
Process Discovery Using In-database Minimum Self Distance
Abstractions

Alifah Syamsiyah

Eindhoven University of Technology

a.syamsiyah@tue.nl

Sander J.J. Leemans

Queensland University of Technology

s.leemans@qut.edu.au

ABSTRACT
Process executions generate event data that are typically stored in

legacy information systems, such as databases. However, process

discovery, which requires such event data, is performed in main

memory. To bridge this gap, existing techniques must transform

and extract event data, which can be expensive steps. This issue

has been addressed by processing the event data directly in their

origin. However, existing methods rely only on the simplest event

data abstraction: the Directly Follows (DF) abstraction. This paper

improves upon these existing works by considering another abstrac-

tion, the Minimum Self Distance (MSD) abstraction, which enables

discovery of a larger class of models than the DF alone. That is,

we propose IMw, a process discovery technique without logs and

uses both the MSD and DF abstractions. Furthermore, this work

proposes an approach to compute the MSD abstraction in-database,

thus avoiding the need for transforming and moving event data. We

evaluate IMw with real-life logs, and the experimental results show

that IMw with in-database abstraction is faster than the traditional

approach, aware of dynamic updates on event data, and able to

discover models with pareto-optimal results, compared to existing

techniques.

CCS CONCEPTS
• Applied computing→ Business process management;

KEYWORDS
Process discovery, in-database abstraction, minimum self distance

ACM Reference Format:
Alifah Syamsiyah and Sander J.J. Leemans. 2020. Process Discovery Using

In-database Minimum Self Distance Abstractions. In The 35th ACM/SIGAPP

Symposium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno,

Czech Republic. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3341105.3373846

1 INTRODUCTION
The omnipresence of event data allows organizations to diagnose

problems based on facts rather than fiction. Process mining is a

family of methods to exploit such event data in a meaningful way,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00

https://doi.org/10.1145/3341105.3373846

for example to provide insights, identify bottlenecks, check com-

pliance, suggest improvements, etc. [19]. Process discovery, which

is an important part of process mining, aims to automatically gen-

erate process models based on event data. The generated process

models must be as accurate as possible and reflect the real process

underlying the event data.

Traditional process discovery techniques require logs to be loaded

into memory before discovery can be performed. Furthermore, sev-

eral cloud-based tools, such as Celonis, require event data to be

converted from customer source systems into a standard format

and to be copied to a dedicated process mining environment [1].

In this standardized environment, larger datasets can be handled

faster than using traditional techniques. A characteristic that is

common to traditional techniques and certain cloud-based tools

entails that both require event data to be extracted, converted, and

loaded again into their respective systems, environments and data

formats. Ironically, these phases can take up to 80% of the project

duration [8].

To overcome this issue of event data preprocessing, some ef-

forts [7, 16, 18] introduced an approach to process data directly

in their origin (e.g. databases). The idea is to split process discov-

ery into an abstraction phase and a mining phase. The abstraction

phase produces event-based abstractions in the event data origin.

This abstraction process is performed directly on databases without

the need to transform event data into a special format or move it.

Afterwards, just like traditional process discovery techniques, these

abstractions are the inputs for the mining phase, performed on a

standard computer. Such abstractions are more compact than the

event data they are derived from and therefore require much less

main memory than the events they were derived from. Furthermore,

abstractions are often of a standard form which is compatible with

many discovery algorithms (unlike cloud-based tools). However,

existing works typically only rely on the simplest abstraction, called

the Directly Follows (DF) relation.

As formally shown in [11], the class of models that can be dis-

covered from DF abstractions is limited. Consider the following

example: in the Netherlands, normal pregnancies are handled by

midwives. A midwife may perform several ultrasounds to check the

baby’s health. In addition, a general practitioner (GP) takes a role

in assuring that a pregnant woman does not suffer from maternity

diseases such as anemia, gestational diabetes, etc. A GP may ask for

a blood test if necessary. In a healthy pregnancy, a check-up by GP

is only done once and happens in parallel with check-ups by the

midwife. In case of any abnormality, examination by GP and blood

test may be repeated several times. Based on the above description,

we intend to have a process model as shown in Figure 1a. However,

process discovery techniques which only rely on DF abstractions

might return a completely different process model as displayed in

https://doi.org/10.1145/3341105.3373846
https://doi.org/10.1145/3341105.3373846
https://doi.org/10.1145/3341105.3373846

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Alifah Syamsiyah and Sander J.J. Leemans

Figure 1b. In the latter model, the discovery algorithm obliges that

check-ups bymidwife must be performed in parallel with check-ups

by GP. Moreover, an ultrasound must be accompanied by a blood

test as well.

This problem occurs because the DF abstraction of both process

models is equivalent (Figure 1c). Hence, the DF abstraction does not

contain enough information to distinguish the two process models,

even though their semantics are clearly different. In [11], a new

abstraction was proposed, theMinimum Self Distance (MSD), which

expresses whether an activity can appear between two executions

of another activity with a minimum number of events in between

(but no algorithm that uses this abstraction was proposed). For the

above example, the MSD abstractions of both process models are

different, as denoted in figures 1d and 1e, thus the correct process

model can be discovered.

In this paper, we use the MSD abstraction to extend the class

of processes that can be discovered, we introduce a new discovery

algorithm that uses the MSD abstraction, and we show how the

MSD abstraction can be constructed from a database. To this end, we

propose a solution which consists of two parts: first, we propose a

technique to construct the MSD abstraction of event data, while the

data remain in their database. Second, we propose a new process

discovery technique, IMw (Inductive Miner without logs), which

utilizes the DF and MSD abstractions and returns models with

formal guarantees.

Compared to existing process discovery techniques, our work

improves applicability by providing an end-to-end approach from

events stored in databases to visualized process models (thus avoid-

ing event data extraction and transformation). Our approach also

enables process discovery on large and complex data sets, since

it only imports the DF and MSD abstractions (and not the logs)

into memory. In Section 6 we show that the in-database abstraction

accelerates the computation of process discovery and requires less

main memory than a traditional approach with in-memory abstrac-

tion. Finally, in Section 6 we show that even though IMw uses less

information from event logs, it can discover models that are pareto-

optimal with respect to models discovered by other techniques that

use the full event log.

This paper is structured as follows: in Section 2we discuss related

work. Terminology is introduced in Section 3. In Section 4, we

explain the in-database abstraction for process discovery. Then,

in Section 5, we present the IMw framework which uses the MSD

abstraction. Finally, in Section 6 we show the experimental results

and we conclude this paper in Section 7.

2 RELATEDWORK
Process Discovery. The Inductive Miner framework is a process

discovery framework that recursively identifies the “most impor-

tant" behaviour and splits the event log, until a base case is en-

countered. Based on this framework, many variants (i.e. discovery

techniques) have been proposed to handle various types of event

logs and discovery challenges, such as [12, 14]. The framework is

robust and provides several formal guarantees, such as soundness

(i.e. lack of deadlocks and other anomalies) of the returned models.

For handling large event logs, the Inductive Miner - directly follows

(IMd) framework applies the same steps as the IM framework, but

uses the DF abstraction as its recursion artefact, rather than an

event log [13]. In this paper, IMw extends IMd by not only using

the DF but also the MSD abstraction to distinguish more types of

behaviour, thus yielding a similar framework.

