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Abstract

Mining operations record a large amount of data from multiple sources (such as block model and online pro-
cessing data) which is neither effectively nor systematically used to understand and improve operational per-
formance. This paper proposes a generic semi-automatable data analytics method, the Integrated Analysis
Method (IAM), that addresses the disconnection between disparate datasets. IAM enables evidence-based
understanding of rock and machine parameters, laying the foundation for a potentially more sophisticated
way to model and predict mining processes to deliver financial value. TAM systematically combines and
analyses both rock characteristics and operational data to isolate the impact of the variability in rock char-
acteristics and operational settings on key performances. Insights extracted from IAM allow one to narrow
down key operating conditions, specific to a particular plant, that are correlated to, for example, significant
differences in daily throughput while processing batches of ore with similar metallurgical characteristics.
Such insights can be used for multiple purposes, for instance, to learn optimal processing recipes for a given
set of rock properties. We applied TAM to a combined data set recorded at a Chilean ore deposit and
evaluated our findings with domain experts.
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1. Introduction as flexible circuits (Foggiatto et all [2014; [Pow-
ell et al., |2014) and Grade Engineering (Carrasco
et al., [2016a; [Walters, [2016]), have been proposed
and incorporated into some mine sites. Flexible

circuits manipulate the design of comminution cir-

Increasing processing costs and declining ore
body grades have called for the global mining in-
dustry to focus on improving productivity and en-

ergy efficiency in order to stay competitive and to
meet the increasing demand for resources (Bear-
man), 2013; |Carrasco et al., |2016b; Hesse et al.
2016}, Napier-Munnl, 2015} |Prior et al.,[2012). State-
of-the-art operating mechanisms that aim at im-
proving the efficiency of mineral processing, such
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cuits such that they balance the comminution work
across different comminution units as the distribu-
tions of the particle size of feeds change, allowing
plants to handle rock variability. Grade Engineer-
ing maximises feed grade by removing low-grade
materials as early as possible in the process such
that resources (such as energy) are targeted towards
processing valuable material as much as possible.

While these state-of-the-art techniques can, and
should, be incorporated into practice, their out-
comes can be further improved by making use of
currently under-exploited knowledge buried within
many sources of historical data collected in today’s
minerals processing plants. In particular, the
uniqueness of the setups of each plant and the geo-
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metallurgical characteristics of materials being pro-
cessed need to be taken into account. Gaining such
information may be challenging due to uncertainties
in the geo-metallurgical characteristics of materials
being processed, variations in operating conditions,
and a lack of knowledge on how different types of
materials react to different operational settings.

Fortunately, we can attempt to learn this inform-
ation by analysing historical data, from which we
can extract patterns of various operating strategies
and quantify their impacts on rock processing per-
formance. Through the application of data ana-
lysis techniques, one can learn better operating
strategies to maximise outcomes in light of various
factors, such as energy, throughpmﬂ and materials
characteristics such as the hardness of rocks. This
extracted information can thus be applied in prac-
tice. For example, by understanding how different
operational settings affect the throughput of a plant
for a given rock metallurgical characteristics, site
engineers in a comminution plant can adjust the
processing parameters and operational settings to
the values which, in the past, have shown to deliver
higher throughput.

The main contribution of this paper is a generic
semi-automatable data analytics method, called the
Integrated Analysis Method (IAM) that can be
used to isolate the impact of rock characterist-
icsE| and operational settings. In particular, TAM
provides a systematic way to analyse traditionally-
disparate data sets combined: short-term mine plan
data (that includes information about the charac-
teristics of rocks to be processed on a particular
day) and processing data (collected from various
sensor readings in a plant) - see Figure |1} By ana-
lysing these disparate data sets in an integrated
manner, IAM is able to gain insights into the com-
bined impact of materials variability and processing
uncertainty on key performance indicators (KPIs)
of a processing plant, such as tonnes per day (TPD).

A key benefit of TAM is its ability to learn better
operating strategies, adjusted for a given character-
istics of rocks to be processed. Given periods when
rocks with similar characteristics were processed,
TIAM identifies those periods that produced optimal
results and then learns the operational settings ap-
plied during those periods. This knowledge is valu-
able in enabling adjustments to machine settings

2Throughput in tonnes per day (TPD)
3We refer to metallurgical properties of rocks with the
term ‘rock characteristics’.

that are customised to the geo-metallurgical char-
acteristics of materials to be processed to achieve
optimal KPIs.

Furthermore, IAM supports a better integration
between scheduling and control (Harjunkoski et al.}
2009a). Insights extracted from TAM can be used
to inform short-term operating strategies of a plant,
based on the expected characteristics of rocks that
are to be processed within a certain time horizon
(such as weekly or monthly) as dictated by short-
term plan data.

We acknowledge that the application of data ana-
lytics for operational supports in the mining in-
dustry has been demonstrated before. For example,
as early as the 1970s, there have been attempts
to apply machine learning techniques to gain in-
sights into the impact of operational settings on
plant performances (Brittan and van Vuuren, 1973;
Ge et al.l [2017; Mackay and Lloyd, |1975)). More re-
cently, [Marais and Aldrich|(2011) and |Aldrich et al.
(2010) looked into how online images taken from a
flotation process can be used to predict the recov-
ery and grade of the extracted metal. |[Zhang et al.
(2002) looked at how to apply a genetic algorithm
to recorded sensor data in the design of a coal mill.
Nevertheless, how the geo-metallurgical character-
istics of materials being processed influences the
choice of operating strategies was not addressed in
these works. IAM aims to resolve this.

This paper is organised as follows. Section [2] de-
tails IAM. Section Bl describes the data set obtained
from a processing plant related to a Cu porphyry
deposit in Chile. Section {4] details the application
of TAM on this data set to demonstrate its applic-
ability. Section [f] raises issues related to the use of
IAM, and Section [6] discusses related work. Con-
clusions are provided in Section

2. Approach

The process of minerals extraction involves sev-
eral stages, including blasting, comminution, and
flotation (Wills, |2006]). The notion of an ‘optimal
result’ varies with the stage of the process. For ex-
ample, during the comminution stage, an ‘optimal’
result typically includes high tonnes of rock pro-
cessed per hour, while during the flotation stage,
an ‘optimal’ result may refer to high recovery rate.

KPIs are influenced by several factors, such as
geo-metallurgical properties and operational set-
tings. The operational settings and rock properties
both influence KPIs, but in order to study them,



Short-term Mine Plan Data

Stockpile Oreto Cus Fe As BWi SPI
Date Stockpile (%) (%) (ppm)

1-Jul-10 140,848 0.09 1.83 56.34 13.21 50.21
2-Jul-10 141,619 0.08 1.68 65.34 13.96 52.36
3-Jul-10 142,995 0.09 1.94 50.63 12.08  42.30
4-Jul-10 153,938 0.08 2.19 49.50 12.47 4540

Processing (sensors) Data

N

Integrated /Insights about the impacts of metallurgic\a\
Analysis rock attributes and operational settings/
Method parameters on process performances.

