
Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining: A

Survey and Outlook

Sander J.J. Leemans1*, Sebastiaan J. van Zelst1,2* and Xixi
Lu3*

1*Department of Mathematics and Computer Science, RWTH
Aachen University, Aachen, Germany.

2Fraunhofer Institute for Applied Information Technology,
Fraunhofer Gesellschaft, Street, City, 10587, State, Country.

3Department of Information and Computing Sciences, Utrecht
University, Utrecht, the Netherlands.

*Corresponding author(s). E-mail(s):
s.leemans@bpm.rwth-aachen.de;

sebastiaan.van.zelst@fit.fraunhofer.de; x.lu@uu.nl;

Abstract

The field of process mining focuses on distilling knowledge of the (histori-
cal) execution of a process based on the operational event data generated
and stored during its execution. Most existing process mining techniques
assume that the event data describe activity executions as degenerate
time intervals, i.e., intervals of the form [t, t], yielding a strict total order
on the observed activity instances. However, for various practical use
cases, e.g., the logging of activity executions with a non-zero duration
and uncertainty on the correctness of the recorded timestamps of the
activity executions, assuming a partial order on the observed activity
instances is more appropriate. Using partial orders to represent process
executions, i.e., based on recorded event data, allows for new classes of
process mining algorithms, i.e., aware of parallelism and robust to uncer-
tainty. Yet, interestingly, only a limited number of studies consider using
intermediate data abstractions that explicitly assume a partial order
over a collection of observed activity instances. Considering recent devel-
opments in process mining, e.g., the prevalence of high-quality event
data and techniques for event data abstraction, the need for algorithms
designed to handle partially ordered event data is expected to grow in
the upcoming years. Therefore, this paper presents a survey of process

1

Springer Nature 2021 LATEX template

2 Partial-Order-Based Process Mining

mining techniques that explicitly use partial orders to represent recorded
process behavior. We performed a keyword search followed by a snowball
sampling strategy, yielding 68 relevant articles in the field. We observe
a recent uptake in works covering partial-order-based process mining,
e.g., due to the current trend of process mining based on uncertain event
data. Furthermore, we outline promising novel research directions for
the use of partial orders in the context of process mining algorithms.

Keywords: Process Mining, Event Data, Partial Orders, Survey

1 Introduction

Over the recent years, the field of process mining [1] gained attention in both
academia and industry, i.e., witnessed by the IEEE International Conference
on Process Mining Series1 and several commercial process mining solutions,
e.g., among others, Celonis2 and UI Path Process Mining3. Process mining
can be considered a collection of tools, techniques, methods, and algorithms
designed to translate recorded operational event data, generated during the
execution of processes, into actionable knowledge. In this context, the different
types of processes that can be analyzed using process mining techniques are
vast, e.g., administrative processes, logistic processes, medical processes, and
production processes. As a prerequisite for applying process mining, processes
are assumed to leave a digital trace in a company’s information systems.

Three major sub-fields are identified in process mining. Process discovery
techniques [2] aim to translate the recorded event data into a (graphical) pro-
cess model, e.g., a BPMN model [3]. The process modeling formalisms used,
i.e., either automatically discovered or designed manually, often compactly
represent all the process’s possible (parallel) executions. The goal of a dis-
covered process model is to accurately describe the behavior observed in the
event data, reasonably generalize w.r.t. the behavior observed in the data,
and to be human interpretable. The first two goals are imperative for many
data-driven algorithms, yet, the third requirement is less common. The sec-
ond branch of techniques is referred to as conformance checking techniques [4].
The techniques in this branch aim to relate the observed event data w.r.t.
a given reference process model. Here, the complexity lies in the fact that a
process model often describes vast amounts of different executions (possibly
infinite). Finally, process enhancement techniques aim to find possible improve-
ment points for the process. Examples of such techniques are decision point
mining [5] and performance prediction [6].

The event data analyzed by process mining algorithms are stored in event
logs. In its simplest form, such an event log is a data table consisting of three
columns. Consider Table 1, which describes a simplified example of an event

1https://icpmconference.org/
2https://celonis.com
3https://www.uipath.com/product/process-mining

https://icpmconference.org/
https://celonis.com
https://www.uipath.com/product/process-mining

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 3

Table 1: A simplified example of a classical event log. Each row describes an
event (a historical recording of an activity performed for an instance of the
process).

Process ID Activity Timestamp

...
...

...
7 Register 2022-01-02 12:23PM
7 Analyze Defect 2022-01-02 12:30PM
7 Inform User 2022-01-02 12:45PM
7 Simple Repair 2022-01-02 12:45PM
8 Register 2022-01-02 12:23PM
7 Test Repair 2022-01-02 13:05PM
7 Archive Repair 2022-01-02 13:21PM
8 Analyze Defect 2022-01-02 12:30PM
8 Inform User 2022-01-02 12:45PM
...

...
...

log. The first column records the instance of the process, e.g., the customer
for which the process was executed. The second column captures what activity
has been performed for the process instance. The third column records at what
point in time the activity was performed. A row in Table 1 is an event. The
same activity can be executed several times (i.e., repetition of activities) in
the context of the same instance of a process, i.e., the explicit differentiation
between events (recordings) and activities (task performed) captures this.

In practice, more data attributes are recorded for events, e.g., the start and
end timestamp of the executed activities and the resource performing the activ-
ity. Despite the simplistic nature of Table 1, most process mining algorithms
adopt a corresponding mathematical formalization of their input: sequences
of atomically executed activities. However, activities executed in real processes
are often not atomic, i.e., the instances of executed activities typically have a
non-zero duration. Consequently, multiple activities may overlap during their
execution. It is hard to represent such an overlapping when using sequences of
activities as a mathematical representation of the process, i.e., without explicit
differentiation between activity start and end times. Even if we accurately dif-
ferentiate between events describing activity start and end times, respectively,
assuming a total order among these events requires us to observe all possi-
ble interleaving of the parallel activities to conclude their parallel relationship.
Rather than formalizing the recorded event data as an input, an alternative
mathematical formalism closer to the underlying phenomenon, i.e., the pro-
cess itself, is of interest. In this context, some authors use the notion of partial
orders as a suitable intermediate representation. The use of partial orders nat-
urally supports capturing activities’ start and end timestamps. Additionally, it
serves as a basis for several other problems, e.g., arbitrary ordering of activity
instances with the same timestamp and general uncertainty in event logging.

Springer Nature 2021 LATEX template

4 Partial-Order-Based Process Mining

Physical World

Digital World

Physical Process

Process Model

Data Generated
During

Process Execution

Process Mining

Event Data stored
In Information System

Partial Order
Abstraction

Event Data Represented
as Partial Orders

Executes

Fig. 1: Schematic overview of the general architecture of the techniques cov-
ered in this paper, illustrated in the context of process mining. The techniques
considered translate the recorded event data to partial orders (“Partial Order
Abstraction”), which are used as their primary algorithmic input.

Whereas partial orders have been considered the context of process min-
ing (and are promising for future work in the field), an overview of their use
in process mining is lacking. Hence, in this paper, we present a survey and
outlook of work in the field of partial-order-based process mining. We per-
formed a keyword search followed by a snowball sampling strategy, yielding
68 relevant articles in the field. The works considered roughly follow the gen-
eral architecture depicted in Fig. 1, i.e., the recorded operational event data
is translated into a partial-order-based representation, which is subsequently
used as algorithmic input. We study how partial orders are extracted from
event data and present an in-depth study of the different use cases of partial
orders in both process discovery and conformance checking. Additionally, we
discuss other use cases of partial orders (i.e., outside of process discovery and
conformance checking) and highlight novel research directions where partial
orders are expected to be particularly impactful.

The remainder of this paper is structured as follows. In Section 2, we
briefly present background concepts that ease the readability of this paper.
In Section 3, we present the survey methodology adopted. In Section 4, we
present the survey results. In Section 5, we discuss other application areas of
partial orders and interesting future research directions. Section 6 concludes
this paper.

2 Background

In this section, we introduce background concepts that ease the overall read-
ability of this paper. We discuss partial orders, event data, process modeling

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 5

a b

c

g

e h

Fig. 2: Labeled partial order corresponding to the activity instances of case 7
in Table 2 (we only show `-values).

formalisms, and the different semantics under which partial orders can be
considered.

2.1 Partial Orders

A strict partial order (X,≺) is an irreflexive (x⊀x), anti-symmetric
(x≺y∧y≺x =⇒ x=y) and transitive (x≺y∧y≺z =⇒ x≺z) binary relation over
a set X. For example, consider Fig. 2 visualizing a simple example partial order
over the nodes {a, b, c, e, g, h}. Whereas we focus on strict partial orders, we
simply refer to partial orders in the remainder of the paper. Note that, due to
the transitivity property, in Fig. 2, node a is preceding each other node.

In some cases, we associate the elements of a partial order with a label, e.g.,
to represent the fact that the same activity can be executed multiple times for
a single process instance. To this end, we use the notion of a Labeled Partial
Order (LPO), where given some partial order (X,≺), an arbitrary set of labels
Σ and labeling function ` : X→Σ. Tuple (X,≺, `) represents a labeled partial
order over X.

2.2 Event Data

The information systems employed in companies, e.g., Enterprise Resource
Planning (ERP) systems such as SAP4 and Customer Relationship Manage-
ment (CRM) systems such as Salesforce5, track the execution of the activities
performed in the context of the processes they support. For example, an insur-
ance provider can extract an insurance claim’s exact historical course of action
from such a system. Every activity executed, including various details such as
the customer ID, vehicle type, total claim, and involved resources, is available.
When analyzed correctly, such a rich source of data can significantly enhance
the overall knowledge of the process and can thus be used to improve the
process.

Consider Table 2 , in which we present a simplified example of an event
log. Even though Table 2 is still simplified, it is more realistic than the event
log shown in Table 1. Each row represents an activity instance of the process.