Other process discovery techniques have been proposed, but

these are either not applicable directly to abstractions (e.g. Evolu-

tionary Tree Miner [3], Split Miner [2], Indulpet Miner [14]) or do

not provide basic guarantees such as soundness (e.g. Split Miner [2],

Integer Linear Programming Miner [22], Heuristics Miner [28]).

IMd, due to its independence from event logs, has also been

adapted to the context of process discovery on event streams [24,

25]. These techniques assume event data to be dynamic sequences

of events and use these sequences to approximate a DF abstraction,

after which IMd discovers a process model from the DF abstraction.

Furthermore, streaming techniques assume that an infinite amount

of data is available and needs to be considered in finite memory,

thus it is not possible to store all data and generate a model based

on the full event log, as it is assumed that this full log cannot be

stored. The two abstractions (DF and MSD) from event logs used

in this paper might be applicable to streaming settings as well,

however this is challenging as the MSD abstraction computation

requires the creation and storage of intermediate structures that

need a non-constant amount of memory.

Process Mining in Databases. Process mining in databases has

been investigated in several studies. A study in [27] introduced a

tool called XESame. To access the data in XESame, one needs to

materialize the data by selecting and matching it with XES [9] ele-

ments. A more advanced technique using ontologies was proposed

in [4, 5]. In this work, data are accessed using query unfolding and

rewriting techniques, called ontology-based data access. Further-

more, a work proposed in [6] utilized a database redo log as a means

to extract events. All of these work, however, only focus on event

data extraction from databases, which we want to avoid.

Building on the idea of storing event data in databases, RXES [23]

was introduced as a fixed database schema emulating the XES stan-

dard. However, its application to a real process mining algorithm

was not investigated. To improve RXES, DB-XES was introduced

in [17]. Based on the DB-XES schema, a DF abstraction is computed

using a database trigger, that is, automatically when a new event

is stored. This update mechanism allows users to dynamically add

event data without recomputing the whole abstraction. However,

as the schema is fixed, an existing system needs to be converted to

the DB-XES format while our approach is flexible to any database

schemes.

The DF auto-update in DB-XES is adapted in [18] to establish

Incremental Inductive Miner, which utilizes IMd and adds the abil-

ity to cope with recurrent process discovery. Although the result

is promising, this work only covers the simplest family of process

trees [11]. Moreover, the standard SQL-based query used to com-

pute the DF abstraction is very costly due to many self joins. This

has been improved by [7, 16] which propose a database operator

to specifically compute the DF abstraction. In this paper, we im-

prove the work in [7, 16, 18] by computing the MSD abstraction

in-database and proposing a new discovery framework (IMw) that

uses more information: that is, the MSD abstraction.

Process Discovery Using In-database Minimum Self Distance Abstractions SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Check by midwife

Ultrasound

Check by GP

Blood test

(a) Process model 1a, represented in Petri net.

Ultrasound

Blood test

Check by midwife

Check by GP

(b) Process model 1b, represented in Petri net.

Check by GP Blood test

Check by midwife Ultrasound

(c) DF abstraction of models 1a and 1b.

Check by GP Blood test

Check by midwife Ultrasound

(d) MSD abstraction of model 1a.

Check by GP Blood test

Check by midwife Ultrasound

(e) MSD abstraction of model 1b.

Figure 1: An example where two process models have the same DF abstraction but different MSD abstractions.

3 PRELIMINARIES
Event Logs. Let UE be the universe of events and UA be the

universe of activities. Let E ⊆ UE be a collection of events. For any

event e ∈ E, #case(e) is the case identifier of e , #act(e) ∈ UA is the

activity name of e , and #time(e) is the timestamp when e is executed.
A trace σ ∈ E∗ is a sequence of events such that each event occurs

only in a single trace, i.e. e1 = σ (i) ∧ e2 = σ (j) =⇒ e1 = e2 ≡ i =
j ∧ ¬∃σ ′,σ ′,σ e1 ∈ σ

′∨e2 ∈ σ
′
. Furthermore, each event in a trace

refers to the same case identifier, i.e. e1 = σ (i) ∧ e2 = σ (j) =⇒
#case (e1) = #case (e2) and we assume all events are totally ordered,

i.e. e1 = σ (i) ∧ e2 = σ (j) =⇒ i < j ≡ #time(e1) < #time(e2). An
event log L ⊆ E∗ is a set of traces.

For instance, LE = [⟨a,b, c,a⟩, ⟨a,d,a⟩] is an event log with two

traces and seven events associated to the activity labels a, b, c and d .
Note that here we use a simplification of event logs where activity

labels are shown instead of events.

Directly Follows Abstraction. Let L ⊆ E∗ be an event log over

E ⊆ UE and let ⊤,⊥ < UA . The directly follows relation ≻L :

(UA ∪ {⊤}) × (UA ∪ {⊥}) → N counts the number of times

activity a is directly followed by activity b, and when an activity a
is a start or end activity:

≻L (a,b) =
∑
σ ∈L

|σ |−1∑
i=1

{
1 if #act(σ (i)) = a ∧ #act(σ (i + 1)) = b

0 otherwise

≻L (⊤,a) =
∑
σ ∈L

1 if #act(σ (1)) = a, 0 otherwise

≻L (a,⊥) =
∑
σ ∈L

1 if #act(σ (|σ |)) = a, 0 otherwise

For instance, the DF abstraction of our example log LE is

a b cd
1 1

1
1

1

22

.

Minimum Self Distance Abstraction. Let L ⊆ E∗ be an event

log over E ⊆ UE . The minimum self distance msdL : UA → N
of activity a is the minimum number of events in between two

executions of a [11] (where • denotes trace concatenation and we

assume min(∅) = ∞):

msdL(a) = min{|t2 | | t1 • ⟨en⟩ • t2 • ⟨em⟩ • t3 ∈ L∧

#act(en) = #act(em) = a}

Then, activity b is a witness of this minimum self distance of a,
denoted by α

msd
(a,b), if and only if it can appear in between two

minimum-distant executions of a:

α
msd
(a,b) ≡∃⟨...,en , ...1,em , ...⟩∈L el ∈ . . .1 ∧ | . . .1 | = msdL(a) ∧

#act(en) = #act(em) = a ∧ #act(el) = b

We visualise the MSD relation as anMSD graph, whose nodes are

the activities and two nodes a and b are connected with a directed

edge if α
msd
(a,b) holds. For instance, theMSD graph of our example

logLE is a b cd , where each double arrow from

nodes a to b indicates that α
msd
(a,b) holds.

Process Trees. Process trees are a process modelling formalism,

which express their behaviour in a hierarchical way, over a universe

of activitiesUA . As process trees are inherently free of deadlocks

and other anomalies, the discovery technique introduced in this pa-

per will construct process trees. We define process trees inductively:

a leaf a ∈ UA is a process tree and represents the language {⟨a⟩}.
LetM1 . . .Mn be process trees, then an operator node ⊕(M1, . . .Mn)

is a process tree and represents a combination of the languages of

its childrenM1 . . .Mn , based on the process tree operator ⊕.

In this paper, we consider the process tree operators × (which

denotes the exclusive choice between children),→ (the sequential

composition of children),∧ (the concurrent composition of children)

and 	 (which denotes a sequential composition of a first child,

followed by a repeated combination of a non-first child and the first

child). For a formal definition of process trees, please refer to [11].