(IAM)

Process KWh SAG IV Power Operating Operating Balls Bearing
Date KWh/TON Utilization Hours Hours Reload Pressure
SAG IV Day Shift Night (Tons) (psi)
(%) Shift
SAG IV SAG IV SAG IV SAG IV SAG IV SAG IV SAG IV
1-Jul-10 15281.50 2.73 78.77 12.00 12.00 24.29 5332.83
1-Jul-10 15459.49 2.78 79.69 12.00 12.00 30.64 5332.70
1-Jul-10 15316.14 2.62 78.95 12.00 12.00 32.25 5327.98
1-Jul-10 15803.94 2.87 81.46 12.00 12.00 HEAS0] 5337.18
1-Jul-10 15589.85 2.82 80.36 12.00 12.00 45.66 5330.39

Figure 1: Data sources for the Integrated Analysis Method (IAM) proposed in this article. IAM facilitates integrated analysis
of both rock properties and operating parameters to extract insights into the impacts of metallurgical rock attributes and

operational settings/process parameters on process performances.

their influences on KPIs need to be analysed separ-
ately. To separate the influence of these factors, we
introduce the Integrated Analysis Method (IAM),
a methodology that aims to analyse the influence of
these factors on KPIs. For instance, in Section
we illustrate IAM with an analysis of the influence
of rock properties and operating strategies on the
throughput per day of a comminution plant.

In the following sections, we will use the terms X
and Y for variables related to rock characteristics
and operational settings respectively.

2.1. A Pluggable Framework

TAM is designed as a pluggable framework
whereby a wide range of analysis techniques can
be included and applied in the analysis chain as
long as the data sets and the chosen analysis tech-
niques satisfy certain constraints (gradually elab-
orated throughout this section). As a consequence,
TAM is agnostic to underlying domain-specific vari-
ations, such as the types of plants or mills. Fur-
thermore, IAM is flexible to the KPI used: any KPI
can be used as long as its corresponding values are
available in the data set being analysed.

Figure [2| shows a data model for the data sets
and configuration parameters that IAM needs, de-
picted using the Unified Modeling Language (UML)
class diagram (Group, [2015). The basic build-
ing blocks for the data model are the two data
types: RockMetallurgy which represents any me-
tallurgical attributes of rocks, such as the Bond
Ball Mill Work Index (BWi) and SAG Power Index
(SPI), and ProcessTag which represents data items

captured from a processing plant, such as bearing
pressure, flow rates, and throughput rates. A name-
value pair of rock metallurgical attribute and its
corresponding value (for example, ‘BWI = 10.89’)
is captured as a RockCharacteristic type. Simil-
arly, ProcessData type captures a pair of process
tag name and its value (for instance ‘TPD = 6798
tonnes/day’).

ShortTerm DataPoint type is an abstraction of
a single data point entry of short-term plan data
(similar to Figure[l) that includes a timestamp rep-
resenting the date that the batch of ore was ad-
ded to the stockpile, another timestamp represent-
ing the estimated date/time the stockpile was pro-
cessedﬁ A single entry of a short-term plan also in-
cludes a set of rock characteristics (captured in Fig-
ure [2| by the arrow from the ShortTerm DataPoint
type to the RockCharacteristic type). Further-
more, as detailed later in this section, applying IAM
will result in the short-term plan data being aug-
mented with the rockCluster attribute. In Fig-
ure 2| the forward slash ¢/’ notation in front of the
rockCluster attribute represents an attribute that
is derived).

Similarly, ProcessInformation DataPoint is
an abstraction of a single data point entry
of processing (sensor) data (similar to the one
shown in Figure [1f). This data point in-

40One could correct for stratification effects here. In our
case, the time resolution of our data is daily, so we deemed
correction not to be necessary. Issues that may arise sur-
rounding the availability of this timestamp are discussed
later in this article.
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Figure 2: IAM data model expressed using a UML class diagram.

cludes a processing timestamp and a set of pro-
cess data items (depicted by the arrow from
the ProcessInformation DataPoint type to the
ProcessData type), representing sensors readings
of operational conditions (also known as ‘process
tags’) of the plant at that particular timestamp.
Here, KPI values are assumed to be captured as
part of a process information data point. During
the application of IAM, this data set will also be
augmented with a new attribute called period (de-
tailed later in this article).

A ShortTermPlan data is thus a collection of one
or more instantiations of the ShortTerm DataPoint
type, while a ProcessInformation data is a
collection of one or more instantiations of the
ProcessInformation_DataPoint type.

Finally, a set of configuration parameters is cap-
tured as a Configuration type. These parameters
include the KPI, and the X and Y variables (rep-
resenting rock characteristics and operational con-
ditions/processing parameters respectively). Other
parameters that IAM needs are described in the re-
mainder of this section.

2.2. Overview of IAM

We first discuss the five high-level steps of IAM
(as shown in Figure[3]). We use the Business Process
Modeling Notation (OMG], [2011)) to express the se-
quence of analysis activities of IAM. The rounded-

rectangles represent tasks; the plain and bold circles
represent the beginning and the end of TAM re-
spectively; the arrows represent the sequence of
tasks execution; the rounded-rectangles with a ‘+’
symbol inside them represent tasks that consist of
further sub-tasks (as detailed later in Section ;
the diamond-shaped box with an ‘X’ inside it rep-
resents a split in the flow (meaning that one could
take one of the two outgoing paths, but not both);
and finally, the three vertical lines symbol (‘|||’) in-
side a task means that the task can be executed
multiple times until the annotated completion con-
ditions are satisfied. The ‘folded’ paper symbol rep-
resents a data object. Text annotations on outgoing
arcs from the Configuration data object repres-
ent the reading of the value of the parameter name
represented by the annotation. For example, the
parameter visualisationTechnique is read by the
‘Visualise results’ task (Figure |3]).

As a first step, from the input data
ProcessInformation and a set of Configuration
parameters (as modelled in Figure [2)), we identify
a number of periods. Each period consists of data
points at a certain level of granularity (daily or
hourly, for example), containing all data points
of a certain time interval. The boundaries of the
periods are chosen such that the distibution of KPI
values in a period is statistically different from the
distributions of KPI values in time-neighbouring
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Figure 3: High-level view of TAM.

periods, according to a chosen statistical test
(change point analysis). For example, in Figure
we can see that for days belonging to period ‘1,
the throughput per day (TPD) ranges from 78,000
to 81,000 while for period ‘2’, the TPD ranges from
97,000 to 99,500.

