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Abstract

The problem of automatically discovering business process models from event logs
has been intensely investigated in the past two decades, leading to a wide range
of approaches that strike various trade-offs between accuracy, model complexity,
and execution time. A few studies have suggested that the accuracy of automated
process discovery approaches can be enhanced by means of metaheuristic optimization
techniques. However, these studies have remained at the level of proposals without
validation on real-life datasets or they have only considered one metaheuristic in
isolation. This article presents a metaheuristic optimization framework for automated
process discovery. The key idea of the framework is to construct a Directly-Follows
Graph (DFG) from the event log, to perturb this DFG so as to generate new candidate
solutions, and to apply a DFG-based automated process discovery approach in order
to derive a process model from each DFG. The framework can be instantiated by
linking it to an automated process discovery approach, an optimization metaheuristic,
and the quality measure to be optimized (e.g. fitness, precision, F-score). The article
considers several instantiations of the framework corresponding to four optimization
metaheuristics, three automated process discovery approaches (Inductive Miner –
directly follows, Fodina, and Split Miner), and one accuracy measure (Markovian
F-score). These framework instances are compared using a set of 20 real-life event
logs. The evaluation shows that metaheuristic optimization consistently yields visible
improvements in F-score for all the three automated process discovery approaches, at
the cost of execution times in the order of minutes, versus seconds for the baseline
approaches.
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1. Introduction

Modern information systems such as Customer Relationship Management (CRM)
and Enterprise Resource Planning (ERP) systems record transactions corresponding
to activities executed within the business processes that these systems support. For
example, a CRM system typically records transactions corresponding to the creation
of a customer lead, a request for quote, and various other activities related to customer
leads, quotes, and purchase orders. These transactional records can be extracted via
SQL queries or via dedicated Application Programming Interfaces (APIs) and used to
analyze the execution of the business processes supported by the CRM system, such as
the lead-to-quote or the quote-to-order process.

Process mining [33] is a family of techniques to analyze transactional records as-
sociated to a given business process, also known as an event log, in order to extract
insights about the performance of the process. Among other things, process mining
techniques allow us to discover a process model from an event log, an operation known
as automated process discovery. Automatically discovered process models allow an-
alysts to understand how the process is executed in reality and to uncover unexpected
behaviour. When enhanced with performance information (e.g. average activity du-
rations or waiting times), such models are also used for performance analysis, e.g. to
detect bottlenecks.

The problem of automated process discovery has been intensely studied in the past
two decades [8]. Research in this field has led to a wide range of Automated Pro-
cess Discovery Approaches (APDAs) that strike various trade-offs between accuracy1,
model complexity, and execution time. Existing approaches in this field rely on pa-
rameters (with certain default values) to strike this tradeoff. Analysts need to fine-tune
these parameters to find a model with the best possible trade-off between different
model quality metrics. This article addresses the question of how to automate the fine-
tuning of automated process discovery techniques.

A few studies have suggested that the accuracy of APDAs can be enhanced
by applying optimization metaheuristics. Early studies in this direction considered
population-based metaheuristics (P-metaheuristics), chiefly genetic algorithms [16,
13]. However, these heuristics are computationally heavy, requiring execution times
in the order of hours to converge when applied to real-life logs [8]. Such high ex-
ecutions times make these techniques inapplicable in the context of exploratory and
interactive process discovery, where an analyst may need to discover process models
corresponding to several variants of a process (e.g. one process model per type of prod-
uct, per type of customer, or per region or country) in order to compare the behavior
of the process in different settings. Accordingly, other studies have considered the use
of single-solution-based metaheuristics (S-metaheuristics) such as simulated anneal-
ing [29, 18], which are less computationally demanding. However, these latter studies
remain at the level of proposals without validation on real-life logs and comparison of
trade-offs between alternative metaheuristics.

In this setting, this article studies the following question: to what extent can the
accuracy of APDAs be improved by applying single-solution-based metaheuristics? To

1Here, the term accuracy is used in its informal sense to refer to how well a given process model reflects
the event log from which it was discovered. Later in the article, we introduce specific measures of accuracy
such as fitness and precision.
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address this question, the article outlines a framework to enhance APDAs by applying
optimization metaheuristics. The core idea is to perturb the intermediate representation
of event logs used by several of the available APDAs, namely the Directly-Follows
Graph (DFG). The paper specifically considers perturbations that add or remove edges
with the aim of improving fitness or precision, and in a way that allows the underlying
APDA to discover a process model from the perturbed DFG.