4https://www.sap.com/
5https://www.salesforce.com/

https://www.sap.com/
https://www.salesforce.com/

Springer Nature 2021 LATEX template

6 Partial-Order-Based Process Mining

Table 2: Example event log; each row describes a recording of an activity
instance executed in the context of the process.

Proc. Inst. ID Act. Inst. ID Activity NPMe Start-Time Completion-Time Resource Costs . . .

.

..
.
..

.

..
.
..

.

..
.
..

.

.. . . .
7 35 Register Defect (a) 2021-01-02 12:23PM 2021-01-02 12:25PM Bob 25 . . .
7 36 Analyze Defect (b) 2021-01-02 12:30PM 2021-01-02 12:40PM Ronald 65 . . .
7 37 Inform User (g) 2021-01-02 12:45PM 2021-01-02 12:47PM Mary 5 . . .
7 38 Repair(Simple) (c) 2021-01-02 12:45PM 2021-01-02 1:00PM Ronald 235 . . .
8 39 Register Defect (a) 2021-01-02 12:50PM 2021-01-02 1:15PM Bob 25 . . .
8 43 Inform User(g) 2021-01-02 12:51PM 2021-01-02 12:55PM Mary 5 . . .
7 40 Test Repair (e) 2021-01-02 1:05PM 2021-01-02 1:20PM John 25 . . .
7 41 Archive Repair(h) 2021-01-02 1:21PM 2021-01-02 1:22PM Bob 7 . . .
8 42 Analyze Defect(b) 2021-01-02 1:15PM 2021-01-02 1:30PM Ronald 45 . . .
8 44 Repair (Complex) (d) 2021-01-02 1:30PM 2021-01-02 2:35PM Ronald 365 . . .
...

...
...

...
...

...
... . . .

For example, the first row in the table records that employee Bob executed the
Register Defect activity for a process instance with ID 7. The activity took 2
minutes and had an associated cost of 25 U.S. Dollars. Multiple rows have the
same value for the Process Instance ID-column, i.e., allowing us to capture all
activity instances executed for the same customer, patient, insurance claim, or,
in this case, for the same repair. We refer to the digital recording of a process
instance as a case. Hence, an event log describes a collection of cases.

A partial order over the activity instances, i.e., as recorded by the events,
can be defined. The relation holds for two events e and e′ if the completion
timestamp of e is strictly smaller than the start time of event e′.6 Reconsider
Fig. 2, which captures a labeled partial order corresponding to the activities
recorded for case 7 in Table 2. There are, however, various other ways in which
partial orders can be defined for a given event log, which we discuss in more
detail in Section 4.1.

2.3 Process Modeling Formalisms

A process model describes how cases flow through a (business) process and
denotes which activities (captured by the universe of activity names A) can be
executed and in what order. Formally, a process model expresses a, possibly
infinite, set of process behavior, i.e., defined either as a sequence or a partial
order.

As an example, we briefly describe the notion of Petri nets [7], i.e., an
often-used process modeling formalism in process mining that compactly rep-
resents concurrent behavior. Additionally, many high-level process modeling
formalisms, e.g., BPMN [8], can be transformed to Petri nets. A Petri net is a
bipartite graph connecting a set of places, used to represent the model’s state
(visualized as circles), to a set of transitions, used to manipulate the state
of the described process (visualized as boxes). For example, consider Fig. 3,

6In case either only the start or end time of an activity is recorded, it is trivial to transform such
data to the form presented in Table 2, i.e., by copying the missing timestamp from the available
timestamp.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 7

p1

a

t1
p2

b

t2

p3

p4

g

t3

c

t4

d

t5

p5

p6

e

t6
p7

t8

f

t7

p8

h

t9
p9

Fig. 3: A Petri net describing the partial order in Fig. 2.

depicting an example Petri net consisting of 9 places (circles) and 9 transitions
(boxes).

A Petri net is described by a tuple (P, T, F, λ,MI ,MO) in which P is a set
of places, T is a set of transitions, F⊆(P×T)∪(T×P) is a set of arcs, λ : T9A
is a labeling function and MI ,MOFP are multisets of places, indicating the
desired initial and final state of the Petri net.7 The labeling function λ (in
Fig. 3, the label function values are visualized within the transitions) allows
us to let different transitions describe the same activity a∈A. Furthermore, in
certain cases, e.g., when a transition is used for “routing purposes”, we have
λ(t)=τ (transition t8 in Fig. 3) indicating that no corresponding activity exists
for the transition.

Places can hold tokens, which together determine the state (the marking)
of the Petri net. For example, in Fig. 3, place p1 holds one token. If all places
with arcs to a transition t contain a token in a marking (e.g., t1 in Fig. 3), then
the transition can fire, which consumes these tokens from the incoming places
{p|(p, t)∈F} and produces tokens on outgoing places {p|(t, p)∈F}. Firing a
transition t may correspond to the execution of an activity λ(t)∈A. The net
starts in the initial markingMI , and by a sequence of transition firings, changes
state until the final marking MO is reached. For example, in the marking
depicted in Fig. 3, i.e., [p1], transition t1 is the only transition that is allowed
to fire, i.e., describing activity a. After firing transition t1 and correspondingly
observing activity a, the new marking of the net is [p2], i.e., one token in
place p2. The labeled transitions in a transition sequence describe the activity
instances that are expected to be observed for a case of the process that the
model represents.

The firing rule (described in the previous paragraph) generates sequences
of transitions which can be converted into sequences of activities by apply-
ing the λ-function. However, partially ordered semantics can be expressed by
several process modeling formalisms as well, including BPMN [8] , Message
Sequence Charts [9] and Petri nets [10]. In most process modeling formalisms,

7Observe that a Petri net with designated initial and final marking is also referred to as an
Accepting Net

Springer Nature 2021 LATEX template

8 Partial-Order-Based Process Mining

the execution of two activities a, b∈A may be independent, that is, the exe-
cution of a does not directly influence the execution of b and vice versa. If
the execution of activities does not take time (i.e., is atomic), then a and b
are interleaved. If a process model does specify activity duration (e.g., Petri
nets can be extended to include such a time-perspective [11]), the activities
are assumed to be executed concurrently. For example, consider the marking
[p3, p4] in Fig. 3, reachable after the consecutive firing of transitions t1 and t2
(activities a and b respectively). Depending on whether we assume transitions
to have a certain duration, transition t3 (activity g) can be executed either
interleaved or concurrent with transition t4 or t5 (activities c or d). Observe
that the partial order depicted in Fig. 2 is also described by the Petri net in
Fig. 3.

2.4 Partially Ordered Trace Semantics

We assume that a partial order can be either derived from a process model (cf.
Section 2.3) or extracted from an event log (studied in Section 4.1). In contrast
to a total order, partially ordered behavior does not express an ordering rela-
tion between all of its described events (or activity instances). Such absence
of an ordering between events does not mean that a corresponding total order
representation of the partial order behavior does not exist. The existence of a
corresponding total order representation, i.e., derived from a partial order, is
of use, e.g., it allows one to apply any existing process mining algorithm on
partial-order based event data. Note that transforming an event log to a par-
tial order representation and subsequently deriving total order sequences may
yield more behavioral total orders compared to directly deriving total orders
from the event log.

The total order representation of a partial order depends on the interpre-
tation of the absence of a relation between two events describing activities a
and b, yielding different partial order trace semantics (i.e., either defined by a
process model or recorded in an event log). We observe the following semantics
(schematically visualized in Fig. 4).

• In Certain Semantics (CS), the unordered activities are assumed to occur
and are executable in any order. We distinguish two sub-types of certain
semantics:

– The observed activity instances a and b are Interleaved (CS-I) if they may
be executed or may have been executed in any order (e.g., a followed by
b or b followed by a), but they cannot overlap in time.

– The observed activity instances a, and b are concurrent (CS-C) if they may
overlap or may have overlapped in time during execution. For concurrent
semantics, activity executions cannot be atomic and must take time.

• In the Uncertain Semantics (US), unordered activities are assumed to have
been executed, or may be performed, in one particular unknown order. We
know that a and b can be executed or were executed in a particular order,
but we do not know which order.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 9

Semantics Partial Order: a
b c

d

Certain - Interleaved {〈a, b, c, d〉, 〈a, b, d, c〉, 〈a, d, b, c〉}
Certain - Concurrent {〈as, ac, bs, bc, cs, cc, ds, dc〉,

〈as, ac, bs, bc, cs, ds, cc, dc〉,
〈as, ac, bs, bc, ds, cs, cc, dc〉,
〈as, ac, bs, ds, bc, cs, cc, dc〉,
〈as, ac, ds, bs, bc, cs, cc, dc〉,
〈as, ac, bs, bc, cs, ds, dc, cc〉,
〈as, ac, bs, bc, ds, cs, dc, cc〉,
〈as, ac, bs, ds, bc, cs, dc, cc〉,
〈as, ac, ds, bs, bc, cs, dc, cc〉,
〈as, ac, bs, bc, ds, dc, cs, cc〉,
〈as, ac, bs, ds, bc, dc, cs, cc〉,
〈as, ac, ds, bs, bc, dc, cs, cc〉,
〈as, ac, bs, ds, dc, bc, cs, cc〉,
〈as, ac, ds, bs, dc, bc, cs, cc〉,
〈as, ac, ds, dc, bs, bc, cs, cc〉}

Uncertain Either {〈a, b, c, d〉} or {〈a, b, d, c〉} or {〈a, d, b, c, 〉}

Fig. 4: Example of different partial-order trace semantics (event start/end
are omitted when not necessary). For the partial order, we depict the dif-
ferent possible corresponding total order representations under the different
semantics.

We use the three semantics identified to structure our survey presented in
Section 4.

3 Methodology

In this section, we briefly discuss the review methodology adopted. The goal
of this work is to provide a comprehensive overview of the use of partial
orders as a primary citizen in process mining techniques. As such, we adopt a
semi-systematic literature review approach [12] aiming to provide a qualitative
overview of the state-of-art. A semi-systematic literature review is intended to
study topics that have been conceptualized differently and studied by different
researchers, possibly within different fields. Said literature review type allows
one, e.g., to detect novel research directions and themes. A typical outcome
is, as is the case in this article, a synthesis of the current state of knowledge.
In the remainder of this section, we discuss the literature collection strategy
(Section 3.1) and the corresponding search results (Section 3.2).