While both X and Y factors may strongly im-
pact KPIs within each period, in order to isol-
ate the influence of individual factors we need to
‘neutralise’, or control, the impact of one group of
factors in the analysisEI Therefore, as a second step,
we identify rock clusters that share similar values
for the X variables (rock characteristics) from the
ShortTermPlan data. For example, as shown in
Figure [4) data points belonging to the rock cluster
“3” have similar BWi and SPI values (around 10.00
and 40.00, respectively). Note that the identifica-
tion of these rock clusters is independent of the peri-
ods identified earlier, that is, the period to which a
data point belongs is not taken into account in the
determination of its respective rock cluster.

Next, we merge the ProcessInformation and
ShortTermPlan data to analyse the mapping
between rock clusters and periods. Quite likely, we
will see a one-to-many mapping from rock clusters
to periods, that is, one rock cluster can be mapped
to one or more periods. In other words, the mem-
bership of a data point to a rock cluster does not
determine its corresponding KPI period. When we

5From the design of experiments (DOE) perspective, we
are controlling the impact of X factor in the analysis such
that the contribution of the Y factor on KPIs can be isolated.
In other words, it is a fractional factorial DOE.

see such a mapping, it means that there were times
where the processing of rocks with similar X vari-
ables (rock characteristics) achieved different KPI
(as different periods represent different KPI values).
We call the collection of data points with the same
rock cluster and the same period memberships a
class. Obviously, a rock cluster is made up of one
or more classes - see Figure [4]

Thirdly, the classes within each rock cluster
are characterised by their processing parameters
and/or operational settings. As we have neutral-
ised the impact of X variables at this stage, the
characterisation exercise at this stage focuses on re-
vealing the Y factors that strongly relate to the KPI
in each class, by using supervised machine learning
techniques such as regression analysis. This charac-
terisation exercise is repeated for every class within
an interesting rock cluster (that is, this task is per-
formed noClass-times where noClass is a config-
uration parameter).

Fourthly, the distributions of the identified
Y variables (the operational settings/parameters)
between classes within the same rock cluster are
compared. The Y variables with statistically sig-
nificant different distributions are then the pro-
cessing parameters that may explain KPI differ-
ences between classes of a particular rock cluster.

Finally, the distributions of the Y variables iden-
tified in the previous step are visualised to commu-
nicate the results of the analysis to users.

2.3. TAM in Detail

Identifying KPI Periods. The first stage of TAM
(identification of KPI periods) consists of several



Date KWh KWh/TON Power TPD
SAG IV SAG 1V Utilization
SAG IV (%)
1/07/2010 10000.00 70.00 80000
2/07/2010 81000
3/07/2010 78500
4/07/2010 99500
5/07/2010 98000
6/07/2010 97000
7/07/2010

( classes
I Periods Rock

Clusters

BWi

10.00
9.8  39.87
10.1

9.5 38.89
10.8  40.86
9.6

rock clusters

Figure 4: Examples of periods, rock clusters, and classes. In this figure, the KPI of interest is the TPD, thus periods are
determined based on the TPD values. Notice that there are two periods identified in the example above. The rock clusters in

this example are determined based on the BWi and SPI values.

smaller steps (see Figure . As a first step, the
variable that defines the chosen KPI (from the
ProcessInformation data) is selected as per the
KPI parameter set within the Configuration ob-
ject (Figure [2)).

Secondly, assuming each data point represents a
good quality reading of the KPI (due to, for ex-
ample, reliable data capture), the KPI values are
clustered directly using a known clustering tech-
nique, such as k-means clustering. As a guideline,
the number of periods to identify can either be de-
termined through some statistical analyses, such as
within-sum-of-square analysis (Thorndike, 1953)),
or through domain experts’ knowledge. In this case,
the number of periods to find is configured by the
noPeriods parameter from the Configuration ob-
ject (see Figure [2)).

Alternatively, if the data points are suspected to
be noisy for instance due to low-level granularity
or environmental interferences, a single reading at
that particular point in time will not give a true
reflection of the KPI achieved. Instead, we need to
look at trends over multiple data points such that
continuous data points sharing similar KPI read-
ings can be grouped together. We use change point
analysis (CPA) techniques. Change point analysis
partitions a data stream into several groups of ad-
jacent data points where each group of data points
shares similar values. CPA ensures that adjacent
groups do not share similar distributions. How-
ever, non-adjacent groups may share similar distri-
butions. Consequently, such non-adjacent groups
need to be further grouped, yielding the required

number of periods (as per the configuration para-
meter noPeriod) of similar KPI. As a guideline, a
CPA technique that is able to detect change points
from a data stream for both parametric and non-
parametric data can be used. The cpm package
written in R (Ross| [2015) has a collection of CPA
algorithms that may be suitable in this case.

Currently, our TAM framework only considers a
single KPI variable. Nevertheless, IAM can be ex-
tended to handle multiple KPI variables. In this
case, the technique to identify periods needs to be
adjusted to handle multiple variables distributions.
If CPA is used, then multivariate CPA techniques,
such as the ecp package in R (James and Matteson,
2015) can be used. If clustering is used, then many
existing clustering algorithms can already handle
multiple variables.

Thirdly, the identified periods are validated.
That is, whether the identified periods actually con-
tain distinct readings for the KPI of interest, us-
ing statistical tests. The choice of test should be
guided by the distribution of the data: paramet-
ric tests, such as the t-test (Welch) [1947)) should
be used for normally distributed data. Otherwise,
non-parametric hypothesis tests, such as the Mann
and Whitney| (1947) U-test can be used. Finally,
each data point is labelled with the period to which
it belongs.

In TAM, the combination of techniques applied
to extract KPI periods described above (such as
the clustering or change point analysis technique
to use and the statistical test to apply) can be
pre-configured by the findPeriodParameter in the



Configuration f--+

findPeriodParameter

Configuration

(Extract period ( Group
IKPI using Change similar
H LPoint Analysis periods

Determine
KPI
variable

Extract
period using|
clustering

Process
Information

findPeriodParameter, noPeriod

Configuration -

k periods data with periods

( Validate ( Label
<X identified ProcessInformation O

Process
Information

findPeriodParameter .
[ 'period" attribute added ]

Figure 5: The KPI period extraction step of ITAM.

Configuration object (see Figures [2[and .

Isolating Rock Variability. The second stage of
IAM is to isolate the influence of X variables
from Y variables (see Figure @ Using the
ShortTermPlan data as input, this stage first
clusters data points that share similar X charac-
teristics into rock clusters. Clustering X variables
can be performed using one of the many cluster-
ing algorithms available, such as k-means (Hartigan
and Wong,[1979) or fuzzy clustering (Bezdekl,|1981]).
The number of rock clusters can be determined us-
ing, for instance, the within sum-of-squares ana-
lysis (Thorndike, {1953) or via domain experts’
knowledge. In this case, the noRockCluster para-
meter within the Configuration object would have
been set accordingly (see Figures [2| and @

Thirdly, statistical differences in the distributions
of the values of each X variable across the rock
clusters are asserted. Validation can also be con-
ducted via visualisations, such as plotting each X
variable, coloured according to their rock cluster
memberships to show that data points within a rock
cluster are close to one another while those in dif-
ferent rock clusters are far apart. Next, each data
point’s rock cluster is recorded in the data set.