The proposed framework can be instantiated by linking it to three components: (i)
an automated process discovery approach; (ii) an optimization metaheuristic; and (iii)
the quality measure to be optimized, such as fitness, precision, or F-score. The article
considers instantiations of the framework corresponding to three APDAs (Inductive
Miner [24],2 Fodina [34], and Split Miner [9]), four optimization metaheuristics (it-
erative local search, repeated local search, tabu search, simulated annealing), and one
accuracy measure (Markovian F-score).

Using a benchmark of 20 real-life logs, the article compares the accuracy gains
yielded by the above optimization metaheuristics relative to each other, and relative to
the baseline (unoptimized) APDAs upon which they rely. The experimental evaluation
also considers the impact of metaheuristic optimization on model complexity measures
as well as on execution times.

This article is an extended and revised version of a conference paper [10]. In the
conference paper, we presented an approach to optimize the accuracy of one automated
process discovery approach, namely Split Miner, by applying S-metaheuristics, and we
reported a comparison between the benefits of applying single-solution-based meta-
heuristics against the benefits of applying P-metaheuristics (using Evolutionary Tree
Miner [13] as representative APDA of this category). Our former comparison [10]
showed that S-metaheuristics outperform P-metaheuristics not only in terms of execu-
tion time efficiency, but also in terms of accuracy of the discovered process models;
such a result also supported the findings of the latest literature review of automated
process discovery approaches [8]. This article extends our previous approach [10] into
a modular framework that can be used to optimize other APDAs, specifically those
APDAs that construct a DFG from the event log and use it as an intermediate artifact to
discover a process model. This article also extends the conference paper by considering
not only Split Miner, but also two other APDAs, namely Fodina and Inductive Miner.
Finally, the article reports an empirical evaluation covering all three approaches (Split
Miner, Fodina, and Inductive Miner). The evaluation not only proves the applicability
and relevance of S-metaheuristics to the problem of automated process discovery, but
it also highlights the benefits yielded by S-metaheuristics.

The rest of the paper is structured as follows. The next section gives an overview
of APDAs and optimization metaheuristics, where we discuss the background and the
related work. Section 3 presents the proposed metaheuristic optimization framework
and its instantiations. Section 4 reports on the empirical evaluation and Section 5 draws
conclusions and future work directions.

2We consider a specific version of Inductive Miner known as “Inductive Miner – directly-follows”.
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2. Background and Related Work

In this section, we give an overview of existing approaches for automated process
discovery, followed by an introduction to optimization metaheuristics in general, and
their application to automated process discovery in particular.

2.1. Automated Process Discovery
The execution of business processes is often recorded in the form of event logs.

An event log is a collection of event records produced by individual instances (i.e.
cases) of the process. The goal of automated process discovery is to generate a process
model that captures the behavior observed in or implied by an event log. To assess the
goodness of a discovered process model, four quality dimensions are used [33]: fitness,
precision, generalization, and complexity. Fitness (a.k.a. recall) measures the amount
of behavior observed in the log that is captured by the model. A perfectly fitting process
model is one that recognizes every trace in the log. Precision measures the amount of
behavior captured in the process model that is observed in the log. A perfectly precise
model is one that recognizes only traces that are observed in the log. Generalization
measures to what extent the process model captures behavior that, despite not being
observed in the log, is implied by it. Finally, complexity measures the understandability
of a process model, and it is typically measured via size and structural measures. In
this paper, we focus on fitness, precision, and F-score (the harmonic mean of fitness
and precision).

A recent comparison of state-of-the-art APDAs [8] showed that an approach ca-
pable of consistently discovering models with the best fitness-precision trade-off is
currently missing. The same study showed, however, that we can obtain consistently
good trade-offs by hyperparameter-optimizing some of the existing APDAs based on
DFGs – Inductive Miner [24], Structured Heuristics Miner [7], Fodina [34], and Split
Miner [9]. These algorithms have a hyperparameter to tune the amount of filtering
applied when constructing the DFG. Optimizing this and other hyperparameters via
greedy search [8], local search strategies [14], or sensitivity analysis techniques [27],
can greatly improve the accuracy of the discovered process models. Accordingly, in
the evaluation reported later we use a hyperparameter-optimized version of Split Miner
as one of the baselines.