3.1 Literature Collection

In this section, we briefly present the literature collection strategy adopted.
The literature collection strategy, consists of three separate phases:

1. Keyword Search; To identify relevant literature, we query three
databases: Scopus (https://scopus.com), ACM Digital Library (https:

https://scopus.com
https://dl.acm.org/
https://dl.acm.org/

Springer Nature 2021 LATEX template

10 Partial-Order-Based Process Mining

Table 3: Schematic of the results of the literature collection phase.

Phase Collection Strategy Results Retained
1 Keyword Search 210 39
2 Author Knowledge 16 14
3 Snowball Sampling 61 15

Total: - 287 68

//dl.acm.org/), and SpringerLink (https://link.spinger.com). We use
the search term TITLE-ABS-KEY ("process mining" AND ("partial

order" OR "partial orders")) in Scopus. We use the same logical
query for the other databases (the exact syntax differs per database).
All data related to the literature collection, i.e., collected papers, filtered
collections, etc. are publicly available8. The search results include con-
ference/journal papers, collections (books/proceedings), and encyclopedia
entries. We only consider journal and conference papers.

2. Author Knowledge; We augment the results of the keyword search by
addition of relevant articles known to the authors.

3. Snowball Sampling [13]; We apply snowball sampling on the selected papers
(outputs of Step 1. and 2.). We consult the references of the selected papers
and further select articles that are of relevance to the survey. Snowball
sampling is iteratively applied, i.e., results of a previous round that are
included in the survey form the input for the next round of sampling, until
a fix-point is reached.

3.2 Search Results

In this section, we present the results of the literature search. Consider Table 3,
which schematically presents the outputs of the different steps of the literature
collection step.

The initial keyword search yielded a total of 210 articles, i.e., Scopus: 15,
ACM: 15, and SpringerLink: 185 (some articles exist in multiple sources). On
the keyword results, we performed a global search for all papers on the terms
partial, partial order and event data. All papers that yielded no match
were excluded directly. For the remaining papers, we investigated the defi-
nition of event data and assessed the use of partial orders in this context.
Various papers that mention the notion of partial orders (e.g., in the related
work section) use the “classical notion of event logs” in the technique(s) they
describe (cf. Table 1). These papers are removed from the selection. Addi-
tionally, various works do not consider the notion of event data at all, e.g.,
describing process model formalisms that support partial orders. Such works
have been excluded from the selection as well. After careful selection, 39 papers
remained. We augmented the selection with papers that are known to the
authors. In total, 16 papers known to the authors (yet not part of the results of
the literature search) have been assessed, out of which 14 have been included.

8https://docs.google.com/spreadsheets/d/11P44bZtTH6EQXA2oapgTuyo2Sl-Ep
6vYqQZGKbF8C8

https://dl.acm.org/
https://dl.acm.org/
https://link.spinger.com
https://docs.google.com/spreadsheets/d/11P44bZtTH6EQXA2oapgTuyo2Sl-Ep_6vYqQZGKbF8C8
https://docs.google.com/spreadsheets/d/11P44bZtTH6EQXA2oapgTuyo2Sl-Ep_6vYqQZGKbF8C8

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 11

Snowball sampling was iteratively applied on the selected 53 articles, yielding
an additional 61 potential articles out of which 15 were included in the survey.
As such, in total, 68 articles are identified in the context of partial-order-based
process mining.

4 Partial-Order-Based Process Mining - A
Survey

In this section, we present the results of our survey. First, in Section 4.1, we a
review the different types of partial order extraction techniques. We structure
the remaining works along the lines of different application domains of partial
orders rather than structuring it chronologically, with the aim of providing a
global overview of the performed research in the respective domains. We do
so, as for both process discovery (discussed in Section 4.2) and conformance
checking (discussed in Section 4.3), a major share of work can be identified.
Both sections are structured along the lines of the different semantics identi-
fied (certain versus uncertain, cf. Section 2.4). Works covering other domains
in process mining are discussed separately in Section 4.4 (Other Application
Areas).

4.1 Partial Order Extraction

In this section, we cover the primary step of any partial-order-based process
mining technique, i.e., partial order extraction based on the event data stored
in an information system (cf. Fig. 1). A few techniques have been proposed
to convert sequences of recorded events into partial orders of events. In this
section, we discuss these different techniques, structuring the discussion using
the following two criteria:

1. Which information captured in the event log is used to derive a partial
order?

2. Which of the certain and uncertain relations are captured by the partial
order?

Existing approaches derive partial order traces using two types of infor-
mation. The first type concerns internal information that is already stored
in the event data to infer partial orders. Within this stream of approaches,
three types of event attributes are typically used: the sequential ordering of
events in a log, the timestamps of events, the activity life-cycle information,
and the data attributes of events. In contrast, the second type concerns the
external knowledge that is available to derive concurrent activities, namely
domain knowledge or a normative process model. Using these types of informa-
tion, the existing approaches then obtain partial order traces, based on one of
the identified semantics (cf. Section 2.4): certain (concurrent or interleaved)
or uncertain. In the following, we discuss existing approaches with respect to
these two criteria.

Springer Nature 2021 LATEX template

12 Partial-Order-Based Process Mining

4.1.1 Exploiting Information within an Event Log

Traditional process mining techniques assume that an event log is available
and that the event log consists of a set of sequences of events. The sequential
ordering of events is used to derive causal relations between the activities that
the events represent. If there is information that indicates otherwise, the other
types of relations, such as concurrency or interleaved, are concluded. In the
following, we discuss these techniques and the information they use to derive
partial orders.

Total Order and Log based

A common approach to derive partially ordered traces is to leverage differ-
ent total ordering of events in a log. Most discovery algorithms use the total
ordering of event data to infer a process model which includes causal and con-
currency relations. These types of relations have a certain semantics. Among
these relations, the concurrency relations can be used as a concurrency oracle.
Such a concurrency oracle indicates which activities are executed concurrently.
This information is subsequently used to convert a sequence of events into a
partial order. For example, a classical process discovery algorithm, i.e., the
α-miner [14], uses the total order of events to compute a direct succession rela-
tion. Built on the direct successions, the α-miner infers the causality, parallel,
and choice relations between activities. The set of parallel relations can be seen
as a concurrency oracle. The resulting partial orders inherit the concurrency
relations and the semantics induced by the discovery algorithm. These concur-
rency relations have a interleaved semantic in nature (instead of uncertain).
For example, given two traces 〈a, b, c, d〉 and 〈a, c, b, d〉, the α-miner returns b
and c to be parallel. This concurrency oracle can then be used to construct a
partial order (X,≺), where ≺={(a, b), (a, c), (b, d), (c, d), (a, d)}.

In [15] the authors use such an oracle-based approach to transform the
traces into event structures [16], which are used to compare different subse-
quent groups of process executions in order to detect concept drift, i.e., changes
in the execution of the process. In [17], a similar approach is adopted for gen-
eral process comparison (here, groups of execution do not need to be close
in time-proximity). Another example is [18], in which the authors propose to
build instance graphs based on classical event logs. In an instance graph, each
vertex represents an activity instance. Two vertices may only be connected
using an arc if there is a causal relationship between the source and target
node, i.e., according to some causal relation oracle. In an instance graph, tran-
sitive relations are explicitly forbidden, i.e., an instance graph resembles the
transitive reduction of a partial order.

Total Order and Time/Data based

Another commonly used type of information to derive partial orders is to use
other data attributes in the event data, such as the timestamp of events or
the life-cycle information. The timestamps of events indicate when individual

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 13

events occurred, e.g., starting or finishing the execution of an activity. How-
ever, in some instances, these timestamps are recorded at a coarse-granular
level, e.g., only the days are recorded, the hours and minutes are missing, or
are known to be unreliable [19, 20]. The events may also be recorded simulta-
neously, having the same timestamp. These works describe the corresponding
construction of behavior graphs [21], which are transitive reductions of partial
orders based on the uncertain event data. Lu et al. [22] propose to use this
information to consider the events that have identical timestamps as having
an uncertain ordering and creating the partial order accordingly.

When events contain timestamps that indicate the start and completion
time of an activity, one may use such information to derive true concurrency
relations between the events and use these to obtain partial orders that have a
certain-concurrency semantics. Interestingly, when using start and end times-
tamps of events to derive partial orders of activity instances, the partial orders
derived are interval orders [23], i.e., describing the additional property that if
x≺y and w≺z, then either x≺z or w≺y, i.e., concurrency between sequential
behavior of x and y, and, w and z, respectively, is not observed.

Leemans et al. [24] propose a technique that leverages the α-miner and
uses start and complete information to derive partial orders and concurrence
information. In [25], the authors propose to learn a temporal network represen-
tation of an event log. Such a network is based on Allen’s interval algebra [26]
and captures how frequently a specific relation is present in the event log. Var-
ious (existing/commonly used) relations can be derived from the network that
can be subsequently used, e.g., for process discovery.

4.1.2 Using External Knowledge

In addition to the information within an event log, external knowledge regard-
ing the relations may also be used to convert sequences into partial orders.
Most work either uses a external concurrency oracle, or, a reference process
model.

External Concurrency Oracle

Some techniques assume the existence of an external concurrency oracle that
indicates the possible concurrent or interleaved activities. The exact procedures
to obtain such an oracle are left open and may vary, e.g., a domain expert may
be used. Dumas et al. [27] propose a two-step approach to derive partial orders
enriched with conflict relations, i.e., labeled prime event structures (PESs),
using a given external concurrency oracle. Observe that, as a fallback method,
the log-based concurrency oracle can be used.

Process Model

When a normative process model is available, the certain information regard-
ing concurrent or interleaved activities in the process model can be used to
convert total orders into partial orders. The resulting partial orders have the
same semantics as the process models used. Fahland and van der Aalst [28]

Springer Nature 2021 LATEX template

14 Partial-Order-Based Process Mining

propose to replay traces on a model to obtain partially ordered runs to simplify
process models.