In TAM, the combination of techniques to
extract and validate rock clusters from a
ShortTermPlan data can be configured by
setting the findRockClusterParameter within
the Configuration object (see Figures|2| and @

The next step establishes the mapping between
rock clusters and KPI periods. To do so, we first
need to merge both the ProcessInformation data
and ShortTermPlan data (already augmented with

periods and rock cluster attributes, respectively) by
joining each data point on the processTimestamp
attribute.

In this merged data, we denote the collection of
data points from one rock cluster with the same
KPI periods a class. As the distribution of KPI
values amongst different periods is distinct, when
we see, for example, two classes with the same rock
cluster memberships but different KPI periods, one
of these classes can represent periods (days) with
lower performance, while the other can represent
periods with higher performance. Furthermore, as
data points within these classes share similar rock
characteristics, the variations in the KPI achieved
may be explained by the Y variables. These classes
with a significant difference in performance values
within the same rock cluster membership can thus
be compared to see if there are indeed differences
in the Y variables (next step of IAM).

Within TAM, the number of classes to be com-
pared can be pre-configured by setting the noClass
parameter within the Configuration object ac-
cordingly (see Figures 2| and @

Characterising Classes. During the third step of
TAM, each class with different KPI performance as
identified in the previous stage is characterised sep-
arately as shown in Figure[7] For example, we can
characterise a higher KPI class and a lower KPI
classes within a rock cluster separately using super-
vised machine learning techniques. In this instance,
Y variables are independent variables, and the KPI
is the dependent variable.

Depending on the richness and relevance of the Y
variables in the data set, as an optional second step,
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Figure 6: The rock variability isolation step of TAM.

one may enrich the Y variables by applying fea-
ture extraction, for instance, using a frequent pat-
tern mining algorithm (Aggarwal and Han| 2014).
Typically, feature extraction is performed to supply
more discriminative features that may better ex-
plain the dependent variable, and may potentially
reduce the number of independent variables to ana-
lyse and therefore might make the subsequent ana-
lyses easier.

For reliable results, a data set can be split into
a training set and a test set where the former is
used to learn the Y variables that may explain the
KPI, while the latter is used to validate that the
identified Y variables can explain the KPI values in
the test set.

The Y variables that characterise each class can
be parameterised in the Configuration object.
Typically, the Y variables used should be as inde-
pendent of one another as possible - for instance,
a simple correlation matrix can be used to check
dependence between various Y variables. Y wvari-
ables that exhibit cross-correlation (i.e. correlation
between two time series, each representing a partic-
ular Y variable, as a function of time lag) should be
removed. The ccf tooﬂ from R library can be used
to identify potential cross-correlation in the data.
The Y variables that are shown to have cross cor-
relation and that are not meaningful for analysis
may be removedm Depending on the granularity
of the timestamp, one may need to do time align-
ment for the Y variables to get valid regression res-
ults. For example, if the granularity of timestamp

Shttps://www.rdocumentation.org/packages/tseries/
versions/0.1-2/topics/cct

"Note that higher-order cross correlations may still not
be detected.

is at hour- or minute-level, one may need to shift
the timestamp of those Y variables that refer to the
later stages of ore processing so that each data point
refers to the same ‘group’ of ore being processed.

Similarly, the exact supervised machine learn-
ing technique to be applied can also be para-
meterised by the charateriseClassParameter in
the Configuration object. As a guideline, re-
gression analysis should be used if the values of
the dependent variable (the KPI) are continu-
ous, while classification analysis should be used
if the KPI values are discrete (i.e. categorical).
Typical regression algorithms that can be used
are simple linear regression techniques (Filzmoser]
2008), or more complex non-linear ones, such as
Ridge and Lasso (Filzmoser, 2008), as well as ran-
dom forest (Breiman et al., [1984) and feed for-
ward neural network (Fine, [1999). Typical clas-
sification algorithm that one could use include the
C4.5 algorithm (Quinlan| [1993), RIPPER (Cohen,
1995), as well as random forest (Breiman et al.|
1984). These algorithms tend to produce simple
classification rules (defined in terms of Y variables)
that could be interpreted. Other classification al-
gorithms, such as random forest (Breiman) [2001])
(which can be used for both classification and re-
gression analysis), are able to produce results with
high accuracy. Furthermore, in combination with
a contribution analysis, such as [Palczewska et al.
(2013), one could learn the influences of Y vari-
ables on the KPI variable from the obtained ran-
dom forest model.

Alternatively, one could use classification method
on the low and high KPI classes together (instead
of characterising each class separately) to extract
Y variables that influence the classification of each
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Figure 7: The classes characterisation step of IAM, during which key variables are identified.

data point into one of the two classes. In this case,
the subsequent comparative analysis stage of IAM
can be skipped.

Comparative Analysis. In the final step of TAM,
the identified Y variables are compared across the
classes of similar rock clusters to isolate those that
are distinct between classes. While these Y vari-
ables may explain the KPI very well, it is not cer-
tain that they are always distinct across different
classes. For example, there is likely a strong correl-
ation between power draw and throughput. Thus,
the power draw variable may be selected in our pre-
vious characterisation exercise as one of the Y vari-
ables that may explain the KPI. However, we do
not yet know if the power draw between the classes
is different; if they are the same, then we cannot
say that power draw explains the differences in the
KPI. Thus, we need to find those identified Y vari-
ables that have statistically-different distributions
between the classes being compared.

The statistical test can be parameterised
by the compareClassParameter within the
Configuration object. The choice of the test
method, of course, depends on the distribution of
the data.

Visualise Results. From the previous statistical
testing, we can thus isolate the independent vari-
ables that are statistically different. We then visu-
alise these isolated variables through a number of
techniques, such as parallel coordinates and/or box-
and-whisker graphs to show visually the different
range of values that these variables take across dif-
ferent classes.

Factors to consider in choosing a visualisation
tool are the number of Y variables identified from

the previous comparative analysis and the number
of data points involved in the analysis. For a rel-
atively small number of Y variables, and/or for a
reasonable number of data points to visualise, using
parallel coordinates may be effective as it can help
one to see variations in the ‘trends’ between the
values of Y variables across different classes. How-
ever, when there are too many Y variables to visu-
alise or if there are a large number of data points,
parallel coordinate visualisation may not work as
the graph is likely to be clouded by too many in-
tersecting lines. Visualisation techniques that can
visualise the distribution of the values of the iden-
tified Y variables in a summarised manner, such as
box-and-whisker graphs and bi-plots, may be more
appropriate.