For instance, the language of the process tree ×(a,→(b,	(c,d))) is
{⟨a⟩, ⟨b, c⟩, ⟨b, c,d, c⟩, ⟨b, c,d, c,d, c⟩ . . .}).

4 IN-DATABASE ABSTRACTION FOR
PROCESS DISCOVERY

Common process discovery techniques perform the following five

steps in order to produce process models: (1) extraction and conver-

sion, (2) loading, (3) abstraction, (4) mining, and (5) visualization.

Figure 2 illustrates a typical process discovery workflow based on

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Alifah Syamsiyah and Sander J.J. Leemans

these steps (indicated with solid arrows). A standard process dis-

covery task starts from a loaded event log file in main memory.

Therefore, raw data stored in legacy information systems such as

databases first have to be extracted and converted into a file-based

format, such as CSV or XES [9] format. Then, the event log file is

placed in a computer’s memory during a loading phase. Obviously,

this phase is limited by the computer’s memory. Furthermore, the

event log is transformed into a more compact data structure. We

call this phase the abstraction phase. In this paper, we consider DF

andMSD as two examples of abstractions. The DF abstraction repre-

sents how often an activity is followed directly by another activity,

while the MSD abstraction represents which activity might appear

in between two as-close-as-possible appearances of another activity.

It is clear that the size of these abstractions does not depend on

the number of events, but only on the number of activities. Finally,

during a mining phase, process discovery algorithms generate a

process model based on the abstractions. The discovered model is

then shown to users after a visualization phase for further analysis.

In this paper, we consider scenarios where process discovery is

performed on large event data: such data with billions of events

challenges current process discovery techniques as the loading

phase is limited by available memory. Therefore, we extend the

ideas from [7, 16, 18] which skip the extraction and loading phases

by moving the abstraction phase into databases where event data

are located.

Moving the abstraction phase into databases enables us to com-

pute DF and MSD relations directly in the databases and only load

those relations into memory for discovery. Consequently, as the

DF and MSD relations do not depend on the number of events, the

occupied memory for process discovery is less than if the whole

log is imported. In contrast, we do not move the mining and visu-

alization phases into databases, as the mining phase is typically

already quick (as will be shown in the evaluation section), thus it

can be executed on the fly. Furthermore, the visualization phase

must be performed in a process mining tool since its purpose is to

show process discovery results to users.

Beside large sets of event data, we also consider situations where

process discovery is performed on dynamic event data, that is, situ-

ations in which events are added incrementally to databases. Using

current process discovery techniques, one needs to repeat all phases

due to the static characteristic of file-based event logs. Once a new

event is added, the process analysts have to load the data again

and wait for the abstraction, mining, and visualization phases. To

avoid this recomputation, we introduce an update function which

is responsible for automatically updating the MSD abstraction ac-

cording to each insertion of a new event.

Figure 2 illustrates the proposed approach with in-database ab-

straction (indicated with dashed arrows). In the following, we first

elaborate the ideas from [7, 16, 18] about the DF abstraction phase

and DF update function. Then, we introduce our idea which pro-

poses the MSD abstraction phase and MSD update function.

4.1 DF and MSD Abstraction Phase
To build DF abstractions from existing data in databases, we exploit

a native operator introduced in [7, 16]. This operator is a func-

tion f that takes a table L as input such that L contains at least

case identifiers, activity labels, and timestamps in the first three

columns, and f (L) returns the DF abstraction of the table. The na-

tive operator is compatible with any database schema, hence the

conversion of event data into a specific database schema such as

DB-XES [17] or the Celonis standardized system [1] is not neces-

sary. Furthermore, this operator boosts performance of a DF query

as SQL-based queries are not designed towards process mining

approaches. In [7, 16], it has been shown that, while the execution

of traditional SQL queries leads to third-order polynomial time

complexity, the native operator approach is linear in sorted logs

and O(e · log(e)) in unsorted logs, where e is the number of events.

In this paper, we extend this native operator f to also accommodate

queries for constructing MSD abstractions in databases
1
.

4.2 DF Update Function
One of the often-used abstractions for process discovery is DF,

used in for instance the process discovery techniques Inductive

Miner [10], Alpha Miner [21], Flexible Heuristics Miner [28], and

Fodina [26]. DF abstractions can be computed during a single linear

pass over event logs, visiting each event exactly once. Despite its

simplicity, computing the DF over enormous event datasets is a

time-consuming task. Therefore, we exploit the same technique

as introduced in [18] to update the DF in an automatic way. The

DF update function is implemented as a database trigger which

is automatically called in every insertion of new events. It has

been proven in [18] that updating the DF abstraction is possible

through this trigger. Intuitively, the database keeps track of the

last event in a trace to avoid a recurrence in reading an event

sequence. This information is stored in a table, called as intermediate

structure, whose primary key is a trace column and each trace refers

to the last event in the trace. Therefore, the complexity of the DF

update function is O(1) as the trigger has access to the intermediate

structure and a search operation using index in a table is a constant

operation.

4.3 MSD Update Function
Similar to the DF abstraction, the MSD abstraction needs an inter-

mediate structure to avoid recomputation. The MSD intermediate

structure keeps track of the last index of an activity in a trace. In

the following, we first define a function γ as the MSD intermedi-

ate structure, then we show that updating the MSD abstraction is

possible by utilizing γ .

Last index of an activity in a trace (γ). Let L ⊆ E∗ be an event

log over E ∈ UE , σ ∈ L be a trace in the event log, and a ∈ UA
be an activity. The function γ : L × UA → N is a function that

returns the last index of an activity a belonging to a trace σ , i.e.

γ (σ ,a) =


−∞, if ¬∃i ∈{1, ..., |σ | }

#act(σ (i)) = a,

maxi ∈{1, ..., |σ | }#act(σ (i)) = a otherwise.

Given a logL, the functionγ defined above is sufficient to update

msdL in constant complexity:

Corollary 4.1. Let L ⊆ E∗ be an event log over E ⊆ UE and

σ ∈ L be a trace. Suppose a new event e ′ ∈ UE\E arrives such that

1
See https://svn.win.tue.nl/repos/prom/Packages/InDatabasePreprocessing/Trunk/.

https://svn.win.tue.nl/repos/prom/Packages/InDatabasePreprocessing/Trunk/

Process Discovery Using In-database Minimum Self Distance Abstractions SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

update

abstraction

Log table

mining
Visualized

process model
Discovered

process model

visualization
ProM

loading abstraction

miningEvent log file DF and MSD Event log loaded into
memory

DF and MSD

extraction &

conversion

Traditional process discovery technique
The proposed approach: discovery with
in-database abstraction

Figure 2: The traditional vs the proposed approach for process discovery.

for all e ∈ E it holds that #time(e) < #time(e
′). That is, E ′ = E ∪{e ′},

σ ′ = σ · ⟨e ′⟩, L′ = L\{σ } ∪ {σ ′}, and L′ ⊆ E ′∗. Then, for all
a ∈ UA it holds that:

msdL′(a) =

{
min(msdL(a), |σ

′ | − γ (σ ,a) − 1) if #act(e
′) = a

msdL(a) otherwise.