4.2 Discovering Process Models from Partial Orders

This section discusses process discovery techniques that use partial orders
directly or explicitly exploit the notion of concurrency. We first briefly dis-
cuss classical process discovery algorithms. Secondly, we cover techniques that
explicitly assume activity lifecycles, i.e., enabling these techniques to observe
true concurrency. Thereafter we focus on partial-order-based process discovery
algorithms.

4.2.1 Classical Process Discovery

Most classical discovery techniques (see [2] for a detailed overview) use the
total order of events in an event log and derive concurrency based on the
context of events, i.e., as covered in Section 4.1. It has been shown that con-
currency can be reliably discovered [29], as long as the concurrency involves
more complex structures than just activities, i.e., otherwise classical process
discovery techniques cannot distinguish between activities being concurrent
(i.e., potentially overlapping) and being interleaved (i.e., both being executed
yet non-overlapping).

Nevertheless, discovering concurrency remains challenging due to the infor-
mation required from the event log: a process of 10 concurrent activities has
10!=3 628 800 different orders of execution. In techniques that use the directly
follows abstraction, e.g., the previously presented α miner [14] and its deriva-
tives, this amount of information is alleviated to 10 ∗ 9 = 90 observations. In
comparison, the same information can be captured using only one partially
ordered trace.

Discovery techniques that detect concurrency using totally ordered traces
inherently use uncertain semantics: at least one partially ordered run must
match the given totally ordered trace in the discovered model.

In contrast, [30] uses the eventually follows abstraction to directly con-
struct a partially ordered model, which, due to label splitting, supports looping
behavior.

4.2.2 Discovery Based on Lifecycle Information

In event logs, events can be annotated with an attribute indicating the life
cycle information of that event. In particular, an event can indicate the start
of the execution of an activity (an activity instance) and the completion of
an activity instance. For instance, the trace 〈as, bs, bc, ac〉 denotes a trace of
two activity instances (a and b), such that a started, after which b started
and completed, after which a completed. More elaborate life cycle models, for
instance, supporting pausing and resuming execution, have been proposed [31].
However, such models have thus far not been leveraged for process discovery.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 15

In [32], the authors propose to revise the internal data structure used of a
classical process discovery algorithm, i.e., the Heuristic Miner [33], to be aware
of activity instances. Other examples of techniques that use life cycle informa-
tion are Tsinghua alpha (Tα) [34] and Inductive Miner - life cycle (IMlc) [24].
IMlc uses the concurrent semantics, whereas Tα uses the interleaved seman-
tics. Tα and IMlc do not need to know which start event belongs to which
completion event, as they abstract the behavior in the event log on an activ-
ity level (rather than the activity instance level). They only consider when an
activity starts and completes, not when a particular activity instance starts or
ends. Such techniques do not use this information as it is not available in event
logs with life cycle information: for instance, in the trace 〈as, as, ac, ac〉 it is
unknown which one of the start events as link to which completion event ac.

In contrast, such information is necessary to construct a partially ordered
trace. On the other hand, a partial order cannot express that a should start
before b but should end only after b completes. Hence, life cycle information
and partially ordered traces are orthogonal and partially ordered traces in
which the events are annotated with life cycle information could be defined.

4.2.3 Partial-Order-Based Process Discovery

This section considers process discovery techniques that directly work on par-
tial orders. It is important to note that a large amount of works focuses on
the Petri net synthesis problem based on labeled partial orders [35–39, 39–43].
These techniques discover a Petri net that describes a (partial order) language
that is as close as possible to the input LPOs. Typically, the resulting models
are hard to interpret by a human analyst. We divide the work covered in this
section,i.e., partial-order-based process discovery techniques, according to the
usage of partial orders under certain semantics and uncertain semantics.

Certain Semantics

This section covers process discovery techniques that assume certain trace
semantics. As this category covers a large amount of work, we order the work
chronologically.

In [44, 45], Herbst describes, i.e., as one of the first authors on process
discovery, various classes of process discovery problems, explicitly assuming
the existence of a partial order over the instances of a workflow. In [46], par-
tial orders are first transformed to eventually follows relations, transitively
reduced, de-duplicated and transformed into a process model.

In [47] the authors do not use partial orders as an intermediary object.
However, they do account for multiple activity stages, e.g., ready, started,
etc. These states are used to detect concurrency among two activities in the
process. The relation (and others) is used to construct an execution graph,
which can be seen as the transitive closure of a partial order over the observed
activities (if activities only occur once). The execution graphs are combined
into a workflow graph.

Springer Nature 2021 LATEX template

16 Partial-Order-Based Process Mining

In [48], the authors introduce the Multi Phase Miner, which aggregates
instance graphs (partially ordered traces) into Petri nets. This aggregation first
collapses the instance graphs into projected instance graphs. Each activity of
the instance graph is a node (rather than each activity instance), and the edges
are annotated with how often they appeared in the corresponding instance
graph. Second, the union of all projected instance graphs is taken. Third,
the union is transformed into an EPC using structural transformation rules.
However, the models that preserve all behavior in the input event log tend to
be imprecise. The authors show that these steps preserve behavior, fitness is
guaranteed, however, the method might generalize and sacrifice precision.

In [49], the author proposes to discover block-structured workflow models.
The algorithm assumes that the event data captures start and end times. In
the first step of the algorithm, repeated executions of activities are grouped
together by an overarching fresh activity, i.e., representing the repeated behav-
ior. In the second step, the ordering relations between the different activities
in the event log are used to create trace clusters. The clusters are merged,
e.g., based on observations of interleaving. Every cluster is transformed into
a block-structured process model, which are combined together into a single
resulting process model.

The authors in [9] use Message Sequence Charts (MSCs), which denote
messages sent between processes, with the messages sent for one process being
totally ordered. Each MSC is translated into a partially ordered trace. Using a
set of these translated MSCs, the Multi Phase Miner can be applied, with two
limitations: each message label must be unique in each trace, and the derived
partial orders must be transitively reduced.

In [50], the authors propose to construct Petri nets from partially ordered
traces using synthesis: using linear programming, a Petri net is constructed
that can replay at least all partially ordered traces in the log.

In [51], the authors introduce three algorithms to discover process models
from partially ordered event logs. To this end, first, a collection of conclusions
is derived from the partially ordered runs – a conclusion expresses equality
between tokens produced and tokens consumed, corresponding to the edges of
the partially ordered trace. Second, a Petri net is constructed that adheres to
these conclusions.

In [52], an event log is translated to a first order logic expression, which
is subsequently used to update a workflow model incrementally. In [53, 54],
the authors propose to learn labeled partial orders which are subsequently
converted into event structures. From the event structures, occurrence nets
are deduced, which are subsequently folded into a Petri net (allowing the
integration of negative trace information).

In [27], the authors use partial orders enriched with choices and conflict
relations (prime event structures (PESs)). Events in these PESes that are
equivalent (or equivalent enough to allow for imprecisions to be included)
are combined, and the result is translated to a Petri net. Note that to con-
struct partially ordered traces, the presence of a concurrency oracle for each

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 17

activity is assumed. Thus, duplicate labels are not possible. In [55], a public
implementation of the proposal of [27] is presented.

In [56], the authors use conditional partial order graphs (CPOGs) to visu-
alize event data and as an intermediate step towards process mining. In a
(potentially cyclic) graph, the edges can be annotated with boolean variables,
such that for each combination of boolean variable assignments, a partial order
results. The language of a CPOG is the set of total ordered traces resulting
from all possible variable assignments. Finding the smallest CPOG given a set
of partially ordered traces is called CPOG synthesis, and several approaches
have been proposed. A CPOG describes an acyclic partially ordered language
and can thus be seen as a process model. Finally, data mining techniques are
applied to provide intuition to the variables of the CPOG.

In [57] a more generic approach extending partial orders is adopted. Event
logs are defined as a partial order over the events (rather than a total order).
Yet, the paper primarily focuses on assigning regions to events that help further
decompose the process discovery problem. In this context, since using a process
discovery algorithm is seen as a black box in this paper, partial orders have
no added benefit over total orders.

Prime Miner [58] first uses life-cycle information to create partially ordered
runs. Second, it folds the most frequently (up to varying thresholds) partially
ordered runs into a prime event structure. Third, the prime event structure is
synthesized into a Petri net using the theory of compact token flow regions.

Uncertain Semantics

Interestingly, almost all work in partial-order-based process discovery assumes
complete certainty in the event data logging. In [59], the authors assume a
partially ordered event log, in which multiple trace notions might be present,
i.e., events can be linked to various artifacts. A directly follows-based model
is discovered from partially ordered and multi-trace event logs. This approach
assumes that a partial order indicates an order’s absence, thus using uncertain
semantics.

In [60], the authors assume that event data contains uncertainty. The
authors assume simple uncertainty, i.e., the exact activity may not be known,
or the exact timestamp may not be known (i.e., an interval is assumed). The
authors propose to build behavior graphs as an intermediate representation of
the data, which is a transitive reduction of a partial order representation of
the behavior.

4.3 Conformance checking

In this section, we cover the area of conformance checking. Recall that con-
formance checking aims to assess whether the execution of a process, i.e., as
recorded in the event data, conforms to a given reference process model. We
first briefly cover techniques defined for the classical notion of event data, i.e.,
totally ordered event data. Subsequently, we briefly cover works considering
partial orders within conformance checking. In line with the previous sections,

Springer Nature 2021 LATEX template

18 Partial-Order-Based Process Mining

we structure the discussion of the techniques in their usage of partial orders
under certain semantics and uncertain semantics.