In TAM, the visualisation technique to be
used can be pre-configured by setting the
visualisationTechnique parameter within the
Configuration object.

3. The Dataset

The goal of analysing the data sets taken from the
comminution processes of a Cu porphyry deposit in
Chile is to understand the impact of different oper-
ational settings (as captured by various operational
and machine settings of the plant) on a certain KPI
while processing materials with similar rock charac-
teristics. The KPI being analysed in this instance
is production throughput (TPD).

A data set related to the short-term plan and pro-
cess sensors readings from the comminution plant
were provided. This comminution process involved
the operations of one SAG mill and three ball
mills. The data set combines data from separ-
ate information sources, including data about the



short-term mining plan (which includes the estim-
ated rock properties that would be processed each
day, such as the estimated BWi and SPI values),
the daily summary of the comminution plant oper-
ations (such as energy used, total operating hours
for each mill, total tonnes of balls being reloaded to
each mill, and bearing pressure of the mills), and
the daily summary of reconciliated flotation plant
outputs (such as distributions of the particle size of
materials being fed to the rougher, recovered min-
erals from rougher, first cleaner, second cleaner, as
well as the overall tonnes of minerals recovered).
The data set covered approximately 5 years of oper-
ation (July 2010 - January 2016, 2041 data points).
We refer to this combined data set as the daily data.

The data set has some data quality issues, in-
cluding incorrectly-recorded values and widespread
missing values. Variables that contained many
incorrectly-recorded values, for instance, negative
percentage values for the particle size distribution
of ore feed, were removed. Furthermore, data
points in which values for the KPI (TPD) being
analysed were missing were also removed. Data
points where the values for rock properties (BWi
and SPI) are obviously incorrect (for example, 0 or
negative values) were also removed.

In the 5.5-year period covered in the daily data
set, a change was introduced in the comminution
plant whereby a fourth ball mill was installed in
2015. The data analysis conducted focused on the
period before this change. Furthermore, because
the analysis compares operational settings to TPD,
a degree of ‘similar processing capacity’ is needed
as a baseline. In our analysis, data points used are
restricted to those where all mills (the SAG mill
and the three ball mills) were operating at close to
full capacity (>22 hours in a day). One could also
average the TPD by the number of hours the plant
is running in a day; however, we do not do so here
because different equipment in the plant (there are
one SAG mill and three ball mills) did not always
run the same number of hours per day.

In total, the data set contains 1645 data points
for the period before the introduction of the fourth
ball mill. After filtering, 786 data points remained.

Finally, for the daily data, the short-term plan in-
formation needs to be aligned to the corresponding
operational data so that the processing of differ-
ent rock batches (with different characteristics) in
the comminution and flotation plants can be traced.
From site knowledge, there seems to be, on average,
a 1-day delay between stockpiling (‘stockpile date’)
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and processing in the plant (‘process date’). This
delay is accounted for (Table []).

Advances in ore tracking technology have res-
ulted in richer data sets that include information
about the original batch of rocks being fed to a
particular mill at a given point in time. The avail-
ability of such information will allow a more pre-
cise alignment between batches of rocks (and their
corresponding characteristics) and the data corres-
ponding to their processing.

4. Analysis of Daily Data

One of the KPIs to be analysed that the stake-
holders are interested in is the throughput of mater-
ials being processed daily (tonnes per day - TPD).
The TAM configuration parameters set for this ana-
lysis are provided in Table 2] Obviously, there
are other KPI variables that are just as important,
such as grade and recovery. In these cases, similar
analysis as demonstrated here can be applied, one
simply needs to use the KPI variable of interest,
instead of TPD.

4.1. Identifying KPI Periods.

As described in Section [2] the first step of our
data analysis is to identify different KPI periods.
While there is no strong consensus amongst do-
main expertsﬂ some noise still exists, i.e. fluctu-
ations in throughput happen at a daily level, thus
a single reading of TPD is not sufficient to identify
the period to which it belongs. Therefore, we use
change point analysis (CPA) to find periods w.r.t
TPD.

The CPA technique used is the Change Point
Model (CPM) technique (Ross, 2015)ﬂ The stat-
istical test used to determine if a change has
happened is the ‘Kolmogorov-Smirnov’ hypothesis
test (Smirnov, [1948) with an average run length
value of 10,000 (which means that, on average,
there will be 10,000 observations before a false pos-
itive occurs). This analysis identified 10 change
points, yielding 11 periods with distributions of
TPD values (see Figures [§ and [0). Notice that
non-adjacent time periods might have similar dis-
tributions, as visualised in a probability density
function (PDF) graph (Figure E[) Therefore, we

8In this article, the domain experts are also co-authors of
this paper.
9 Available in R; https://www.r-project.org/
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Table 1: A snippet of the daily data set.

Stockpile date  Processing date Cu  SAG operating hours SAG power draw P80
01-07-2010 02-07-2010 1.58 24.00 15459.49 227
02-07-2010 03-07-2010 1.46 24.00 15316.15 246
03-07-2010 04-07-2010 1.25 24.00 15803.94 223
04-07-2010 05-07-2010 1.10 24.00 15589.85 210
05-07-2010 06-07-2010 1.22 24.00 15514.74 180
06-07-2010 07-07-2010 1.33 24.00 16165.57 204

Table 2: TAM configuration parameters used in the analysis of the daily data.

[ Parameter [ Value - Daily Data
X BWi, SPI]
Y Bearing Pressure, Power (KwH),
Tonnes of Pebbles Crushed, ...]
KPI Throughput (tonnes per day, TPD)
noRockCluster 4
noPeriod 3
noClass 2

findRockClusterParameter

“algorithm = k-means; validateMethod = XYPlot”

findPeriodParameter

“algorithm = CPA (test=Kolmogorov-Smirnov, ARL=10000);
validateMethod = Mann-Whitney U test”

characteriseClassParameter

“machineLearning = Step-wise linear regression;
isExtractFeature = false”

compareClassParameter

“Mann-Whitney U test”

visualisationTechnique

“Parallel Coordinates”

statistically similar distributions

statistically similar distributions
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Figure 9: The probability density function (PDF) curves for
the 11 time periods that were identified through change point
analysis (best viewed in colour). Note that there are similar
PDF curves among them. These similar distributions need
to be further grouped together.

group similar time periods together to obtain sim-
ilar KPI periods, using a hierarchical clustering ap-
proach with average Euclidian distances.

Figure [10] shows a dendrogram of the 11 periods.
Each leaf represents a period, and the height of the
connections captures the distance between periods.
In this analysis, we decided to group the original
11 periods into 3 periods, based on the distinctness
of distances and input from domain experts (Fig-
ure(l1)). The corresponding PDF graph (Figure|12)
shows that these 3 periods are statistically different
at 99% significance level using the Mann-Whitney-
Wilcox rank sum test (Mann and Whitney, 1947)B

4.2. Isolating rock variability.

To learn optimal operational settings, we need
to ensure that we are comparing KPI periods over
similar rock characteristics. Therefore, we cluster
the data on rock properties (SPI and BWi).

