium on Computer-Based Medical Systems 2008 1
Industrial and Systems Engineering Research Conference 2018 1
Informatics for Health and Social Care 1
Information and Software Technology 1
Information Systems International Conference 1
Information Technology and Communications in Health Conference 1
Injury Prevention 1
International Conference On Computational And Bio Engineering 1
International Conference on Computer and Information Science 2022 1
International Conference on Computer Modeling, Simulation and Algorithm 
2020

1

International Conference on e-Health Networking, Applications and Services 
2016

1

International Conference on Emerging Ubiquitous Systems and Pervasive 
Networks 2016

1

International Conference on Information Quality 2010 1
International Conference on Information Society (i-Society 2013) 1
International Conference on Information Systems 1
International Congress of the European Federation for Medical Informatics 
2006

1

International Joint Conference on Biomedical Engineering Systems and 
Technologies 2019

1

International Journal of E-Health and Medical Communications 1
International Journal of Health Care Quality Assurance 1
International Journal of Healthcare Information Systems and Informatics 1
International Journal of Healthcare Management 1
International Journal of Information Management 2
International Journal of Medical Informatics 7
International Journal of Pediatric Obesity 1



International Journal of Population Data Science 3
International Journal of Social Research Methodology 1
IST-Africa Conference 2011 1
JCO Clinical Cancer Informatics 3
Joint Conference on Knowledge-Based Software Engineering 1
Journal of Biomedical Informatics 2
Journal of Cardiothoracic and Vascular Anesthesia 1
Journal of Clinical Epidemiology 1
Journal of General Internal Medicine 1
Journal of Healthcare Engineering 1
Journal of Healthcare Informatics Research 1
Journal of Korean Medical Science 1
Journal of Medical Internet Research 4
Journal of Medical Internet Research Medical Informatics 2
Journal of Medical Systems 2
Journal of Medicine & Public Health 1
Journal of Nursing Care Quality 1
Journal of Oncology Practice 1
Journal of Public Health Management and Practice 1
Journal of the American College of Surgeons 1
Journal of the American Medical Informatics Association 4
Journal of the American Medical Informatics Association Open 2
Journal of the International AIDS Society 1
Malawi Medical Journal 2
Medical Care 2
MEDINFO 2010 7
Neurology 1
Obstetrics & Gynecology 1
Online Journal of Public Health Informatics 2
Open Access Journal of Clinical Trials 1
Orphanet Journal of Rare Diseases 1
Pacific Asia Journal of the Association for Information Systems 1
Pediatric Critical Care Medicine 1
Pediatrics 1
Perspectives in Health Information Management 3
Pharmacy and Therapeutics 1
PLoS One 4
Policy, Politics, & Nursing Practice 1
Public Health Management Practice 1
Public Health Reports 1
Respir Care 1
SA Journal of Information Management 1
Saudi Pharmaceutical Journal 1
Scientific Reports 1
Statistical Methods in Medical Research 1
Studies in Health Technology and Informatics 3



Summit on Translational Bioinformatics 1
Systemic Practice and Action Research 1
Telemedicine and e-Health 2
The Annals of Family Medicine 1
The Conversation 1
The Lancet Digital Health 1
Topics in Health Information Management 1
Vaccine 1
Wireless Personal Communications 1
Yearbook of Medical Informatics 1

Appendix 4: Data Quality Definitions

DQ Definition Reference

DQ: Context Aware Perspective

The totality of features & characteristics of an entity that bears on its 
ability to satisfy stated and implied needs

[109]

Data’s “fitness for use” and can be described by a set of dimensions (e.g.,
accuracy and completeness)

[110]

The ability of the data to fulfil the purpose for which they were collected 
or fit for use. The concept of ‘fitness for use’ emphasises the importance 
of taking the end user’s perspective of quality into account because it is 
the end users who will decide whether a product is fit for use or is 
conforming to specific requirements

[33]

Data which is accurate, reliable, “fit for use” and relevant [111]

Data fit for use, where fitness for use produces accurate, complete, and 
timely data accessible to stakeholders and relevant to their tasks

[112]

DQ is “fit-for-use” in that its determinants are dependent on the data 
consumer's expectations, in the context of a specific purpose for data 
use. 

[113]  

DQ is most commonly defined as ‘fitness for use’ [20]

DQ: Context Agnostic Perspective

Documentation and contents of data within an electronic medical record 
(EMR) must be accurate, complete, concise, consistent and universally 
understood by users of the data, and must support the legal business 
record of the organization by maintaining the required parameters such 
as consistency, completeness and accuracy.

[30]

EHR DQ dimensions:  completeness, correctness, concordance, 
plausibility, and currency.

[22]

Relevant, necessary, accurate, complete, and updated data [114]

Data that are accurate, relevant, valid, reliable, legible, complete, and 
available when it is needed by decision-makers for healthcare delivery 
and planning purposes; DQ consists of six primary dimensions, which 
includes completeness, consistency, conformity, accuracy, integrity and 
timeliness

[33]

Variations in expected data versus collected data (e.g., timeliness, 
accuracy) are collectively referred to as DQ

[115]

Three DQ categories: conformance, completeness, and plausibility [116]



EMR DQ dimensions: correctness (i.e., accuracy), completeness, 
concordance (i.e., accessibility), currency (i.e., timeliness), and 
plausibility (i.e., relevancy). 