4.3.1 Classical Conformance Checking

The first work concerning the conformance checking problem is often referred
to as token-based replay [61]. The approach heuristically “replays” the observed
behavior in the context of a given process model (usually a Petri net). To
accommodate for the heuristic nature of the previous work, the notion of align-
ments was introduced [62]. An alignment quantifies an observed trace in the
context of an execution sequence of a given model. It does so by mapping each
observed activity in a trace (if possible) to a corresponding activity in the given
process model. An alignment, for example, allows us to pinpoint whether cer-
tain activities were skipped or duplicated. For a detailed overview of classical
conformance checking techniques we refer to [4].

4.3.2 Conformance Checking using Partially Ordered Event
Data

A few techniques have been proposed to check conformance between partially
ordered traces and normative process models. We identify the same main
streams for partial-order-based conformance checking as we observe for process
discovery, i.e., certain semantics and uncertain semantics. In the remainder of
this section, we discuss works in each category in more detail.

Certain Semantics

One of the earliest works in partial-order based conformance checking is the
verification module of VipTool [63–65], supporting the comparison of a sce-
nario (LPO) with a given Petri net. Lu et al. were the first to consider
partial ordered traces for conformance checking [22]. The proposed approach is
founded on the notion of alignments. In particular, partial ordered traces are
converted to an occurrence net (i.e., a Petri net that describes the observed par-
tial order in the event data), and a synchronous product is computed between
the occurrence net and the normative model. From the initial marking of the
synchronous product to its final marking, the shortest path of transitions is
computed and unfolded into a partially ordered alignment. In [66] this work is
formalized and applied in a healthcare case study.

In [27], the authors propose to use event structures [16] as an intermediary
data structure for process mining operations. An event structure describes a
partial order over a set of events, as well as a conflict relation, i.e., representing
the notion of mutually exclusive events. The authors propose to derive an
event structure from both the event log and the process model, which they
subsequently compare to each other (exploiting the work proposed in [67]).

Senderovich et al. [68] consider conformance checking and process improve-
ment of scheduled processes. The proposed technique assumes that both the
schedule and the event log describes a partial order of activity instances.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 19

Both artefacts are transformed into a open fork/join network and are used to
compare the schedule and true execution from various perspectives.

In [69], the authors adopt a partial order notion for the observed event
data. Using this representation, the authors propose to use automated planning
algorithms [70] and provide an algorithmic framework in the standardized
Planning Domain Definition Language (PDDL) language.

Uncertain Semantics

In [71, 72], the authors assume that events are recorded in an atomic fashion,
yet, the granularity of the timestamp recordings is coarse-grained. As such,
the data describes multiple events occurring at the same point in time. The
proposed algorithm computes totally ordered alignments based on the partially
ordered event data. Yet, upper and lower bounds for alignments are given,
rather than an exact conformance value.

In [73], van der Aa et al. represent events recorded in the context of a
process instance as a sequence of disjoint sets of events. When the sequences
consist of an event set that contains more than one event, that recording is
categorized as uncertain. In the work, the authors assume that each event
observed in the uncertain set has been executed; however, the ordering of the
events is unknown. The authors propose to compute the possible resolutions
of the observed event data, i.e., all possible total orderings of the observed
events. Furthermore, the probability of a resolution is quantified as well. The
general conformance of an observed uncertain process instance is computed
by computing the sum of all resolution probabilities multiplied with the corre-
sponding resolution’s conformance (using classical conformance checking over
total orders). The authors present three different resolution strategies, i.e.,
strategies to compute a trace resolution probability distribution. To reduce
the computational effort, the authors propose means to compute the expected
conformance value and confidence intervals.

4.4 Other Application Areas

Partial orders have been leveraged in other process mining studies as well.
We briefly discuss the following lines of work: deviation detection, behavioral
pattern mining, trace clustering, process monitoring, performance measurement
and prediction, and process comparison, and we provide a brief overview of
each.

4.4.1 Deviation Detection

Process-oriented deviation detection aims to detect outliers in terms of process
executions. In this context, in [74], partial order representations of event data
are used to quantify deviations of primary process behavior. In [75] present
a framework that can detect anomalous behavioral patterns, taking a given
reference model as a basis for the anomaly detection. These patterns are rep-
resented as partially ordered behavioral graphs. Denisov et al. [76] assume a

Springer Nature 2021 LATEX template

20 Partial-Order-Based Process Mining

partial order event log and focus on the repair/augmentation of event logs,
i.e., to anticipate the possible occurrence of missing events. However, partial
orders are not explicitly used to model the uncertainty.

4.4.2 Behavioral Pattern Mining

Similar to frequent itemset mining [77], behavioral pattern mining techniques
aim to find common behavioral patterns that are shared by sub-fragments
of the recorded process instances. In [78], the authors propose to discover
episodes, i.e., partial orders defined over events. However, the goal of the work
is to find frequent patterns in terms of episodes, i.e., an episode is typically
describing a subset of the events in a trace. As an input, classical event logs are
used. As such, the work bears great similarity to work from the field of partial-
order aware frequent pattern mining [79, 80]. In [81, 82], the authors adopt
partial orders on the observed events and use the notion of behavioral patterns
to refer to frequently occurring sub-orders of the collection of partial order
traces. In [83], the authors propose a semi-supervised approach for pattern
detection. The user provides a set of patterns, i.e., specified in a DSL, which are
transformed into partial order representations. Subsequently, pattern detection
and matching are applied to find meaningful and frequent matches.

4.4.3 Trace Clustering

In trace clustering, the goal is to combine process executions that share some
form of commonality, i.e., either behavioral or based on other “environment
variables”. In [84] a generic framework for trace clustering, i.e., grouping of
different recorded traces in an event log, is proposed. The proposed tech-
nique assumes the observed event data to be a total order of events. However,
it allows the centroids of the clustering method to be arbitrary behavioral
artifacts, including partial order runs derived from a process model.

4.4.4 Process Monitoring, Performance Measurement and
Prediction

In this section, we cover techniques that focus on process monitoring (i.e., cov-
ering ongoing cases) and techniques that focus on performance measurement
of (ongoing/historical) cases of a process. In [85], the authors assume that
event data describe activity instances. The authors propose to learn queue-
ing networks based on the process using schedules and event data as input.
The WoMan framework [86] describes a general workflow management frame-
work based on first-order logic that assumes that activity start and end are
always recorded. As such, the framework supports the partial ordering of work-
flow tasks. The framework has also been extended for prediction [87, 88].
In [89], the authors assume that cases describe activity instances with an asso-
ciated partial order. The orders are, however, used in an implicit manner as
the authors assess various optimization strategies to perform “cost-informed”
process improvement.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 21

In [90], the authors present an event-interval-based performance measure-
ment approach. The authors assume the potential existence of start and end
timestamps and use the intervals to define different notions of time intervals,
e.g., case-level intervals, waiting time intervals etc. However, the proposed
measurements do not explicitly exploit the partial order nature of the inter-
vals considered. In [91], the authors propose a performance measurement and
prediction framework. The technique assumes that the event data is par-
tially ordered and uses partial order alignments to quantify the observed event
data and compute alternative execution scenarios using an arbitrary reference
model.

A noteworthy sub-field of performance measurement and prediction is
queue mining [68, 92, 93]. In these works, the process is assumed to be
representable by some form of queueing network. Often, a detailed level of
timestamp granularity is assumed, yielding partial orders over the observed
events. However, the partial order representation is often not explicitly used
or exploited.

4.4.5 Process Comparison

In process comparison, the goal is to compare two groups of executions of a pro-
cess and identify significant commonalities and differences. In [94], the authors
define a partial order over the events observed in the event log. The event
data is subsequently mapped onto perspective graphs which allows the user to
spot significant differences between logs on an arbitrarily chosen data perspec-
tive. Similar approaches are presented in [67, 95], however, said approaches are
strictly defined for model-model comparison.

4.4.6 Visualization

Recently, different authors have considered novel ways to visualize partial order
event data. In [96], the authors propose a visualization tool that allows the user
to group events happening in the same hour, day, month, etc. Clearly, such
a grouping yields a partial order on the observed events (even if one times-
tamp is recorded per event). The technique also supports mixed granularity
in the timestamp recording of events. Similarly, in [97], the authors propose a
generalization of the “Variant Explorer”.

5 Discussion

In this section, we discuss several interesting dimensions of the use of partial
orders in the context of process mining. In Section 5.1, we discuss the distribu-
tion of the works considered in the context of the different categories discussed
(data extraction, process discovery, etc.). Additionally, we present a chrono-
logical overview of the development of partial-order-based process mining. In
Section 5.2, we sketch various novel directions in process mining, where the
use of partial orders as a representation of processes may be of explicit benefit.

Springer Nature 2021 LATEX template

22 Partial-Order-Based Process Mining

Fig. 5: Overview of the distribution of the work considered, over the different
categories identified.

Finally, in Section 5.3, we reflect on challenging aspects of the use of partial
orders in the context of process mining.

5.1 Overview

In this section, we present a structured overview of the results of our survey,
i.e., as discussed in Section 4.

Consider Fig. 5, in which we present the general distribution of the work
considered, over the different categories identified.9 We have separated Petri
net synthesis from general process discovery. Additionally, for both process
discovery and conformance checking we differentiate between certain and
uncertain semantics. Interestingly, extraction, process discovery and Petri net
synthesis together span slightly over half of the works considered. Confor-
mance checking represents 15% of the considered techniques. In both process
discovery and conformance checking, the number of works considering the
uncertain semantics is relatively low. In the other application areas, the process
monitoring, performance measurement and prediction category (represented as
Monitoring/Prediction in the figure) stands out, representing roughly 14% of
the techniques covered. Conceptually, this (over)representation makes sense
since a vast majority of the works considers the process performance dimen-
sion (both in monitoring and prediction) which typically requires the use of
both start and end timestamps.

9Observe that a minor fraction of the work identified spans multiple categories, e.g., extraction
and process discovery.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 23

Fig. 6: Chronological development of partial-order-based process mining

In Fig. 6, we plot the chronological development of partial-order-based
process mining. We observe that the first work considering event data as a
partial order stems from 1998. An initial spike of articles is observed around
the year 2009, and later in 2015. In general, after 2015, the number of works
supporting partial orders is higher compared to the years before. This is in
line with the general increase in event data availability as well as the more
recently developed research line on process mining with uncertain data.