Many clustering techniques are available; in this
case study, we applied the simple k-means cluster-
ing technique (Hartigan and Wong, [1979)). This

10Note that there are two ‘small’ peaks in the PDF for
periods 2 and 3, which may suggest the existence of other
distributions. We suspect this may be due to the chosen hier-
archical clustering cut point where we may have aggregated
too many periods together.
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Figure 10: A dendrogram depicting the hierarchical cluster-
ing result of the original 11 rock clusters.

clustering technique groups data points into k
clusters whereby data points within each cluster
are ‘close’ to one another based on a mathemat-
ical distance function and are ‘far apart’ for data
points across two different clusters. Thus, a ne-
cessity in using k-means clustering is to determ-
ine the number of clusters. We determined this
number using the within groups sum of squares
(WSS) (Thorndike| [1953)) calculation using the SPI
and BWi values. The graph of the WSS plot is
shown in Figure [[3a] From this figure, we can see
that the decrease in the variation within cluster be-
comes less pronounced as we approach four clusters.
We, therefore, decided to obtain four rock clusters
using the simple k-means clustering technique, the
result of which is visualised in Figure [I3H]

4.8. Identifying classes with different perform-
ances.

At this stage, each data point in the data is la-
belled with both the KPI period and the rock cluster
to which it belongs. The next analysis step is to
verify whether there exist similar rock character-
istics resulting in different KPI periods. In other
words, we are identifying high and low KPI classes.

In an ideal situation where a rock cluster always
produces a certain TPD range despite operational
settings used, we should see an almost one-to-one
matching between a rock cluster and a TPD period.



140000
L

120000
L

TPD

100000
L

| Period 2

80000
L

—_

—_—

iLPefriod: 3 \5

T T
2011 2012

T
2015

T
2014

2013

Figure 11: Identified periods after hierarchical clustering.

oy
o
T 1
wn
o
2 4
sl
Period 2 Period 1 Period 3
w
o
2 4
©
2
i
C
@
a)
w
o
2
<
w
o
3
o~
S | J LXK NS SN
@
e T T T T
0 50000 100000 150000
Tpd

Figure 12: The probability density function graph for the
three KPI periods extracted through change point analysis
and hierarchical clustering.

Since each rock cluster, by definition, contains data
points with similar rock characteristics, a one-to-
many mapping between rock clusters and TPD peri-
ods would suggest the existence of differences in the
operational settings that contribute to varying TPD
achievements.

A summary of the identified classes is provided in
Figure [[4] where we can see that for rock cluster ‘4’
there were 170 days where the throughput belongs
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to the low KPI class (Period 1 - average TPD of
120322.86 tonnes), while for 62 days, the through-
put belongs to the high KPI class (Period 3- aver-
age TPD of 131700.90 tonnes). Similarly, for rock
cluster ‘1’, we see that for 44 days, the throughput
of the rocks processed can be classified as belonging
to the low KPI class, while there were 87 days when
it managed to reach a high KPI class.

As each rock cluster has more-or-less similar rock
characteristics, the existence of multiple classes
within each rock cluster is likely to be caused by
other factors, such as operational setting differ-
ences. In the remainder of this chapter, we com-
pare low and high KPI classes for rock cluster 4.
Extraction of these operational setting differences
might aid users in learning better ways of processing
various types of rocks.

4.4. Characterising classes.

The first step in characterising the two high and
low KPI classes is to determine the variables or op-
erational settings that one needs to compare. In a
comminution plant, there may be hundreds of oper-
ational setting variables being recorded. Attempt-
ing to compare all variables may be intractable. A
more targeted approach can be achieved by identi-
fying the variables that are important, that is, vari-
ables that are critical in explaining the values of the
chosen KPI. We can do so by performing a super-
vised machine learning analysis, such as a regression
analysis.
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Figure 13

Recorded process-related variables in our daily
data include daily kilowatt-hour used by each mill,
the bearing pressure for the mills, the tonnes of
balls being reloaded to each ball mill, the tonnes
of crushed pebble generated by the plant, and P80.
While these variables may not be the actual op-
erational settings themselves, they are reflections
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of operational settings, and can thus be used as
proxies. This does not reduce the relevance of
our approach, as regression analysis and the sub-
sequent comparative analysis can be conducted on
actual operating parameters, once such information
is available.

In this case study, we applied the stepwise regres-
sion analysis package (Venables and Ripley, 2013))
available in R to automatically select the combin-
ation of variables that can best explain the TPD.
For the high KPI class, our stepwise linear regres-
sion resulted in the selection of 7 variables (detailed
in Table[Bl The coefficients of these 7 variables are
statistically significant, and the regression model
provided an R-squared value of 0.6308. The step-
wise regression for the low KPI class also picked up
similar variables, although this time, the tonnes of
balls reloaded for the first ball mill was also detected
as an important variable. However, the R-squared
value for this model is much lower (0.3395). Note
that rows of data where the values for the chosen
variables are missing were removed from the ana-
lysis.

4.5. Comparative analysis for optimal operating
strategies.

The relatively low R-squared values in our step-
wise regression analysis indicate that the variation
in the TPD could not be fully explained by the
variables in the data set. A more powerful re-
gression algorithm, such as random forest (Breiman
et al |[1984) in combination with contribution ana-
lysis (Palczewska et al.l |2013) may be used to im-
prove the results. However, the fact that the coef-
ficients of our regression analysis are statistically
significant indicates that these variables can explain
the direction of the trends of TPD. Thus, an under-
standing of their differences would shed light onto
how they influence TPD.

We applied the Mann-Whitney-Wilcox
test (Mann and Whitney, |1947) to identify
which of the variables that were picked up by
our regression analysis are different between the
two classes. Out of the 11 picked-up variables, 6
variables were found to be statistically different.