[17]

The core framework includes three constructs of DQ: complete, correct, 
and current data… EHR data completeness can be defined in multiple 
ways, depending upon intended use, and that, in turn, efforts to 
calculate rates of records completeness would vary based upon these 
different definitions and uses

[18]

“accuracy, believability, reputation, objectivity, factuality, consistency, 
freedom from bias, correctness, and unambiguousness.”

[21]

Three categories: currency, completeness, and correctness. To estimate 
correctness, two further categories—plausibility and concordance—were
used

[117]

A proper assessment of DQ will examine the data from several 
perspectives or dimensions including validity, accuracy, completeness, 
relevance, timeliness, availability, comparability, consistency, 
duplication, integrity and conformity

[118]

Accuracy, availability, usability, integrity, consistency, standardisation 
and timeliness are some characteristics of high-quality data

[62]

Appendix 5: Evidence of the Sub-Theme for Each DQ Dimension 

Dimension Sub-Theme Reference

Accuracy Validity [19, 20, 37, 45, 51, 57, 58, 69, 93, 97, 100, 
119-129]

Correctness [9, 11, 14, 16, 18, 21, 30, 35, 39, 45, 46, 49-51,
54, 57, 58, 60, 63, 64, 66, 69, 70, 76, 77, 80-82,
93, 95, 96, 117, 119, 122, 124, 126, 128, 130-
134]

Integrity [8, 10, 33, 39, 46, 49, 53, 58, 86, 93, 95, 97, 
101, 112, 122, 135-139]

Conformance [19, 33, 42, 45, 58, 116, 140]

Plausibility [14, 16, 18, 19, 35, 42, 45, 57, 58, 68, 82, 93, 
101, 117, 140-142]

Veracity [21, 46]

Accurate Diagnostic 
Data

 [16, 39, 43, 44, 46, 51, 52, 93, 123, 126, 131, 
143, 144]

Consistency Inconsistent data 
capturing

[16, 20, 33, 34, 43, 44, 46, 48, 49, 54, 56, 64, 
67, 73, 77, 81, 83, 96, 97, 100, 123, 124, 127, 
128, 133, 135, 143, 145-149]

Standardisation [9, 11, 16, 39, 42, 43, 54, 57, 64, 65, 67, 74, 76,
80, 81, 97, 100, 120, 122, 127, 130, 133, 141, 
145, 150-153]

Concordance [12, 14-16, 18, 20, 30, 37, 51, 54, 57, 61, 82, 
97, 111, 127, 137, 142, 148, 154, 155] 

Uniqueness [39, 44, 48, 53, 66, 78, 81, 84-87, 97, 131, 143]

Data variability [11, 39, 63, 68, 79, 93, 131, 133, 145, 152, 



156-159]

Temporal variability [51, 54, 57, 67, 72, 74, 75, 79, 124, 127, 130, 
153, 160]

System differences [34, 39, 43, 44, 49, 66, 73, 76, 84, 143, 145, 
146]

Semantic consistency [16, 20, 39, 54, 80, 93, 97, 100, 124, 128]

Structuredness [9, 18, 20, 36, 37, 40, 93]

Representational 
consistency

[15, 20, 67, 80]

Completeness Missing data [10-12, 14-16, 22, 30, 33-35, 37, 39, 42, 45, 46,
48-51, 53, 54, 56-58, 61, 63, 64, 66, 69, 70, 73-
75, 78, 80, 86, 93, 100, 110, 111, 125, 126, 
128, 133, 135, 136, 141, 145, 147, 149, 161-
172] 

Level of Completeness [9, 16, 20, 35, 37, 39, 46, 56-58, 60-62, 64, 65, 
84, 104, 110, 128, 141, 146, 167, 173, 174]

Representativeness [15, 16, 18, 20, 46, 51, 66, 68-72, 175] 

Fragmentation [18, 49-55]

Breadth of 
documentation

[12, 18]

Contextual 
Validity 

Contextual DQ [8, 11, 18, 32, 46, 69, 88, 93, 135]

Fitness for use [20, 46, 57, 70, 117, 119, 142, 176-178]

Granularity [16, 18, 67, 89]

Relevancy [69, 128]

Accessibility Accessibility DQ [18, 36-38, 40, 66, 104, 130, 143, 147]

Availability [15, 35, 36, 39, 66, 96, 147, 165]

Currency Timeliness [16, 18, 22, 33, 35, 41, 51, 63-65, 78, 82, 90-
92, 95, 117, 179]

Appendix 6: Evidence for the interrelationships between the 
dimensions of DQ

Relationship Evidence

Availability -> 
Currency 

“Given the predominantly electronic form of communication 
between hospitals and general practitioners in Alberta, the 
inconsistency in availability of documentation in one single location 
can delay processes for practitioners searching for important health 
information.” [39]