The problem of discovering accurate process models from event logs is inevitably
related to that of ensuring event log quality. There is a rich collection of methods
for detecting and handling data quality issues in event logs [31]. However, this latter
body of work is largely orthogonal to the contribution of this article, as this article
focuses on discovering process models assuming that data quality issues have been
addressed. This having been said, the methods presented in this paper partially address
one type of data quality issue, namely the presence of noise (infrequent behaviour) in
an event log [31]. To mitigate the impact of noise on the discovered process model,
automated process discovery approaches, including those extended in this paper, apply
a dependency filtering step. The optimization techniques proposed in this article fine-
tune the level of filtering in order to maximize the accuracy of the discovered process
model.

2.2. Optimization Metaheuristics
The term optimization metaheuristics refers to a parameterized algorithm, which

can be instantiated to address a wide range of optimization problems. Metaheuris-
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tics are usually classified into two broad categories [12]: (i) single-solution-based
metaheuristics, or S-metaheuristics, which explore the solution space one solution
at a time starting from a single initial solution of the problem; and (ii) population-
based metaheuristics, or P-metaheuristics, which explore a population of solutions
generated by mutating, combining, and/or improving previously identified solutions.
S-metaheuristics tend to converge faster towards an optimal solution (either local or
global) than P-metaheuristics, since the latter by dealing with a set of solutions require
more time to assess and improve the quality of each single solution. P-metaheuristics
are computationally heavier than S-metaheuristics, but they are more likely to escape
local optima. Providing an exhaustive discussion on all the available metaheuristics is
beyond the scope of this paper, in the following, we focus on the four S-metaheuristics
that we integrated in our optimization framework and on the P-metaheuristics that have
been previously adapted to address the problem of automated process discovery.

Iterated Local Search [30] starts from a (random) solution and explores the neigh-
bouring solutions (i.e. solutions obtained by applying a change to the current solution)
in search of a better one. When a better solution cannot be found, it perturbs the current
solution and starts again. The perturbation is meant to avoid local optimal solutions.
The exploration of the solution-space ends when a given termination criterion is met
(e.g. maximum iterations, timeout).

Tabu Search [19] is a memory-driven local search. Its initialization includes a (ran-
dom) solution and three memories: short, intermediate, and long term. The short-term
memory keeps track of recent solutions and prohibits to revisit them. The intermediate-
term memory contains criteria driving the search towards the best solutions. The long-
term memory contains characteristics that have often been found in many visited so-
lutions, to avoid revisiting similar solutions. Using these memories, the neighbour-
hood of the initial solution is explored and a new solution is selected accordingly. The
solution-space exploration is repeated until a termination criterion is met.

Simulated Annealing [22] is based on the concepts of Temperature (T , a parameter
chosen arbitrarily) and Energy (E, the objective function to minimize). At each iter-
ation the algorithm explores (some of) the neighbouring solutions and compares their
energies with the one of the current solution. This latter is updated if the energy of a
neighbour is lower, or with a probability that is function of T and the energies of the

current and candidate solutions, usually e−
|E1−E2|

T . The temperature drops over time,
thus reducing the chance of updating the current solution with a higher-energy one. The
algorithm ends when a termination criterion is met, which often relates to the energy
or the temperature (e.g. energy below a threshold or T = 0).

Evolutionary (Genetic) Algorithms [20, 11] are inspired by Darwin’s theory of evo-
lution. Starting from a set of (random) solutions, a new solution is generated by mix-
ing characteristics of two parents selected from the set of the current solutions, such
an operation is known as crossover. Subsequently, mutations are applied to the new
solutions to introduce randomness and avoid local optimal solution. Finally, the solu-
tions obtained are assessed and a subset is retained for the next iteration. The algorithm
continues until a stop criterion is met.

Swarm Particle Optimization [21] starts from a set of (random) solutions, referred
to as particles. Each particle is identified using the concepts of position and velocity.
The position is a proxy for the particle qualities and it embeds the characteristics of the
solution, while the velocity is used to alter the position of the particles at each iteration.
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Furthermore, each particle has memory of its best position encountered during the
roaming of the search space, as well as the best position encountered by any other
particle. At each iteration, the algorithm updates the particles positions according to
their velocities and updates the best positions found. When a termination condition
is met, the algorithm returns the particle having the absolute best position among the
whole swarm.

Imperialist Competitive Algorithm [4] is inspired by the historical colonial period.
It starts from a (random) set of solutions, called countries. Each country is assessed via
an objective function, and a subset is selected as imperialistic countries (the selection
is based on their objective function scores). All the countries left (i.e. those having low
objective function scores) are considered colonies of the closest (by characteristics)
imperialistic country. Then, each colony is altered to resemble its imperialistic coun-
try, the objective function scores are re-computed, and the colonies that became better
than their imperialistic country are promoted to imperialistic countries and vice-versa.
When a termination condition is met, the country with the highest objective function
score is selected as the best solution.