For the purpose of visualising the differences
in these variables, we used a parallel coordinates
graph, with normalised values, as shown in Fig-
ure [T5

From the statistical tests and visual clues, we
conclude that the distributions of the values of these
6 variables are indeed distinct. From our earlier



Rock KPI Data point Average TPD  Average Average

Cluster Period Count BWi SPI
123248.06 12.26 50.81
92688.84 12.34 51.28
135251.97 12.04 49.93
117632.57 15.06 73.52
119278 13.89 66.05 L%‘:Oughput
91232.99 13.20 74.23 for rock
131381.98 13.79 64.23 cluster 4
120322.86 13.32 57.89
101929.72 13.15 58.22
131700.90 13.05 58.01 '\
Low samples/ high
(ignore) throughput
for rock
cluster 4

Figure 14: Identifying high and low KPI classes per rock cluster - daily data.
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Figure 15: A parallel coordinates graph depicting the differences in the variables that impact the achievement of high TPD.
The green lines represent data points for the low KPI class, while red lines represent data points for the high KPI class. The
y-values have been normalised to ensure that values from different variables are visually comparable.
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High KPI class

Variables Coefficients | Significance
(p-value)
(Intercept) -3.601e+4-05 0.003398
KWH_SAG -5.483e+4-00 0.007800
PSI_SAG 6.155e+4-01 0.004625
PSI_MB1 -6.127e+-01 0.001064
KWH_MB2 2.339e+01 0.000241
BallsReload MB2 9.047e+4-02 0.021933
PSI_MB3 4.652e+4-01 0.021348
CrushedPebble Plant | 6.805e-01 0.022067
Multiple R-squared 0.6308
Adjusted R-squared 0.582
Low KPI class
Variables Coefficients | Significance
(p-value)

(Intercept) 2.005e+-05 4.60e-09
P80 5.458e+-01 0.144291
PSI_SAG -8.963e+-00 0.039356
KWH_MB1 -2.038e+4-00 0.136500
BallsReload MB1 3.263e+02 0.000151
PSI_MB1 1.443e+-01 0.008833
PSI_MB2 -2.548e+-01 6.42e-06
KWH_MB3 2.174e+4-00 0.060155
CrushedPebble Plant | 5.384e-01 0.013033
Multiple R-squared 0.3395
Adjusted R-squared 0.3062

Table 3: Stepwise regression results for both the high and
low KPI classes. KWH_SAG, KWH_MB1, KWH_MB2, KWH_MB3 refer to
the power draw (in kilowatt-hour) of the SAG mill and the
three ball mills in the plant; PSI_SAG, PSI_MB1, PSI_MB2, and
PSI_MB3 refer to the bearing pressure (in PSI) for the SAG
mill and the three ball mills in the plant; BallsReload MB1
and BallsReload-MB2 refer to the tons of balls reloaded for
the first and second ball mills; CrushedPebble_Plant refers
to the tons of pebbles crushed in the plant; P80 refers to the
P80 values produced in the plant.

regression analysis, we have also established that
these variables are statistically significant in terms
of explaining the trends of TPD. Therefore, we can
be reasonably confident that the values seen for the
high KPI class are indicators of optimal operating
strategies for rocks with properties captured in rock
cluster 4.

5. Discussion and Future Work

The TAM method proposed in this paper focuses
on methods for data analysis. While TAM is flex-
ible in the sense that it supports the extraction of
insights about the impact of any chosen rock vari-
ables (the X variables) and operational settings (the
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Y variables) on any KPI of interest, data used as
input to ITAM should contain enough information of
reasonable quality for TAM to deliver quality results
(garbage-in-garbage-out).

For example, when we assess the interplay
between metallurgical rock characteristics, opera-
tional settings, and throughput, the ability to un-
derstand how different rock characteristics respond
differently to operational settings is critical to op-
timising processing plants. Therefore, the linkage
between characteristics of each batch of rocks be-
ing processed, the processing parameters used to
process those batches, and the resulting through-
put for each batch are crucial to extracting correct
insights. While it has traditionally been difficult
for operators to know exactly what types of rock
are being processed at any given point in time,
recent advances in, and adoption of, ore tracking
technology (such as SmartTag™ 7] will gradually
allow the collection of better data that allows a
better estimation of the types of rock entering a
comminution plant at various points in time and
consequently, better ways to link processing para-
meters, rock characteristics, and the resulting pro-
cessing outputs (such as throughput on a particular
day).

Obtaining accurate information about rock char-
acteristics poses another challenge. The nature of
rock characteristics data (which is a combination of
lab-tested data and interpolated data) calls for IAM
to cater for possible uncertainties in rock character-
istics. Consequently, the clustering of rock charac-
teristics may inadvertently create an artificial sep-
aration between groups of rock that is not meaning-
ful. To address these issues, IAM could be extended
with other statistical measurements to inform users
about uncertainties in the data sets, such as a non-
parametric confidence interval for the values of rock
properties indicating the lower and upper boundary
of rock hardness measures per cluster. Alternat-
ively, advanced clustering techniques, such as fuzzy
clustering (Ferraro and Giordani, 2015) may also
be used to communicate the degree of uncertainty
in the mapping of rock characteristic information
to various rock clusters. Such an approach will al-
low room for domain experts to have the final say
in deciding the cluster membership of a particular
batch of rocks.

Finally, TAM only defines the sequence of analysis
steps needed to extract the ‘optimal’ operational

Hhttp://www.metso.com/services/ore-tracking/
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strategies. Data analysts who apply IAM have the
freedom to choose the most appropriate statistical
or machine learning algorithm, based on the nature
of the data. For example, to perform the clustering
of rock characteristics, users can choose more ad-
vanced clustering algorithms, such as DBScan (Es-
ter et al., [1996). This allows us to perform similar
data analysis multiple times, each using different,
yet still suitable, algorithms. The advantage of do-
ing so is that results from these multiple analyses
can be compared to check if consistent insights are
extracted, allowing a form of results validation.

We have further demonstrated the generality of
IAM by having successfully applied IAM to another
data set from the same plant but at a different level
of granularity (hourly data). The results are not
presented here but will be incorporated as part of
our future work to compare different types of in-
sights that one could extract by applying IAM on
data with different level of granularity. Such a com-
parison may lead to a better understanding of the
different data collection strategies that one can em-
ploy on site.

Other work involves the improvement of the
types of analysis algorithms that can be used in
IAM to incorporate those that deal with inherent
uncertainties in the data, especially in clustering of
rock characteristics. We also envisage the use of
more advanced feature extraction techniques (for
example, frequent pattern mining techniques (Ag-
garwal and Hanl |2014)) such that one can study the
impact of a combination of variables (such as the
combination of a number of processing parameters)
on a KPT of interest (such as throughput). Finally,
it is also important that TAM is further applied on
data sets from different processing plants to further
assess its generality. Eventually, through further
application of TAM, we seek to further strengthen
the guidance for the choice of various analysis meth-
ods and the settings for the various parameters that
TAM needs.

6. Related Work

Other research has been conducted in looking at
how one could improve the process of mineral ex-
traction.

Analysing plant operational data to gain insights
about a plant’s performances has been around for
some time. Mackay and Lloyd| (1975) applied re-
gression analysis to identify factors affecting residue
in a gold mining plant. Similarly, Brittan and van
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Vuuren| (1973) applied multilinear stepwise regres-
sion to identify variables influencing gold recovery.
However, these work tend to ‘mix’ the influence of
ore characteristics with operational settings on the
performance of a plant. A good overview of the use
of data mining and other analytics methods in the
process industry is summarised in the work by |Ge
et al.| (2017). The IAM methodology proposed in
this paper is therefore different from existing work
in this area in that, in this article, we propose a
step-by-step data analysis method to separate the
influence of rock characteristics from operational
settings on plant’s performance. In other words,
TAM guides users in how to analyse disparate data
sets collected in today’s plant operation to extract
key variables influencing the performance of a plant
in the processing of ore with certain characteristics.