5.2 Outlook

As indicated, partial orders are primarily used when either both start and end
timestamps of events are present, or, when some form of uncertainty is present
in the data. In this section, we highlight other application areas as well as
interesting novel lines of work.

5.2.1 Data Logging Quality

As highlighted by the uncertainty semantics, logging quality is a prominent
issue in real event data. The survey shows that tackling various data logging
quality issues using partial orders as a representation is a viable solution.
However, interestingly, both in process discovery and conformance checking,
the vast majority of techniques assume the certain semantics (cf. Section 5.1).
Hence, more work towards uncertainty in event data and correspondingly using
partial order event data as an intermediary representation can be done. In
some instances, certain semantics, combined with data quality issues, are also
applicable. For example, if the level of detail of logging is limited, e.g., events

Springer Nature 2021 LATEX template

24 Partial-Order-Based Process Mining

Fig. 7: Example visualization of the problem of logging at different granularity
levels versus the business activity level (adopted from [101]). Multiple recorded
events constitute a high-level business process activity, e.g., the event sequence
〈reg act start, opsi pp open, reg act end〉 corresponds to register request.

are recorded on a day-level, a partial order can be used to express that the
events occurred on the same day.

5.2.2 Event Abstraction

Recently, various studies investigated the application of existing process mining
techniques, i.e., process discovery, conformance, or enhancement studies, on
non-standard event data sources. Examples include, amongst various others,
customer journey analysis [98], various applications in healthcare [99] and the
analysis of sensor data [100]. In such contexts, the recorded data is often of
a different level of granularity compared to the level at which one aims to
analyze the process. The level at which the data is recorded is often more fine-
grained than the intended target level of analysis. To accommodate for this
mismatch, a novel branch of techniques emerged, focusing on the application of
(semi)-automated techniques that lift the recorded event data to the business
level, i.e., referred to as event abstraction techniques [101]. Consider Fig. 7,
in which the concept of event abstraction is exemplified. The two high-level
business activity instances, i.e., register request and check ticket are recorded as
sequences of lower-level events. Hence, even if recording the process activities
occurs in an atomic fashion, when abstracting these recorded activities to a
higher level notion, events recording both start and end times of the higher-
level business activities appear. As such, analysis of the process data, i.e.,
at a higher level of abstraction, greatly benefits from techniques that naively
support partially ordered event data.

5.2.3 Accurate Performance Quantification

Performance measures can be improved by taking the partial order of events
in an event log into account. That is, waiting time for an activity can be
considered to start with the completion of the previous sequential event in
the trace – rather than simply the previous event in the trace. That is, an
event a that was executed concurrently to an event b should not influence
the waiting time for b. The partial order, derived from a process model or
otherwise, informs the last sequential event in the trace.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 25

5.3 Challenges

Here, we identify challenges in the context of the use of partial orders as
an (intermediate) event data representation. We discuss tool support and
standardization, as well as computational complexity.

5.3.1 Tool Support & Standardization

Whereas totally ordered event logs are well supported by process mining tools
and established file-formats such as CSV and XES10, tool support for partially
ordered logs is limited and fragmented. To the best of our knowledge, there
are no well-established file formats or frameworks for storing partially ordered
trace sets or event logs. However, in [59], the notion of Object-Centric Event
Logs is presented, i.e., a first conceptual design novel event log format that
more explicitly takes the relationship between events and objects (e.g., items
belonging to an order) into account. In the definition (Def. 3 of the paper), a
partial order over the events is assumed. As such, events are considered to be
atomic, yet, may be recorded at the same point in time. Furthermore, when
applying partially order-based tools, it is up to the user to verify that the
semantics that the tool that produced the partial orders assumes match the
semantics that the tool that uses them as an input assumes. Arguably, said
semantics of partial orders are, from a cognitive perspective, more challenging
to understand, analyze, and reason with than total orders. Hence, we identify
a clear need for a standardized framework to support partial orders as an event
data representation.

5.3.2 Computational Complexity

The computational complexity of partial orders can be prohibitively high.
The number of totally ordered traces supported by a partially ordered trace
(in the case of certain semantics) is exponential in the length and facto-
rial in the breadth of the trace, where length denotes ordered parts and
breadth denotes unordered (i.e., concurrent/interleaved) parts. Fig. 4 showed
an example, and a completely unordered trace of 10 events has 10!=3 628 800
corresponding totally ordered traces. It is not uncommon for log traces to have
over 100 events. This clearly shows the need for optimizations, such as the
design of divide and conquer computational strategies [102], to cope with said
computational complexity..

6 Conclusion

Existing process mining techniques use total orders of process activities as
their primary input. However, the sheer nature of activities, i.e., having a clear
start and end point in time, and the inherent uncertainty in process data log-
ging, are not supported by a total order assumption. Hence, we advocate the

10https://xes-standard.org/

https://xes-standard.org/

Springer Nature 2021 LATEX template

26 Partial-Order-Based Process Mining

use of partial orders as an intermediary data representation for process min-
ing algorithms. We have evaluated the current state-of-art in process mining
w.r.t. the use of partial orders. We observe that partial orders are predomi-
nantly used in process discovery and conformance checking. Most work focuses
on start/end timestamp recording, i.e., handling uncertainty in event logging
is a relatively new development. Various works have been identified that cover
other interesting application areas of process mining. We have identified differ-
ent interesting areas in process mining where partial orders are of particular
interest. Finally, we have elaborated on the challenges expected in adopting
partial orders as a primary citizen in process mining algorithms.

References

[1] van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second
Edition, (2016)

[2] Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Mar-
rella, A., Mecella, M., Soo, A.: Automated discovery of process models
from event logs: Review and benchmark. IEEE Trans. Knowl. Data Eng.
31(4), 686–705 (2019)

[3] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of busi-
ness process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294
(2008)

[4] Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance
Checking - Relating Processes and Models, (2018)

[5] de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining:
discovering decisions in processes using alignments. In: Shin, S.Y., Mal-
donado, J.C. (eds.) Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013,
pp. 1454–1461 (2013)

[6] Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented
predictive process monitoring: Review and benchmark. ACM Trans.
Knowl. Discov. Data 13(2), 17–11757 (2019)

[7] Murata, T.: Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE 77(4), 541–580 (1989)

[8] OMG: Business Process Model and Notation (BPMN), Version 2.0.2.
Object Management Group

[9] Lassen, K.B., van Dongen, B.F.: Translating message sequence charts to
other process languages using process mining. Trans. Petri Nets Other
Model. Concurr. 1, 71–85 (2008)

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 27

[10] Vogler, W.: Partial order semantics and read arcs. Theor. Comput. Sci.
286(1), 33–63 (2002)

[11] Berthomieu, B., Diaz, M.: Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Software Eng. 17(3), 259–273
(1991)

[12] Snyder, H.: Literature review as a research methodology: An overview
and guidelines. Journal of Business Research 104, 333–339 (2019)

[13] Goodman, L.A.: Snowball sampling. The annals of mathematical statis-
tics, 148–170 (1961)

[14] van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining:
Discovering process models from event logs. IEEE Trans. Knowl. Data
Eng. 16(9), 1128–1142 (2004)

[15] Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Fast and accurate
business process drift detection. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) Business Process Management - 13th International
Conference, BPM 2015, Innsbruck, Austria, August 31 - September 3,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9253, pp.
406–422 (2015)

[16] Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and
domains, part I. Theor. Comput. Sci. 13, 85–108 (1981)

[17] van Beest, N.R.T.P., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.L.: Log
delta analysis: Interpretable differencing of business process event logs.
In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) Business Pro-
cess Management - 13th International Conference, BPM 2015, Innsbruck,
Austria, August 31 - September 3, 2015, Proceedings. Lecture Notes in
Computer Science, vol. 9253, pp. 386–405 (2015)

[18] Diamantini, C., Genga, L., Potena, D., van der Aalst, W.M.P.: Building
instance graphs for highly variable processes. Expert Syst. Appl. 59,
101–118 (2016)

[19] Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: PROVED: A tool for
graph representation and analysis of uncertain event data. In: Buchs,
D., Carmona, J. (eds.) Application and Theory of Petri Nets and
Concurrency - 42nd International Conference, PETRI NETS 2021, Vir-
tual Event, June 23-25, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12734, pp. 476–486 (2021)

[20] Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient time and
space representation of uncertain event data. Algorithms 13(11), 285

Springer Nature 2021 LATEX template

28 Partial-Order-Based Process Mining

(2020)

[21] Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient construction
of behavior graphs for uncertain event data. In: Abramowicz, W., Klein,
G. (eds.) Business Information Systems - 23rd International Conference,
BIS 2020, Colorado Springs, CO, USA, June 8-10, 2020, Proceedings.
Lecture Notes in Business Information Processing, vol. 389, pp. 76–88
(2020)

[22] Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based
on partially ordered event data. In: International Conference on Business
Process Management - Workshops. LNBIP, vol. 202, pp. 75–88 (2014)

[23] Fishburn, P.C.: Intransitive indifference with unequal indifference inter-
vals. Journal of Mathematical Psychology 7(1), 144–149 (1970)

[24] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle
information in process discovery. In: International Conference on Busi-
ness Process Management - Workshops. LNBIP, vol. 256, pp. 204–217
(2015)

[25] Senderovich, A., Weidlich, M., Gal, A.: Temporal network representation
of event logs for improved performance modelling in business processes.
In: Carmona, J., Engels, G., Kumar, A. (eds.) Business Process Man-
agement - 15th International Conference, BPM 2017, Barcelona, Spain,
September 10-15, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10445, pp. 3–21 (2017)

[26] Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

[27] Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: Event struc-
tures as a unified representation of process models and event logs. In:
International Conference on Application and Theory of Petri Nets and
Concurrency. LNCS, vol. 9115, pp. 33–48 (2015)

[28] Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process
models to reality. Inf. Syst. 47, 220–243 (2015)

[29] Leemans, S.J.J., Fahland, D.: Information-preserving abstractions of
event data in process mining. Knowl. Inf. Syst. 62(3), 1143–1197 (2020)

[30] Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from
workflow logs. In: Schek, H., Saltor, F., Ramos, I., Alonso, G. (eds.)
Advances in Database Technology - EDBT’98, 6th International Confer-
ence on Extending Database Technology, Valencia, Spain, March 23-27,
1998, Proceedings. Lecture Notes in Computer Science, vol. 1377, pp.