Furthermore, γ is sufficient to update the witness activities of

msdL (α
msd

) in O(d)where d is the finite maximum value of msdL :

Theorem 4.2 (γ is sufficient to update αmsd in O(d)). Let
L ⊆ E∗ be an event log over E ⊆ UE and σ ∈ L be a trace. Suppose

a new event e ′ ∈ UE\E arrives such that for all e ∈ E it holds

that #time(e) < #time(e
′). That is, E ′ = E ∪ {e ′}, σ ′ = σ · ⟨e ′⟩,

L′ = L\{σ } ∪ {σ ′}, and L′ ⊆ E ′∗. Then, for all a,b ∈ UA it holds

that:

(1) If msdL(a) = msdL′(a) = ∞ then ¬∃b ∈UAα
′
msd
(a,b).

(2) If msdL(a) = |σ
′ | − γ (σ ,a) − 1 then ∀b ∈UAα

′
msd
(a,b) ≡

α
msd
(a,b) ∨ ∃i ∈{1, ...,msdL′ (a)}#act(σ

′(|σ ′ | − i)) = b.
(3) If msdL(a) > msdL′(a) then
∀b ∈UAα

′
msd
(a,b) ≡ ∃i ∈{1, ...,msdL′ (a)}#act(σ

′(|σ ′ | − i)) = b.

Proof. Property 1: if msdL′(a) = ∞ then there are no witnesses

b.
Property 2: if msdL(a) = |σ

′ |−γ (σ ,a)−1, then traceσ ′ = ⟨..., e, ...1, e ′⟩
with #act(e) = #act(e

′) = a and |...1| = |σ ′ | −γ (σ ,a)−1 = msdL′(a),
hence ∀el ∈...1,#act(el)=bα

′
msd
(a,b) and since the msdL(a) did not

change, all previous relations still hold.

Property 3: It is trivial to see that a reduction of msd implies there is

no otherσ ′′ ∈ L such thatσ ′′ = ⟨..., en, ...1, em, ...⟩with #act(en) =
#act(em) = a and |...1| = msdL′(a), hence the previous relations no
longer hold.

To get a set of activities which witness a minimum self distance

of activity a, we loop into the corresponding trace and take the

activities in between the two occurrences of a. Therefore, the com-

plexity is O(d) where d is the finite maximum value of msdL , i.e.

d = max({msdL(a)|a ∈ UA ∧ msdL(a) , ∞}). �

5 PROCESS DISCOVERY USING THE DF AND
MSD ABSTRACTIONS

In the previous section, we have shown how the DF and MSD ab-

stractions can be obtained from database. The Inductive Miner -

directly follows (IMd) framework has been shown to handle event

logs of 10
4
activities and 10

8
traces [13], however this framework

not use the extra information that MSD can provide. Therefore, in

this section, we introduce a new process discovery framework (In-

ductive Miner - without log (IMw)) that extends the IMd framework

with MSD graphs. We first explain the IMw framework, then we

introduce an algorithm that uses the framework, after which we

show an example and discuss the guarantees that it provides.

5.1 Framework (IMw)
The IMw framework takes as input a DF and an MSD abstraction,

and returns a process tree.

First, the IMw framework identifies a cut of the behaviour in

the abstractions: that is, a process tree operator (⊕) with a par-

tition of the activities (Σ1 . . .Σn), such that the cut adheres to a

particular footprint corresponding to the process tree operator ⊕

(see e.g. Figure 3). Intuitively, a cut describes the relation between

the activities in the cut’s partition. Second, the DF and MSD ab-

stractions are split: for every set of activities in the partition of

the cut, a DF and an MSD sub-abstraction are constructed. Third,

the framework recurses on these sub-abstractions, which yields a

process tree T1 . . .Tn for each set in the cut’s partition Σ1 . . .Σn .
Then, the framework returns the process tree ⊕(T1, . . .Tn). Fourth,
if a base case applies then that base case is returned: for instance if

only a single activity remains in the abstractions, that activity is

returned as a process tree leaf. Finally, if no cut can be found and

no base case applies, then a generalisation (fallthrough) is applied.

1: procedure IMw(D,M)

2: base ← f indBaseCase(D,M)
3: if f indBaseCase successful then
4: return base
5: (⊕, Σ1, . . . Σn) ← f indCut(D,M)
6: if f indCut successful then
7: D1,M1, . . .Dn,Mn ← split(D,M, ⊕, Σ1 . . . Σn)
8: return ⊕(IMw(D1,M1), . . . IMw(Dn,Mn))

9: return f allThrouдh(D,M)

A discovery algorithm implementing the IMw framework thus

has to provide the functions f indBaseCase , f indCut , split and

f allThrouдh.

5.2 Algorithm (IMfw)
Second, we introduce an algorithm that implements the IMw frame-

work, called Inductive Miner - infrequent - without log (IMfw).

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Alifah Syamsiyah and Sander J.J. Leemans

As IMfw extends IMfd (Inductive Miner - infrequent - directly fol-

lows) [13], we discuss the changed steps here: cut detection and

abstraction splitting.

Cut Detection. To perform cut detection, IMfw considers both the

DF and MSD abstractions in a four-stage approach. In stage 1, IMfw

searches for particular patterns (footprints) in both abstractions

that indicate the presence of cuts in the behaviour of the event

log. That is, a footprint is sought that adheres to footprints in both

abstractions. Figure 3 shows the intuition of these footprints for the

DF abstraction. For the MSD abstraction, we exploit the techniques

of [11]:

• For a concurrent cut (∧, Σ1, . . . Σn), no (MSD-)edges are

present between the parts:

• For a loop cut (, Σ1, . . . Σn): (1) each activity has an outgo-

ing edge, (2) all redo activities that have a connection to a

body activity, have connections to the same body activities,

(3) all body activities that have a connection to a redo activ-

ity, have connections to the same redo activities, (4) no two

activities from different redo children have a connection.

For instance, if the DF abstraction contains unconnected groups

of activities, these groups form the partition of an exclusive-choice

cut, as the MSD footprints do not pose further restrictions.

If no cut is found, then IMfw moves to stage 2: the cut detection

procedure of IMd is applied unchanged. That is, a footprint is sought

in the DF abstraction only, as per Figure 3. If still no cut has been

found, in the third stage, the DF abstraction is filtered for infrequent

edges [13] and the first stage is applied again. Similarly, if no cut

has been found, the second stage is applied again.

Abstraction Splitting. After cut detection, IMfw splits the DF

and MSD abstractions. The DF abstraction is split according to the

partition of the cut, and depending on the operator, start activities,

end activities and empty traces are added as appropriate.

The MSD abstraction is split according to the partition of the cut:

for each set of activities, a sub-abstraction is constructed containing

only these activities. The edges are filtered as follows: the edge is

kept in the sub-abstraction if and only if its both endpoints are in

the set of activities; any other edge is removed.

5.3 Example
To illustrate the IMw framework and the IMfw algorithm, we walk

through its steps using an example event log: [⟨a,b,a, c⟩, ⟨c,a⟩,
⟨a,b, c,a⟩, ⟨a, c,b,a,b,a⟩]. The DF and MSD graphs of this log are

shown in figures 4a and 4b. In the DF graph, several cuts apply:

(, {a, c}, {b}), (∧, {a,b}, {c}) and (∧, {a}, {b, c}). Hence, the IMd

framework would not have enough information to distinguish these

three cuts and has to choose arbitrarily. The IMw framework uses

the MSD graph, which allows the IMfw algorithm to use more

information: there is an edge between a and b, which excludes

(∧, {a}, {b, c}). Furthermore, c does not contain an outgoing edge,

which excludes (, {a, c}, {b}), which leaves IMfw to select the cut

(∧, {a,b}, {c}). Consequently, IMfw splits the graphs in the sub-

graphs shown in figures 4c to 4f.