Accuracy <- ->  
Contextual 
Validity 
(bidirectional)

“Counting complications would require interpretations of plausible 
temporal and causal relationships, which we were not always able to
infer from observable codes. When a subject had received more 
than one intervention during an encounter, for example, it was 
difficult to determine which of the corresponding clinical events 
happened first and caused each other.” [16]
“We believe a lack of granularity provokes incorrectness as only part 
of the true clinical course of a subject can be portrayed” [16]

Completeness ->  “Some providers questioned the integrity of EHR data and the 



Accuracy potential perpetuation of errors through incomplete or repeated 
data entry.” [86]

Completeness ->  
Contextual 
validity

“In secondary use settings, EHR data completeness becomes 
extrinsic, and is dependent upon whether or not there are sufficient 
types and quantities of data to perform a research task of interest.” 
[70]

Consistency ->   
Accessibility

“Structured data entry (SDE) applications can prompt for 
completeness, provide greater accuracy and better ordering for 
searching and retrieval, and permit validity checks for DQ 
monitoring, research, and especially decision support” [37]

Consistency ->  
Contextual 
validity

“Information inaccuracy was also frequently observed. It was 
reflected as poor granularity of the diagnosis terms or disease 
classification codes and inadequate or non-standardized 
documentation of disease status or treatment details. Consequently,
such information could not satisfy the information needs of a 
survival analysis study.” [67]

Consistency ->  
Accuracy

“We found two factors related to EHR documentation practices. 
False negatives and false positives in the problem list sometimes 
arose when the problem list was not consistently maintained and 
was therefore out-of-date, either because a resolved problem was 
not removed or because an active problem was not added (or was 
added after the measurement period concluded).” [51] 

Consistency ->   
Completeness

“The actually corresponding procedure codes for the described 
operation techniques in the original study were not frequently used 
in our EHR, which instead employed different procedure codes; this 
suggests that documentation habits may have affected frequency 
estimates. We were unable to clearly ascertain which procedure 
codes represented treatment of conditions that had been 
documented via simultaneous diagnostic codes.”[32] 

Consistency ->  
Currency

“Documentation factors: We found two factors related to EHR 
documentation practices. False negatives and false positives in the 
problem list sometimes arose when the problem list was not 
consistently maintained and was therefore out-of-date, either 
because a resolved problem was not removed or because an active 
problem was not added (or was added after the measurement 
period concluded).” [51]

Currency ->  
Accuracy

“Data is entered at different times. Some data are entered into the 
electronic system in real-time during admissions but other data are 
recorded on paper and only entered into EHR at the end of patient’s 
admission to the hospital. This can result in some of the data not 
entered into system or data recorded with errors.” [52]

Appendix 7: Evidence for the outcomes of Data Quality
Outcome Description Evidence

Clinical The extent to which

digital  health  DQ

 “Healthcare  professional  access  to  complete

lifelong patient information will facilitate more



impacts  healthcare

consumers. 

effective,  personalised  delivery  of  care  and

increased patient safety”[180]

 “When there is a gap or incomplete data from

what is expected can lead to poor or delayed

patient care that can lead to death, e.g., wrong

results to wrong patient” [33]

Business process The extent to which

digital  health  DQ

impacts  the

efficiency  and

effectiveness  of

healthcare-related

business processes.

 The “timely and efficient access to all relevant

information”  [66]  streamlines  clinical  practice

and minimises unnecessary tasks [15, 180, 181]

 The  absence  of  a  discharge  summary  can

hinder communication between hospitals  and

general practitioners [15]

Clinician The extent to which

digital  health  DQ

impacts  frontline

healthcare

professionals. 

 Nurses identified that EHR data will eliminate

paperwork,  improve  ability  to  monitor

patients, and decrease their workflow [36]

 Poor  data  quality  increases  workload  due  to

the  documentation  burden  associated  with

inconsistent  diagnosis  codes  [43]  and

inconsistency  between  data  recorded  across

health settings [15]

Research-

related

The extent to which

the  reusability  of

digital  health  DQ

impacts  clinical

research outcomes.

 Well managed, high-quality digital health data

facilitates  data  analytics  [79],  data  retrieval

[100],  supporting the reusability of  data [15,

16,  51,  66,  128,  165]  and can be applied in

medical research related to clinical trials [20,

67, 70, 95, 96, 100, 128, 141, 165, 177, 182-

185]

 The efficacy and quality of the research 
depend on the quality of the healthcare 
records [15, 20, 43, 67, 70, 81, 97, 100, 142, 
185]

Organisational The extent to which

digital  health  DQ

impacts

institutional

finances,  policy,

and  regulation

compliance. 

 “High DQ in medical records is fundamental to

good  clinical  practice,  program  management

and  ultimately  to  policy  decisions”  [30]   and

further supports auditing and monitoring [30,

67, 81, 183]

 DQ  issues  can  negatively  impact  institutional
finances and regulatory compliance. [117]
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