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 29

469–483 (1998)

[31] Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther,
C., Verbeek, E.: Ieee 1849tm: The XES standard. IEEE Computational
Intelligence Magazine, 4–8 (2017)

[32] Burattin, A., Sperduti, A.: Heuristics miner for time intervals. In: 18th
European Symposium on Artificial Neural Networks, ESANN 2010,
Bruges, Belgium, April 28-30, 2010, Proceedings (2010)

[33] Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow
models from event-based data using little thumb. Integr. Comput. Aided
Eng. 10(2), 151–162 (2003)

[34] Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel
approach for process mining based on event types. J. Intell. Inf. Syst.
32(2), 163–190 (2009)

[35] Lorenz, R., Juhás, G.: Towards synthesis of petri nets from scenarios.
In: Donatelli, S., Thiagarajan, P.S. (eds.) Petri Nets and Other Mod-
els of Concurrency - ICATPN 2006, 27th International Conference on
Applications and Theory of Petri Nets and Other Models of Concur-
rency, Turku, Finland, June 26-30, 2006, Proceedings. Lecture Notes in
Computer Science, vol. 4024, pp. 302–321 (2006)

[36] Lorenz, R., Mauser, S., Juhás, G.: How to synthesize nets from languages:
a survey. In: Henderson, S.G., Biller, B., Hsieh, M., Shortle, J., Tew, J.D.,
Barton, R.R. (eds.) Proceedings of the Winter Simulation Conference,
WSC 2007, Washington, DC, USA, December 9-12, 2007, pp. 637–647
(2007)

[37] Bergenthum, R., Desel, J., Mauser, S.: Comparison of different algo-
rithms to synthesize a petri net from a partial language. Trans. Petri
Nets Other Model. Concurr. 3, 216–243 (2009)

[38] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri
nets from infinite partial languages. In: Billington, J., Duan, Z., Koutny,
M. (eds.) 8th International Conference on Application of Concurrency
to System Design (ACSD 2008), Xi’an, China, June 23-27, 2008, pp.
170–179 (2008)

[39] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets
from scenarios with viptool. In: International Conference on Applications
and Theory of Petri Nets. LNCS, vol. 5062, pp. 388–398 (2008)

[40] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri
nets from finite partial languages. Fundam. Informaticae 88(4), 437–468

Springer Nature 2021 LATEX template

30 Partial-Order-Based Process Mining

(2008)

[41] Bergenthum, R., Mauser, S.: Folding partially ordered runs. In: Desel,
J., Yakovlev, A. (eds.) Proceedings of the Workshop Applications of
Region Theory 2011, Newcastle upon Tyne, UK, June 21, 2011. CEUR
Workshop Proceedings, vol. 725, pp. 52–62 (2011)

[42] Lorenz, R., Desel, J., Juhás, G.: Models from scenarios. Trans. Petri Nets
Other Model. Concurr. 7, 314–371 (2013)

[43] Bergenthum, R.: Synthesizing petri nets from hasse diagrams. In: Car-
mona, J., Engels, G., Kumar, A. (eds.) Business Process Management
- 15th International Conference, BPM 2017, Barcelona, Spain, Septem-
ber 10-15, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10445, pp. 22–39 (2017)

[44] Herbst, J.: A machine learning approach to workflow management. In:
de Mántaras, R.L., Plaza, E. (eds.) Machine Learning: ECML 2000, 11th
European Conference on Machine Learning, Barcelona, Catalonia, Spain,
May 31 - June 2, 2000, Proceedings. Lecture Notes in Computer Science,
vol. 1810, pp. 183–194 (2000)

[45] Herbst, J., Karagiannis, D.: Integrating machine learning and workflow
management to support acquisition and adaptation of workflow models.
Intell. Syst. Account. Finance Manag. 9(2), 67–92 (2000)

[46] Herbst, J.: Dealing with concurrency in workflow induction. In: European
Concurrent Engineering Conference. SCS Europe (2000). Citeseer

[47] Golani, M., Pinter, S.S.: Generating a process model from a process audit
log. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.)
Business Process Management, International Conference, BPM 2003,
Eindhoven, The Netherlands, June 26-27, 2003, Proceedings. Lecture
Notes in Computer Science, vol. 2678, pp. 136–151 (2003)

[48] van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining:
Building instance graphs. In: International Conference on Conceptual
Modeling. LNCS, vol. 3288, pp. 362–376 (2004)

[49] Schimm, G.: Mining exact models of concurrent workflows. Comput. Ind.
53(3), 265–281 (2004)

[50] Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of pro-
cess models from example runs. Trans. Petri Nets Other Model. Concurr.
2, 243–259 (2009)

[51] van Dongen, B.F., Desel, J., van der Aalst, W.M.P.: Aggregating causal

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 31

runs into workflow nets. Trans. Petri Nets Other Model. Concurr. 6,
334–363 (2012)

[52] Ferilli, S., Esposito, F.: A logic framework for incremental learning of
process models. Fundam. Informaticae 128(4), 413–443 (2013)

[53] de León, H.P., Rodŕıguez, C., Carmona, J., Heljanko, K., Haar, S.:
Unfolding-based process discovery. In: Finkbeiner, B., Pu, G., Zhang,
L. (eds.) Automated Technology for Verification and Analysis - 13th
International Symposium, ATVA 2015, Shanghai, China, October 12-15,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9364, pp.
31–47 (2015)

[54] de León, H.P., Rodŕıguez, C., Carmona, J.: POD - A tool for process
discovery using partial orders and independence information. In: Inter-
national Conference on Business Process Management - Demos. CEUR
WP, vol. 1418, pp. 100–104 (2015)

[55] Bergenthum, R., Meis, B.: Mining with eve - process discovery and
event structures. In: van der Aalst, W.M.P., Bergenthum, R., Carmona,
J. (eds.) Proceedings of the International Workshop on Algorithms &
Theories for the Analysis of Event Data 2017 Satellite Event of the Con-
ferences: 38th International Conference on Application and Theory of
Petri Nets and Concurrency Petri Nets 2017 and 17th International Con-
ference on Application of Concurrency to System Design ACSD 2017,
Zaragoza, Spain, June 26-27, 2017. CEUR Workshop Proceedings, vol.
1847, pp. 71–75 (2017)

[56] Mokhov, A., Carmona, J.: Event log visualisation with conditional par-
tial order graphs: from control flow to data. In: International Conference
on Application and Theory of Petri Nets and Concurrency. CEUR WP,
vol. 1371, pp. 16–30 (2015)

[57] van der Aalst, W.M.P., Kalenkova, A.A., Rubin, V.A., Verbeek, E.: Pro-
cess discovery using localized events. In: Devillers, R.R., Valmari, A.
(eds.) Application and Theory of Petri Nets and Concurrency - 36th
International Conference, PETRI NETS 2015, Brussels, Belgium, June
21-26, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9115,
pp. 287–308 (2015)

[58] Bergenthum, R.: Prime miner - process discovery using prime event
structures. In: International Conference on Process Mining, pp. 41–48
(2019)

[59] van der Aalst, W.M.P.: Object-centric process mining: Dealing with
divergence and convergence in event data. In: International Conference
on Software Engineering and Formal Methods. LNCS, vol. 11724, pp.

Springer Nature 2021 LATEX template

32 Partial-Order-Based Process Mining

3–25 (2019)

[60] Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process
models from uncertain event data. In: Francescomarino, C.D., Dijk-
man, R.M., Zdun, U. (eds.) Business Process Management Workshops
- BPM 2019 International Workshops, Vienna, Austria, September 1-6,
2019, Revised Selected Papers. Lecture Notes in Business Information
Processing, vol. 362, pp. 238–249 (2019)

[61] Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes
based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

[62] van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying
history on process models for conformance checking and performance
analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2), 182–192
(2012)

[63] Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and valida-
tion with viptool. In: van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Weske, M. (eds.) Business Process Management, International Con-
ference, BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003,
Proceedings. Lecture Notes in Computer Science, vol. 2678, pp. 380–389
(2003)

[64] Juhás, G., Lorenz, R., Desel, J.: Can I execute my scenario in your net?
In: Ciardo, G., Darondeau, P. (eds.) Applications and Theory of Petri
Nets 2005, 26th International Conference, ICATPN 2005, Miami, USA,
June 20-25, 2005, Proceedings. Lecture Notes in Computer Science, vol.
3536, pp. 289–308 (2005)

[65] Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I execute my
scenario in your net? viptool tells you! In: Donatelli, S., Thiagarajan,
P.S. (eds.) Petri Nets and Other Models of Concurrency - ICATPN 2006,
27th International Conference on Applications and Theory of Petri Nets
and Other Models of Concurrency, Turku, Finland, June 26-30, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4024, pp. 381–390
(2006)

[66] Lu, X., Mans, R., Fahland, D., van der Aalst, W.M.P.: Conformance
checking in healthcare based on partially ordered event data. In: IEEE
Emerging Technology and Factory Automation, pp. 1–8 (2014)

[67] Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.:
Behavioral comparison of process models based on canonically reduced
event structures. In: International Conference on Business Process
Management. LNCS, vol. 8659, pp. 267–282 (2014)

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 33

[68] Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum,
A., Kadish, S., Bunnell, C.A.: Conformance checking and performance
improvement in scheduled processes: A queueing-network perspective.
Inf. Syst. 62, 185–206 (2016)

[69] de Leoni, M., Lanciano, G., Marrella, A.: Aligning partially-ordered
process-execution traces and models using automated planning. In:
International Conference on Automated Planning and Scheduling, pp.
321–329 (2018)