Within the monitoring and control systems do-
main, such as Houseman et al.| (2001)), process data
is heavily used. However, not all needed variables
might be available at all times. This problem is ad-
dressed in|Sliskovi¢ et al.| (2012) for the manufactur-
ing industry: several models are described that es-
timate necessary process variables using measured
on-line process variables. IAM lifts and specialises
this to the field of resource extraction by separat-
ing the influence of rock properties and processing
parameters.

In the field of resource extraction, recorded sensor
data has been used to design or optimise plants. For
instance, in Lestage et al|(2002) and [Pan| (2013), a
grinding circuit is optimised using Linear Program-
ming or other optimisation techniques. In |Steyn
et al. (2013, on-line real-time data is used to op-
timise SAG mill control systems. In [Zhang et al.
(2002), a genetic algorithm is applied to the re-
corded sensor data of a coal grinding mill in a
UK power station. Finally, in the work by Marais
and Aldrich| (2011)) and |Aldrich et al| (2010), they
showed how froth images can be used for the devel-
opment of advanced control systems for platinum
flotation processes, if features of these images can
be linked to KPIs. TAM could aid in establishing
this link by choosing between these features, such
as in the identification of processing periods (see
Figure [3]).

Genetic algorithm uses a repeated procedure of
random crossover, mutation and selection to con-
struct a model of the plant’s operations based on
the input data. Genetic algorithms were also used
in [Huband et al.| (2005) and Mhlanga et al.| (2011)

to design a complete comminution circuit for an



iron-ore processing plant in Australia, thereby im-
proving over manually-designed plants. Genetic
algorithms optimise towards some evaluation cri-
teria, which makes choosing good criteria critical.
Therefore, as in Mhlanga et al.| (2011)), the obtained
designs were validated using simulation techniques.
TAM has a different purpose and differs from these
methods in providing systematic steps and taking
rock properties into account.

Another way to optimise operations is to build
one or more models of (parts of) the plant and sim-
ulate these models using various processing para-
meters. For instance, Discrete Element Simula-
tion (DES) can be used to simulate the interac-
tion between rock particles to aid the Computer
Aided Design (CAD) of SAG mills (Morrison and
Cleary], 2008; [Narayananl 1987) and to compare
power efficiency between designs (Cleary and Mor-
rison, [2011). While DES is suitable to simulate
the interaction of particles in a single mill or an-
other machine, simulating models spanning an en-
tire plant would take infeasibly long. Other model-
specific simulation models are proposed in |[Yang
et al.|(2004), in which a simulation of a hydrocyc-
lone is validated using sample data, and in [Sim-
SAGe| (2016]), in which SAG mills are simulated us-
ing data from liner wear inspections.

Such machine-specific simulation models can be
used to optimise single machines, however as all
steps in resource processing plant might influence
each other, simulations should take groups of ma-
chines into account (Duarte et all [1998), and
preferably the entire planning, scheduling and con-
trol systems (Harjunkoski et al., |2009b; [Shobrys
and White, [2002). For instance, commercial sim-
ulation approaches such as |[SimSAGe, (2016)), |JK-
tech| (2016), and Bear Rock| (2016) simulate com-
minution, flotation and classification circuits, blast-
ing and machine models, and these methods in-
clude data obtained by mass balancing, simulation
and plant surveys. Furthermore, in [Sosa-Blanco
et al| (1999)), a technique is proposed to simu-
late a grinding-flotation plant for lead-silver ore,
in particular how changes in comminution influ-
ence flotation, thereby aiming to optimise flota-
tion. In the work produced by the |Collaborat-
ive Research Centre - Optimising Resource Extrac-
tion| (2017)), the concepts of all these separate sim-
ulations are combined into a configurable plant-
independent simulation tool. [Khalesi et al.| (2015
propose a techno-economic simulation tool that al-
lows the simulation to study the impact of circuit
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designs on economic indicators, such as Net Present
Values.

The approaches described above are model-
driven and tend to be ‘generic’ to any machines. On
the other hand, IAM is data-driven, thus allowing
a certain degree of customisation (as data used for
analysis comes from the particular machines being
used in the plant). More importantly, IAM takes
rock properties into account.

Traditionally, models used in a simulation are cal-
ibrated using data extracted from expensive sur-
veys. Such an approach is expensive as mill sur-
veys involve the halting of the plant for a substan-
tial amount of time. Furthermore, the information
gathered from mill surveys only captures the state
of the plant at one particular point in time (the time
when the survey was taken). Longer term variabil-
ity is not captured in this data. Using TAM, these
simulations can be calibrated to improve the accur-
acy of the simulation models and consequently op-
timise operational settings, possibly extended with
an error propagation analysis. That is, IAM could
be used to validate the comparisons between mod-
els and to refine models using real-life on-line data
from existing equipment, similar to [Sliskovic¢ et al.
(2012), in addition to more expensive data such as
the results of mine surveys. By learning from his-
torical data, IAM eliminates the limitations of mine
surveys as a large amount of data is already being
collected in today’s plants. IAM could use this data
as a proxy to mill survey data, hence allowing us
to better learn the behaviour of the system, includ-
ing how different types of rocks respond differently
to different processing parameters and operational
settings.

IAM can use data from various sources, as shown
by our analysis in Section in which we used
data obtained from process control systems (such
as power draw, speed) as well as data from short-
term planning (block models). Several other types
of data could be obtained from mining operations,
for example, commercial tools such as [SPLIT En-
gineering| (2016|) provide optical image recognition
technologies to measure particle size distributions
of streams of rocks.

7. Conclusion

In this paper, we have presented IAM, a general
data analysis method that can be used to isolate the
impact of rock properties and operational settings
on mineral processing KPI (such as throughput).



Key data set requirements, as well as the corres-
ponding configuration parameters, that TAM needs
have been generalised in the form of a class dia-
gram. Furthermore, we have also provided some
guidelines on factors to consider in the setting of
the parameters as well as in the choice of various
analysis methods that IAM requires.

The TAM method proposed in this paper has
been evaluated using a data set from a commin-
ution plant operation related to a Cu porphyry
deposit in Chile. In this evaluation, we showed how
one could extract optimal operating strategies to
achieve optimal throughput for rocks with certain
characteristics. The results of our analysis have
been discussed with domain experts to validate
their correctness. Equally important, we have
discussed some of the challenges in applying IAM,
especially the lack of a more accurate way to link
rock characteristics data (for each batch of rocks
being processed) and the corresponding processing
parameters/operational settings applied. Never-
theless, recent advances in ore tracking technology
make it possible that such information will be
obtainable in the near future.
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