Next, IMfw recurses on the graphs shown in figures 4c and 4d.

In these graphs, the cut (, {a}, {b}) is identified and the graph

is split into the graphs shown in figures 4g to 4j. After this step,

IMfw recurses on the graphs of figures 4e and 4f, returning a base

case c . After recursion on the remaining graphs, the process tree

∧((a,b), c) is returned.

5.4 Guarantees
First, by its use of process trees, the IMw framework guarantees to

return a sound model, that is, the models that are discovered are

bounded, free of deadlocks and free of livelocks.

Second, discovery techniques might guarantee rediscoverability:

let S be a business process being executed in practice and let L be

an event log derived from S . Then, a process discovery technique

that discovers a model that is language equivalent to S provides

rediscoverability. As S is unknown, rediscoverability is a formal

property that is typically proven using asssumptions on S and L.
As shown in our example, as the IMfw algorithm uses more

information from the event log (the MSD abstraction), it can handle

process trees with direct nestings of ∧ and 	 operators, whereas

IMfd does not provide guarantees on such models. We conjecture

that IMfw provides rediscoverability on a larger class of processes

(S) than IMfd, that is, on arbitrarily nested ∧ and 	 operators.

For a detailed description of this class and a skeleton proof of its

rediscoverability, please refer to [11], however, a full proof is outside

the scope of this paper.

6 EVALUATION
We performed an evaluation in order to investigate the following

three experimental goals: (1) to compare the time-performance of

IMfw with traditional settings (Trad) versus IMfw with in-database

abstraction (DB), (2) to explore the time-performance of the DF and

MSD update function, and (3) to evaluate the quality of models dis-

covered by IMfw compared to other process discovery techniques.

6.1 Traditional IMfw vs IMfw with In-database
Abstraction

In the first experiment, we compare the run time of the proposed

technique (DB) with the traditional discovery technique (Trad)–

both techniques utilize IMfw as their discovery algorithm, however

the former performs an abstraction phase in databases while the

latter requires event log files to be loaded into memory before

the abstraction. Note that IMfw is our proposed algorithm that

implements our proposed framework (IMw). To this end, we applied

both techniques to 21 real-life logs
2
, measured the run time of the

different stages of discovery, and averaged the time over ten runs.

Figure 5 shows the results in absolute time while Figure 6 shows

the results in relative time: for each log, the run time of Trad has

been taken as 1, while scaling the time of DB. It is clear that DB

outperforms Trad for all logs. Moreover, Trad required more mem-

ory to load the two Xerox logs. While 2GB of main memory is

sufficient for the other logs, the Xerox(jun) log required 4GB and

the Xerox(nov) log required 14GB of memory. These logs were

obtained from processes occurred at the Xerox company in June

and November 2015 and contain 1.2M and 15M events. Obviously,

these logs do not fit into 2GB of memory. However, the Xerox(jun)

log contains only 54 activities which corresponds to 282 edges of

DF and MSD, while the Xerox(nov) log contains 49 activities and

2
All logs are publicly available from https://data.4tu.nl/repository/collection:event_

logs_real, except the two Xerox logs.

https://data.4tu.nl/repository/collection:event_logs_real
https://data.4tu.nl/repository/collection:event_logs_real

Process Discovery Using In-database Minimum Self Distance Abstractions SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Figure 3: Cut footprints, used for the identification of cuts [source: [13]].

a b

c

(a) ≻1.

a b

c

(b) msd1.

a b

(c) ≻2.

a b

(d) msd2.

c

(e) ≻3.

c

(f) msd3.

a

(g) ≻4.

a

(h) msd4.

b

(i) ≻5.

b

(j) msd5.

Figure 4: DF and MSD graphs to illustrate the IMw framework and the IMfw algorithm.

corresponds to 287 edges, which fits in 2GB of memory. In fact, all

logs were successfully processed by DB using only 2GB of main

memory, as DB only imported the DF and MSD abstractions of the

logs into memory. This illustrates that the growth of event data does

not immediately influence the size of DF and MSD abstractions,

because of which exploring these abstractions independently from

event data can save lots of time and resources.

In the following we elaborate on the results shown in Figure 6

by considering the time spent in the several phases of DB and

Trad. As mentioned in Section 4, Trad has five discovery phases,

namely extraction/conversion, loading, abstraction, mining, and

visualization. DB has the same phases except for the first two. DB

does not perform the event logs extraction and loading. However,

DB creates some overhead during the database processing, which

in Figure 6 is illustrated similar to the loading phase in Trad. Note

that here we do not incorporate the time needed to extract and

convert event data into event logs files. If included, the total time

of process discovery in Trad will be even longer than reported.

As shown in Figure 6, the mining and visualization time of the

two approaches are similar as they utilize the same algorithm and

are performed in the same process mining tool. It is also impor-

tant to note that the models generated by DB are exactly the same

as Trad, which shows that the in-database abstraction produces

structures precisely the same as the in-memory abstraction and

illustrates its correctness. On the other hand, the abstraction phase

in DB takes longer than in Trad. This is not only because they use

different implementation techniques, but also because the abstrac-

tion phase in Trad is executed in main memory, making it faster

than DB. Nevertheless, DB beats Trad as the gain in DB-overhead

is less than the loss in loading phase.

6.2 Update Function
In Section 4, we have shown that DF and MSD abstractions can be

updated incrementally in a database. In this experiment, we aim

to show the transformation of process models over time using the

incrementally updated DF and MSD. We utilized the application

process in the BPIC 2012 and discovered a process model over three

different days of recorded data. Figure 7 illustrates the discovery.

On day 1, not all activities have appeared. Three days later, all

activities have emerged but we spot a sequence between activities

A_registered (h), A_approved (i), and A_activated (j). This sequence

turns into parallel activities with some loop on day 14. This demon-

strates that processes are subject to alteration and process analyst

may get insight into it by inspecting the process drift.

In the implementation, we utilize database triggers to update

DF and MSD. In order to show the performance of this update

step, we measure the processing time for handling the first 9000

events of the BPI 2012, road fine, and sepsis logs. Figure 8a depicts

the performance measurement for all events. As expected, there is

no increasing trend over time. Then, in order to see the trendline

clearer, we zoom-in to events whose processing time are less than

5 ms (shown in Figure 8b). At the beginning the database needs

more time to process events. We expect it is due to database initial-

ization and some query cache that have not been activated in the

beginning. However, after some point the processing time stabilizes.

On average, the time needed for inserting one event and updating

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Alifah Syamsiyah and Sander J.J. Leemans

Event log DB (ms) Trad (ms)

Sepsis 122.98 257.253
Road fine 1679.814 7234.506
Hospital 1624.431 6056.864

DailyLiving 66.94 78.009
BPIC12 666.358 2500.539
BPIC15-1 1487.932 1752.467
BPIC15-2 1627.339 1856.859
BPIC15-3 1313.825 1635.915
BPIC15-4 1109.465 1371.014
BPIC15-5 1364.234 1694.923
BPIC17 567.719 3243.25
BPIC18-1 528.849 1502.241
BPIC18-2 255.149 491.158
BPIC18-3 708.057 2637.466
BPIC18-4 1384.69 5265.335
BPIC18-5 442.081 1711.061
BPIC18-6 366.36 1186.907
BPIC18-7 2298.329 9121.744
BPIC18-8 436.011 1220.775
Xerox(jun) 2646.977 29 603.72
Xerox(nov) 220 470.585 297 184.513

Figure 5: Absolute time.