[70] Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and
Practice, (2004)

[71] Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in
process mining. In: International Conference on Process Mining, ICPM
2019, Aachen, Germany, June 24-26, 2019, pp. 89–96 (2019)

[72] Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Conformance checking
over uncertain event data. Inf. Syst. 102, 101810 (2021)

[73] van der Aa, H., Leopold, H., Weidlich, M.: Partial order resolution of
event logs for process conformance checking. Decis. Support Syst. 136,
113347 (2020)

[74] Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.:
Detecting deviating behaviors without models. In: Reichert, M., Reijers,
H.A. (eds.) Business Process Management Workshops - BPM 2015, 13th
International Workshops, Innsbruck, Austria, August 31 - September 3,
2015, Revised Papers. Lecture Notes in Business Information Processing,
vol. 256, pp. 126–139 (2015)

[75] Genga, L., Alizadeh, M., Potena, D., Diamantini, C., Zannone, N.: Dis-
covering anomalous frequent patterns from partially ordered event logs.
J. Intell. Inf. Syst. 51(2), 257–300 (2018)

[76] Denisov, V., Fahland, D., van der Aalst, W.M.P.: Repairing event logs
with missing events to support performance analysis of systems with
shared resources. In: International Conference on Application and The-
ory of Petri Nets and Concurrency. LNCS, vol. 12152, pp. 239–259
(2020)

[77] Borgelt, C.: Frequent item set mining. WIREs Data Mining Knowl.
Discov. 2(6), 437–456 (2012)

[78] Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes
in event logs. In: Symposium on Data-Driven Process Discovery and
Analysis. LNBIP, vol. 237, pp. 1–31 (2014)

Springer Nature 2021 LATEX template

34 Partial-Order-Based Process Mining

[79] Hwang, S., Wei, C., Yang, W.: Discovery of temporal patterns from
process instances. Comput. Ind. 53(3), 345–364 (2004)

[80] Gwadera, R., Antonini, G., Labbi, A.: Mining actionable partial orders
in collections of sequences. In: Gunopulos, D., Hofmann, T., Malerba, D.,
Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011. Proceedings, Part I. Lecture Notes in Computer
Science, vol. 6911, pp. 613–628 (2011)

[81] Diamantini, C., Genga, L., Potena, D., Storti, E.: Discovering
behavioural patterns in knowledge-intensive collaborative processes. In:
Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W.
(eds.) New Frontiers in Mining Complex Patterns - Third International
Workshop, NFMCP 2014, Held in Conjunction with ECML-PKDD 2014,
Nancy, France, September 19, 2014, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8983, pp. 149–163 (2014)

[82] Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for
unstructured processes. J. Intell. Inf. Syst. 47(1), 5–32 (2016)

[83] Lu, X., Fahland, D., Andrews, R., Suriadi, S., Wynn, M.T., ter Hofstede,
A.H.M., van der Aalst, W.M.P.: Semi-supervised log pattern detection
and exploration using event concurrence and contextual information. In:
On the Move to Meaningful Internet Systems. LNCS, vol. 10573, pp.
154–174 (2017)

[84] Boltenhagen, M., Chatain, T., Carmona, J.: Generalized alignment-
based trace clustering of process behavior. In: International Conference
on Application and Theory of Petri Nets and Concurrency. LNCS, vol.
11522, pp. 237–257 (2019)

[85] Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A., Kadish, S.,
Bunnell, C.A.: Discovery and validation of queueing networks in sched-
uled processes. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
Advanced Information Systems Engineering - 27th International Con-
ference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9097, pp. 417–433 (2015)

[86] Ferilli, S.: The woman formalism for expressing process models. In:
Perner, P. (ed.) Advances in Data Mining. Applications and Theoretical
Aspects - 16th Industrial Conference, ICDM 2016, New York, NY, USA,
July 13-17, 2016. Proceedings. Lecture Notes in Computer Science, vol.
9728, pp. 363–378 (2016)

[87] Ferilli, S., Redavid, D., Angelastro, S.: Activity prediction in process
management using the woman framework. In: Perner, P. (ed.) Advances

Springer Nature 2021 LATEX template

Partial-Order-Based Process Mining 35

in Data Mining. Applications and Theoretical Aspects - 17th Industrial
Conference, ICDM 2017, New York, NY, USA, July 12-13, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10357, pp. 194–208
(2017)

[88] Ferilli, S., Esposito, F., Redavid, D., Angelastro, S.: Extended pro-
cess models for activity prediction. In: Kryszkiewicz, M., Appice, A.,
Slezak, D., Rybinski, H., Skowron, A., Ras, Z.W. (eds.) Foundations of
Intelligent Systems - 23rd International Symposium, ISMIS 2017, War-
saw, Poland, June 26-29, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10352, pp. 368–377 (2017)

[89] Low, W.Z., vanden Broucke, S.K.L.M., Wynn, M.T., ter Hofstede,
A.H.M., Weerdt, J.D., van der Aalst, W.M.P.: Revising history for
cost-informed process improvement. Computing 98(9), 895–921 (2016)

[90] Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.:
Event interval analysis: Why do processes take time? Decis. Support
Syst. 79, 77–98 (2015)

[91] van Zelst, S.J., Santos, L.F.R., van der Aalst, W.M.P.: Data-driven
process performance measurement and prediction: A process-tree-based
approach. In: Nurcan, S., Korthaus, A. (eds.) Intelligent Information Sys-
tems - CAiSE Forum 2021, Melbourne, VIC, Australia, June 28 - July
2, 2021, Proceedings. Lecture Notes in Business Information Processing,
vol. 424, pp. 73–81 (2021)

[92] Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue min-
ing - predicting delays in service processes. In: Jarke, M., Mylopoulos,
J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff,
J. (eds.) Advanced Information Systems Engineering - 26th Interna-
tional Conference, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8484, pp. 42–57
(2014)

[93] Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A.,
van der Aalst, W.M.P.: Discovering queues from event logs with vary-
ing levels of information. In: Reichert, M., Reijers, H.A. (eds.) Business
Process Management Workshops - BPM 2015, 13th International Work-
shops, Innsbruck, Austria, August 31 - September 3, 2015, Revised
Papers. Lecture Notes in Business Information Processing, vol. 256, pp.
154–166 (2015)

[94] Nguyen, H., Dumas, M., Rosa, M.L., ter Hofstede, A.H.M.: Multi-
perspective comparison of business process variants based on event logs.
In: Trujillo, J., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee,
M. (eds.) Conceptual Modeling - 37th International Conference, ER

Springer Nature 2021 LATEX template

36 Partial-Order-Based Process Mining

2018, Xi’an, China, October 22-25, 2018, Proceedings. Lecture Notes in
Computer Science, vol. 11157, pp. 449–459 (2018)

[95] Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measure-
ment based on behavioral profiles of process models. IEEE Trans.
Software Eng. 37(3), 410–429 (2011)

[96] van der Aalst, W.M.P., Santos, L.F.R.: May I take your order? - on the
interplay between time and order in process mining. In: Marrella, A.,
Weber, B. (eds.) Business Process Management Workshops - BPM 2021
International Workshops, Rome, Italy, September 6-10, 2021, Revised
Selected Papers. Lecture Notes in Business Information Processing, vol.
436, pp. 99–110 (2021)

[97] Schuster, D., Schade, L., van Zelst, S.J., van der Aalst, W.M.P.: Visual-
izing trace variants from partially ordered event data. In: Munoz-Gama,
J., Lu, X. (eds.) Process Mining Workshops - ICPM 2021 International
Workshops, Eindhoven, The Netherlands, October 31 - November 4,
2021, Revised Selected Papers. Lecture Notes in Business Information
Processing, vol. 433, pp. 34–46 (2021)

[98] Spenrath, Y., Hassani, M., van Dongen, B.F., Tariq, H.: Why did my
consumer shop? learning an efficient distance metric for retailer transac-
tion data. In: Machine Learning and Knowledge Discovery in Databases
- Demos. LNCS, vol. 12461, pp. 323–338 (2020)

[99] Munoz-Gama, J., Martin, N., Fernández-Llatas, C., Johnson, O.,
Sepúlveda, M.: Innovative informatics methods for process mining in
health care. J. Biomed. Informatics 109, 103551 (2020)

[100] Koschmider, A., Janssen, D., Mannhardt, F.: Framework for process
discovery from sensor data. In: International Workshop on Enterprise
Modeling and Information Systems Architectures. CEUR WP, vol. 2628,
pp. 32–38 (2020)

[101] van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event
abstraction in process mining: literature review and taxonomy. Granular
Computing 6(3), 719–736 (2021)

[102] Verbeek, H.M.W., van der Aalst, W.M.P., Munoz-Gama, J.: Divide
and conquer: A tool framework for supporting decomposed discovery in
process mining. Comput. J. 60(11), 1649–1674 (2017)

	Introduction
	Background
	Partial Orders
	Event Data
	Process Modeling Formalisms
	Partially Ordered Trace Semantics

	Methodology
	Literature Collection
	Search Results

	Partial-Order-Based Process Mining - A Survey
	Partial Order Extraction
	Exploiting Information within an Event Log
	Total Order and Log based
	Total Order and Time/Data based

	Using External Knowledge
	External Concurrency Oracle
	Process Model

	Discovering Process Models from Partial Orders
	Classical Process Discovery
	Discovery Based on Lifecycle Information
	Partial-Order-Based Process Discovery
	Certain Semantics
	Uncertain Semantics

	Conformance checking
	Classical Conformance Checking
	Conformance Checking using Partially Ordered Event Data
	Certain Semantics
	Uncertain Semantics

	Other Application Areas
	Deviation Detection
	Behavioral Pattern Mining
	Trace Clustering
	Process Monitoring, Performance Measurement and Prediction
	Process Comparison
	[id=Change]Visualization

	Discussion
	[id=Change]Overview
	Outlook
	Data Logging Quality
	Event Abstraction
	Accurate Performance Quantification

	Challenges
	Tool Support & Standardization
	Computational Complexity

	Conclusion