2.3. Optimization Metaheuristics in Automated Process Discovery

Optimization metaheuristics have been considered in a few previous studies on au-
tomated process discovery. An early attempt to apply P-metaheuristics to automated
process discovery was the Genetic Miner proposed by De Medeiros [16], subsequently
overtaken by the Evolutionary Tree Miner [13]. Other applications of P-metaheuristics
include the contribution of Alizadeh et al. [3] who showed to improve fitness and pre-
cision of the discovered process models by using the imperialist competitive algorithm,
outperforming some state-of-the-art APDAs (including α ++ [36], Flexible Heuristics
Miner [35], and Fodina [34]), however, the implementation of the method designed by
Alizadeh et al. is not publicly available, and the benchmark they used differ from the
one suggested in the latest literature review [8]. Some research studies adapted the
particle swarm optimization metaheuristic to solve the problem of automated process
discovery from event logs [15, 17], but these studies are seminal and they lack of a
solid evaluation on real-life logs. One of the most recent studies tried to combine evo-
lutionary computation with particle swarm optimization [25] by extending the work of
Buijs et al [13], but also in this case the authors did not provide a working implemen-
tation of their method, and they did not assess it on public datasets, so that it is difficult
to estimate the real benefits of their proposed improvements. In our context, the main
limitation of P-metaheuristics is that they are computationally heavy due to the cost of
constructing a solution (i.e. a process model) and evaluating its accuracy. This leads to
execution times in the order of hours, to converge to a solution that in the end is com-
parable to those obtained by state-of-the-art APDAs that do not rely on optimization
metaheuristics [8].

Finally, a handful of studies have considered the use of S-metaheuristics to auto-
matically discover optimal process models, specifically simulated annealing [29, 18],
but these proposals are preliminary and have not been compared against state-of-the-art
approaches on real-life logs.
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3. Metaheuristic Optimization Framework

This section outlines our framework for optimizing APDAs by means of S-
metaheuristics (cf. Section 2). First, we give an overview of the framework and its
core components. Next, we discuss the adaptation of the S-metaheuristics to the prob-
lem of process discovery. Finally, we describe the instantiations of our framework for
Split Miner, Fodina, and Inductive Miner.

3.1. Preliminaries
In order to discover a process model, an APDA takes as input an event log and

transforms it into an intermediate representation from which a process model is de-
rived. Below, we define one of the most popular intermediate representations, that is
the Directly-Follows Graph (DFG). Although other intermediate representations are
available in the literature (e.g behavioral profiles [28]), our framework focuses only on
DFGs for two main reasons: first, because they are adopted by many state-of-the-art
automated process discovery approaches [35, 24, 7, 34, 9]; second, because they allow
us to leverage the Markovian accuracy [5] to facilitate the application of metaheuristics
and the navigation of the solution space as we show later in this section.

Definition 1. [Event Log] Given a set of activities A , an event log L is a multiset
of traces where a trace t ∈L is a sequence of activities t = 〈a1,a2, . . . ,an〉, with ai ∈
A ,1≤ i≤ n.

Definition 2. [Directly-Follows Graph (DFG)] Given an event log L , its Directly-
Follows Graph (DFG) is a directed graph G = (N,E), where: N is the set of nodes,
N = {a ∈ A | ∃t ∈L ∧ a ∈ t}; and E is the set of edges E = {(x,y) ∈ N×N | ∃t =
〈a1,a2, . . . ,an〉, t ∈L ∧ai = x∧ai+1 = y [1≤ i≤ n−1]}.

By definition, each node of the DFG represents an activity recorded in at least one
trace of the event log, whilst each edge of a DFG represents a directly-follows relation
between two activities (represented by the node source and the node target of the edge).
An APDA is said to be DFG-based if it first generates the DFG of the event log, then
applies an algorithm to manipulate the DFG (e.g. removing edges), and finally converts
the processed DFG into a process model. Such a processed DFG will not adhere any
more to Definition 2, therefore, we redefine it as Refined DFG.

Definition 3. [Refined DFG] Given an event log L and its DFG GL = (N,E), a
Refined DFG is a directed graph G = (N′,E ′), where: N′ ⊆ N and E ′ ⊆ E. If N′ = N
and E ′ = E, the refined DFG is equivalent to the event log DFG.