0
5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Xerox(nov) Trad

Xerox(nov) DB

Xerox(jun) Trad

Xerox(jun) DB

BPIC18-8 Trad

BPIC18-8 DB

BPIC18-7 Trad

BPIC18-7 DB

BPIC18-6 Trad

BPIC18-6 DB

BPIC18-5 Trad

BPIC18-5 DB

BPIC18-4 Trad

BPIC18-4 DB

BPIC18-3 Trad

BPIC18-3 DB

BPIC18-2 Trad

BPIC18-2 DB

BPIC18-1 Trad

BPIC18-1 DB

BPIC17 Trad

BPIC17 DB

BPIC15-5 Trad

BPIC15-5 DB

BPIC15-4 Trad

BPIC15-4 DB

BPIC15-3 Trad

BPIC15-3 DB

BPIC15-2 Trad

BPIC15-2 DB

BPIC15-1 Trad

BPIC15-1 DB

BPIC12 Trad

BPIC12 DB

DailyLiving Trad

DailyLiving DB

Hospital Trad

Hospital DB

Road fine Trad

Road fine DB

Sepsis Trad

Sepsis DB

Visualization Mining Abstraction Loading/DB-Overhead

Figure 6: Relative time and discovery phases in DB vs Trad.

a b
c

d

g

e

f
a b

c

g

d
e

f

h i j

a b
c

d e

h

i

j

f

g

(i) Day-1

a: A_Submitted
b: A_Partly Submitted
c: A_Preaccepted
d: A_Accepted
e: A_Finalized
f: A_Declined
g: A_Cancelled
h: A_Registered
i: A_Approved
j: A_Activated

(ii) Day-4

(iii) Day-14

Figure 7: Process models are gradually changed over time as more data are inserted.

the corresponding abstractions was 1,2 ms. In other words, in one

second the database can typically handle around 833 events.

6.3 Model Quality
In our third experiment, we evaluate the process models discovered

by the IMfw algorithm. In particular, we investigate (Q1) whether

IMfw improves over IMfd, and (Q2) whether its models are of a

quality that is comparable to models discovered by techniques that

use the full event log: (1) Inductive Miner - Infrequent (IMf) [12],

(2) Indulpet Miner (IN) [14] (our experiment extends the evaluation

in [14]), (3) Evolutionary Tree Miner (ETM) [3], (4) Split Miner

(SM) [2], and (5) the baseline flower model (F) that allows for any

behaviour. Therefore, we apply 7 process discovery techniques: for

each log, we perform 3-fold cross validation: of these three parts,

two parts are used for discovery while the remaining part is used for

evaluation (measuring fitness [20], ETC-precision [15], simplicity).

As some of the discovery techniques are not deterministic, this

procedure is repeated 10 times. That is, for each combination of

event log and technique, discovery is, in total, applied 30 times.

Finally, as the ETC-precision computation is not deterministic, its

computation is repeated 5 times for each of the 30 times.

Results. Table 1 shows the results. For the BPIC15 logs, ETCwas

unable to produce results within our memory and time constraints,

so these results were obtained using the Projected Conformance

Process Discovery Using In-database Minimum Self Distance Abstractions SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

(a) (b)

Figure 8: Performance measurement: with all events (a), with removing outliers (b).

f p s f p s f p s f p s

Roadfines Sepsis bpic12 bpic15-1

IMf 0.98±0.00 0.79±0.04 97.97±4.78 0.91±0.02 0.41±0.06 140.23±13.85 0.97±0.01 0.59±0.03 186.57±9.59 1.00±0.00 0.66±0.04 1286.07±149.54

IN 0.98±0.00 0.79±0.02 96.50±7.00 0.91±0.02 0.43±0.05 122.43±8.66 0.36±0.07 0.88±0.05 116.30±30.52 0.78±0.01 0.97±0.01 91.50±54.38

ETM 0.89±0.08 0.68±0.27 117.93±85.12 ! ! ! ! ! ! ! ! !

SM 1.00±0.00 0.96±0.00 82.00±0.00 0.76±0.00 0.73±0.01 138.00±0.00 0.96±0.00 0.68±0.00 239.00±0.00 ! ! 4715.20±8.88

IMfd 0.82±0.08 0.91±0.05 110.47±9.39 0.92±0.04 0.35±0.04 187.63±10.23 0.95±0.07 0.51±0.02 175.80±5.94 1.00±0.00 0.64±0.03 1350.17±178.09

IMfw 0.85±0.00 0.85±0.03 89.30±6.74 0.90±0.04 0.36±0.04 127.47±6.56 0.95±0.05 0.42±0.15 142.57±32.58 1.00±0.00 0.64±0.03 1289.63±168.41

F 1.00±0.00 0.38±0.01 46.00±0.00 1.00±0.00 0.21±0.00 61.00±0.00 1.00±0.00 0.11±0.00 85.00±0.00 1.00±0.00 0.64±0.01 1145.30±20.02

bpic15-2 bpic15-3 bpic15-4 bpic15-5

IMf 0.99±0.00 0.76±0.04 1048.10±167.84 1.00±0.00 0.71±0.03 1201.63±133.03 0.99±0.00 0.75±0.03 1082.47±98.26 0.99±0.00 0.79±0.05 1108.60±141.55

IN 0.74±0.01 0.96±0.01 114.10±23.71 0.79±0.01 0.97±0.01 118.37±80.59 0.76±0.02 0.93±0.03 272.17±63.98 0.75±0.02 0.96±0.02 244.17±120.50

ETM ! ! ! ! ! ! ! ! ! ! ! !

SM ! ! 5077.27±10.28 ! ! 3995.47±8.96 ! ! 3882.73±5.00 ! ! 4730.20±11.38

IMfd 1.00±0.00 0.66±0.02 1526.90±154.14 1.00±0.00 0.63±0.02 1433.27±156.39 1.00±0.00 0.67±0.03 1379.83±140.28 1.00±0.00 0.66±0.03 1519.63±160.24

IMfw 1.00±0.00 0.66±0.02 1479.50±134.67 1.00±0.00 0.65±0.03 1218.13±138.88 1.00±0.00 0.66±0.02 1287.80±74.46 1.00±0.00 0.65±0.02 1343.60±122.12

F 1.00±0.00 0.64±0.01 1172.70±24.44 1.00±0.00 0.66±0.01 1114.50±16.26 1.00±0.00 0.65±0.02 1024.30±27.16 1.00±0.00 0.65±0.02 1116.40±26.41

bpic18-1 bpic18-2 bpic18-3 bpic18-4

IMf 1.00±0.00 0.95±0.02 54.87±0.73 0.96±0.00 0.96±0.05 43.70±6.73 0.93±0.00 0.53±0.01 74.77±1.28 0.86±0.04 0.35±0.03 96.57±14.44

IN 1.00±0.00 0.95±0.02 54.87±0.73 0.96±0.00 0.96±0.05 43.70±6.73 0.79±0.04 0.95±0.04 55.60±17.73 0.61±0.19 0.83±0.27 71.97±50.49

ETM 0.97±0.04 0.95±0.12 77.50±86.35 0.99±0.00 0.76±0.21 183.93±91.24 ! ! ! ! ! !

SM 1.00±0.00 0.97±0.03 59.00±0.00 1.00±0.00 0.95±0.02 90.00±0.00 1.00±0.00 0.67±0.01 291.00±0.00 0.99±0.00 0.55±0.00 247.00±0.00

IMfd 1.00±0.01 0.81±0.09 65.77±1.28 1.00±0.01 0.76±0.05 83.87±6.53 0.87±0.10 0.44±0.05 247.53±45.40 ! ! 218.17±22.80

IMfw 0.97±0.00 0.96±0.03 47.87±0.73 0.97±0.01 0.95±0.05 46.47±4.34 0.87±0.08 0.39±0.05 110.30±20.51 ! ! 136.57±12.41

F 1.00±0.00 0.32±0.00 30.00±0.00 1.00±0.00 0.51±0.00 27.00±0.00 1.00±0.00 0.14±0.00 68.90±0.55 1.00±0.00 0.18±0.00 57.00±0.00

bpic18-5 bpic18-6 bpic18-7 bpic18-8

IMf 0.80±0.01 0.67±0.01 129.10±15.84 0.97±0.00 0.55±0.02 73.83±2.74 0.93±0.02 0.83±0.01 164.67±17.54 1.00±0.00 0.89±0.06 54.87±3.17

IN 0.78±0.01 0.69±0.05 164.00±43.89 0.97±0.00 0.55±0.02 73.83±2.74 0.89±0.03 0.84±0.02 220.43±70.34 1.00±0.00 0.89±0.05 54.87±3.17

ETM ! ! ! ! ! ! ! ! ! ! ! !

SM 0.88±0.00 0.74±0.00 131.00±0.00 1.00±0.00 0.72±0.01 147.00±0.00 0.02±0.00 0.96±0.00 333.00±0.00 1.00±0.00 0.97±0.03 66.00±0.00

IMfd 0.76±0.06 0.67±0.11 118.97±23.81 0.94±0.00 0.57±0.02 121.87±0.73 0.87±0.04 0.49±0.04 296.97±42.23 0.99±0.01 0.74±0.08 75.43±10.25

IMfw 0.68±0.02 0.82±0.05 138.47±13.55 0.85±0.00 0.57±0.02 81.87±0.73 0.92±0.00 0.46±0.04 141.67±8.28 0.96±0.02 0.85±0.05 56.97±5.18

F 1.00±0.00 0.15±0.00 54.00±0.00 1.00±0.00 0.34±0.01 39.00±0.00 1.00±0.00 0.64±0.01 81.00±0.00 1.00±0.00 0.41±0.01 27.00±0.00

Table 1: Result of the model-quality evaluation. Missing results are denoted with !; results obtained using PCC are underlined.

Checking framework (PCC) [13]. ETM could not discover models

for some event logs, and for 5 logs, models discovered by SM were

not bounded and could be handled by neither ETC nor PCC. For

BPIC18-4, the models obtained using IMfw could not be measured

using ETC due to their size, thus we exclude these results here.

Considering Q1, the measured quality of the models of IMfw

and IMfd is different for all event logs, which indicates that their

models are different as well. In detail, compared to IMfd, IMfw has

a higher fitness for Roadfines and BPIC18-7, and a higher precision

for Sepsis, BPIC15-3, BPIC18-1, BPIC18-2, BPIC18-5 and BPIC18-8.

Furthermore, the models discovered by IMfw were simpler for 14

out of the 16 logs. This shows that the MSD abstraction in fact

influences discovery in real-life event logs.

Considering Q2, IMfw obtained (on average) pareto-optimal re-

sults for 6 logs (BPIC12, BPIC15-2, BPIC15-4, BPIC18-1, BPIC18-2,

BPIC18-5) of the 14 successfully tested logs. That is, for these event

logs, no model discovered by any other technique is as good as

the model discovered by IMfw on all dimensions, and better on at

least one. This does not ensure that IMfw is the best choice for all

imaginable use cases, however it shows that even though the IMfw

algorithm uses less information from event logs, it can neverthe-

less discover optimal results compared to techniques that use the

entire event log (IMf, IN, ETM, SM, F), while being more broadly

applicable than ETM and SM.

Finally, IMfw’s results tend to have large variations, which, given

the cross validation procedure, we believe is due to IMfw’s use of

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Alifah Syamsiyah and Sander J.J. Leemans

abstractions, causing it to use less information from the event log

than other techniques.

7 CONCLUSION
Process mining can create value for organizations using the om-

nipresent availability of event data nowadays. However, as event

data are typically logged in legacy information systems, such as

databases, process discovery techniques require these data to be

transformed and extracted into main memory or into standardized

environments. To avoid these transformation and extraction steps,

some works [16, 18] introduced a direct approach by processing

event data in databases. These works apply a separation of duties

to process discovery by splitting it into two phases: first, an abstrac-

tion of an event log is constructed in a single pass over the event

log, after which from the abstraction a process model is constructed.

Through this strategy, the handling of event logs is decoupled from

the mining activity, thus it is neither necessary to load the data

into main memory, nor to transform data into a specific format, nor

to copy the data to a different environment. However, these tech-

niques only focus on the simplest abstraction called the Directly

Follows (DF) abstraction.

In this paper, we exploited another abstraction to extend the class

of processes that can be discovered: the Minimum Self Distance

(MSD) abstraction. Aswith the DF abstraction, we compute theMSD

abstraction in-database and keep both abstractions live: for each

new insertion of event data, DF and MSD are updated automatically.

Through this approach, we avoid the need to extract and transform

event data. Furthermore, the DF and MSD abstractions are always

ready for the subsequent mining phase, which avoids peak loads

on production systems and saves process analysts time.

The process discovery phase of our approach consists of a new

process discovery framework (IMw) and an algorithm implementing

it (IMfw), that takes a DF and MSD abstraction to discover a process

model by recursively searching for cuts, until a fallthrough or a

base case is found. Since IMw only uses information from the DF

and MSD abstractions (and not the full event logs), it paves the

way for process discovery on large and complex event logs as the

abstractions are considerably smaller than the full event logs.

We evaluated our approach on three aspects. The first experi-

ment showed that in-database abstraction followed by IMfw yields

performance benefits in terms of computation time and memory

usage compared to a traditional in-memory abstraction approach

followed by IMfw. The second experiment revealed how the in-

database abstraction progressively builds the DF and MSD abstra-

tions, and that the time required to process events has a constant

trend after an initialization period, such that the live abstractions

have a constant performance impact, independent of the size of the

log. Finally, the third experiment showed that despite its use of ab-

stractions, IMfw discovered pareto-optimal models (measured using

fitness, precision, and simplicity values) from real-live event logs

compared to existing process discovery techniques, even though

it uses less information from the logs. For future work, we aim to

further investigate rediscoverability of IMw and IMfw, to extend

the in-database abstraction with other abstractions, and to extend

discovery techniques accordingly.

REFERENCES
[1] [n. d.]. SAP Process Mining by Celonis. https://www.sap.com/developer/

showcases/process-mining-by-celonis.html. Accessed: 2019-03-05.

[2] A. Augusto, R. Conforti, M. Dumas, andM. La Rosa. 2017. Split Miner: Discovering

Accurate and Simple Business Process Models from Event Logs. In ICDM 2017.

1–10. https://doi.org/10.1109/ICDM.2017.9

[3] J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. 2012. A Genetic

Algorithm for Discovering Process Trees. In IEEE CEC. 1–8. https://doi.org/10.

1109/CEC.2012.6256458

[4] D. Calvanese, T.E. Kalayci, M. Montali, and S. Tinella. 2017. Ontology-based

Data Access for Extracting Event Logs from Legacy Data: The onprom Tool and

Methodology. In BIS 2017.

[5] D. Calvanese, M. Montali, A. Syamsiyah, and W.M.P. van der Aalst. 2015.

Ontology-Driven Extraction of Event Logs from Relational Databases. In BPM

workshops. 140–153. https://doi.org/10.1007/978-3-319-42887-1_12

[6] E.G.L. de Murillas, W.M.P. van der Aalst, and H.A. Reijers. 2015. Process Mining

on Databases: Unearthing Historical Data from Redo Logs. In BPM 2015. 367–385.

https://doi.org/10.1007/978-3-319-23063-4_25

[7] R.M. Dijkman, J. Gao, A. Syamsiyah, B.F. van Dongen, P. Grefen, and A. ter

Hofstede. 2019. Enabling Efficient Process Mining on Large Data Sets: Realizing

an In-database Process Mining Operator. Distributed and Parallel Databases (09

May 2019). https://doi.org/10.1007/s10619-019-07270-1

[8] E. Gonzalez. 2019. Process Mining on Databases: Extracting Event Data from Real-

life Data Sources. Ph.D. Dissertation. TU Eindhoven.

[9] C.W. Günther. 2014. XES Standard Definition. www.xes-standard.org.

[10] S.J.J. Leemans. 2017. Robust Process Mining with Guarantees. Ph.D. Dissertation.

TU Eindhoven.

[11] S.J.J. Leemans and D. Fahland. [n. d.]. Information-Preserving Abstractions of

Event Data in Process Mining. KAIS accepted ([n. d.]).

[12] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. 2013. Discovering Block-

Structured Process Models from Event Logs Containing Infrequent Behaviour.

In BPM Workshops 2013. https://doi.org/10.1007/978-3-319-06257-0_6

[13] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. 2018. Scalable process

discovery and conformance checking. Software and System Modeling 17, 2 (2018),

599–631. https://doi.org/10.1007/s10270-016-0545-x

[14] S.J.J. Leemans, N. Tax, and A.H.M. ter Hofstede. 2018. Indulpet Miner: Com-

bining Discovery Algorithms. In CoopIS. 97–115. https://doi.org/10.1007/

978-3-030-02610-3_6

[15] J. Munoz-Gama. 2016. Conformance Checking and Diagnosis in Process Mining -

Comparing Observed and Modeled Processes. LNBIP, Vol. 270. Springer. https:

//doi.org/10.1007/978-3-319-49451-7

[16] A. Syamsiyah, B.F. van Dongen, and R. Dijkman. 2018. A Native Opera-

tor for Process Discovery. In DEXA 2018. 292–300. https://doi.org/10.1007/

978-3-319-98812-2_25

[17] A. Syamsiyah, B.F. van Dongen, and W.M.P. van der Aalst. 2016. DB-XES: En-

abling Process Mining in the Large. In SIMPDA 2016. 63–77. http://ceur-ws.org/

Vol-1757/paper5.pdf

[18] A. Syamsiyah, B.F. van Dongen, and W.M.P van der Aalst. 2017. Recurrent

Process Mining with Live Event Data. In BPI 2017. 178–190. https://doi.org/10.

1007/978-3-319-74030-0_13

[19] W.M.P. van der Aalst. 2016. Process Mining: Data Science in Action. Springer.

[20] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. 2012. Replaying

History on Process Models for Conformance Checking and Performance Analysis.

DMKD 2, 2 (2012), 182–192. https://doi.org/10.1002/widm.1045

[21] W.M.P. van der Aalst, A.J.M.M. Weijter, and L. Maruster. 2003. Workflow Mining:

Discovering Process Models from Event Logs. TKDE 16 (2003), 2004.

[22] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. 2008.

Process Discovery Using Integer Linear Programming. InApplications and Theory

of Petri Nets. Springer Berlin Heidelberg, Berlin, Heidelberg, 368–387.

[23] B.F. van Dongen and S. Shabani. 2015. Relational XES: Data Management for

Process Mining. In CAiSE 2015. 169–176. http://ceur-ws.org/Vol-1367/paper-22.

pdf

[24] S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. 2016. Online Discovery

of Cooperative Structures in Business Processes. In OTM Conferences 2016. 210–

228. https://doi.org/10.1007/978-3-319-48472-3_12

[25] S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. 2018. Event Stream-

based Process Discovery Using Abstract Representations. Knowl. Inf. Syst. 54, 2

(2018), 407–435. https://doi.org/10.1007/s10115-017-1060-2

[26] S.K.L.M. vanden Broucke and J. De Weerdt. 2017. Fodina: A Robust and Flexible

Heuristic Process Discovery Technique. Decision Support Systems 100 (2017), 109

– 118. https://doi.org/10.1016/j.dss.2017.04.005

[27] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. 2010.

XES, XESame, and ProM 6. In Information Systems Evolution, Vol. 72. 60–75.

[28] A.J.M.M. Weijters and J.T.S. Ribeiro. 2011. Flexible Heuristics Miner (FHM). In

CIDM 2011. 310–317. https://doi.org/10.1109/CIDM.2011.5949453

https://www.sap.com/developer/showcases/process-mining-by-celonis.html
https://www.sap.com/developer/showcases/process-mining-by-celonis.html
https://doi.org/10.1109/ICDM.2017.9
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1007/s10619-019-07270-1
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-030-02610-3_6
https://doi.org/10.1007/978-3-030-02610-3_6
https://doi.org/10.1007/978-3-319-49451-7
https://doi.org/10.1007/978-3-319-49451-7
https://doi.org/10.1007/978-3-319-98812-2_25
https://doi.org/10.1007/978-3-319-98812-2_25
http://ceur-ws.org/Vol-1757/paper5.pdf
http://ceur-ws.org/Vol-1757/paper5.pdf
https://doi.org/10.1007/978-3-319-74030-0_13
https://doi.org/10.1007/978-3-319-74030-0_13
https://doi.org/10.1002/widm.1045
http://ceur-ws.org/Vol-1367/paper-22.pdf
http://ceur-ws.org/Vol-1367/paper-22.pdf
https://doi.org/10.1007/978-3-319-48472-3_12
https://doi.org/10.1007/s10115-017-1060-2
https://doi.org/10.1016/j.dss.2017.04.005
https://doi.org/10.1109/CIDM.2011.5949453

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 In-database Abstraction for Process Discovery
	4.1 DF and MSD Abstraction Phase
	4.2 DF Update Function
	4.3 MSD Update Function

	5 Process Discovery using the DF and MSD Abstractions
	5.1 Framework (IMw)
	5.2 Algorithm (IMfw)
	5.3 Example
	5.4 Guarantees

	6 Evaluation
	6.1 Traditional IMfw vs IMfw with In-database Abstraction
	6.2 Update Function
	6.3 Model Quality

	7 Conclusion
	References