Examples of DFG-based APDAs are Inductive Miner [24], Heuristics Miner [35, 7],
Fodina [34], and Split Miner [9]. Different DFG-based APDAs may extract different
Refined DFGs from the same log. Also, a DFG-based APDA may discover different
Refined DFGs from the same log depending on its hyperparameter settings (e.g. a filter-
ing threshold). The algorithm(s) used by a DFG-based APDA to discover the Refined
DFG from the event log and convert it into a process model may greatly affect the ac-
curacy of an APDA. Accordingly, our framework focuses on optimizing the discovery
of the Refined DFG rather than its conversion into a process model.

Given that a Refined DFG is a binary graph, it is possible to represent it in the form
of a matrix as follows.
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Definition 4. [DFG-Matrix] Given a Refined DFG G = (N,E) and a function θ : N→
[1, |N|],3 the DFG-Matrix is a squared matrix XG ∈ [0,1]∩N|N|×|N|, where each cell
xi, j = 1⇐⇒∃(a1,a2) ∈ E | θ(a1) = i∧θ(a2) = j, otherwise xi, j = 0.

In the remaining of this paper, we refer to the Refined DFG as DFG for simplicity
reason.

3.2. Framework Overview

Figure 1: Overview of our optimization framework.

As shown in Figure 1, our framework takes three inputs (in addition to the log):
(i) the optimization metaheuristics; (ii) the objective function to be optimized (e.g.
F-score); (iii) and the DFG-based APDA to be used for discovering a process model.

Algorithm 1 describes how our framework operates, while Figure 2 captures the
control flow representation of the Algorithm 1. First, the input event log is given to
the APDA, which returns the discovered (refined) DFG and its corresponding process
model (lines 1 and 2). This (refined) DFG becomes the current DFG, whilst the process
model becomes the best process model (so far). This process model’s objective function
score (e.g. the F-score) is stored as the current score and the best score (lines 3 and 4).
The current DFG is then given as input to the function GenerateNeighbours, which
applies changes to the current DFG to generate a set of neighbouring DFGs (line 6).
The latter ones are given as input to the APDA, which returns the corresponding process
models. The process models are assessed by the objective function evaluators (line 9
to 13). When the metaheuristic receives the results from the evaluators (along with the
current DFG and its score), it chooses the new current DFG and updates the current
score (lines 14 and 15). If the new current score is higher than the best score (line 16),
it updates the best process model and the best score (lines 17 and 18). After the update,
a new iteration starts, unless a termination criterion is met (e.g. a timeout, a maximum
number of iterations, or a minimum threshold for the objective function). In the latter
case, the framework outputs the best process model identified, i.e. the process model
scoring the highest value for the objective function.

3θ maps each node of the Refined DFG to a natural number.
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Figure 2: Algorithm 1 – control flow sketch.

Algorithm 1: Optimization Framework
input : Event Log L , Metaheuristic ω , Objective Function F , DFG-based APDA α

CurrentDFG Gc← DiscoverRefinedDFG(α , L );1
BestModel m̂← ConvertDFGtoProcessModel(α , Gc);2
CurrentScore sc← AssessQuality(F , L , m̂);3
BestScore ŝ← sc;4
while CheckTerminationCriteria() = FALSE do5

Set V ← GenerateNeighbours(Gc, sc);6
Map S←∅;7
Map M←∅;8
for G ∈V do9

ProcessModel m← ConvertDFGtoProcessModel(α , G );10
Score s← AssessQuality(F , L , m);11
add (G , s) to S;12
add (G , m) to M;13

Gc← UpdateDFG(ω , S, Gc, sc, α , L );14
sc← GetMapElement(S, Gc);15
if ŝ < sc then16

ŝ← sc;17
m̂← GetMapElement(M, Gc);18

return m̂;19
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3.3. Adaptation of the Optimization Metaheuristics
To adapt Iterative Local Search (ILS), Tabu Search (TABU), and Simulated An-

nealing (SIMA) to the problem of automated process discovery, we need to define the
following three concepts: i) the problem solution space; ii) a solution neighbourhood;
iii) the objective function. These design choices influence how each of the metaheuris-
tics navigates the solution space and escapes local minima, i.e. how to design the Al-
gorithm 1 functions: GenerateNeighbours and UpdateDFG, resp. lines 6 and 14.

Solution Space. Our goal being the optimization of APDAs, we are forced to
choose a solution space that fits well our context regardless the selected APDA. If we
assume that the APDA is DFG-based (that is the case for the majority of the available
APDAs), we can define the solution space as the set of all the DFG discoverable from
the event log. Indeed, any DFG-based APDA can generate deterministically a process
model from a DFG.

Solution Neighbourhood. Having defined the solution space as the set of all the
DFG discoverable from the event log, we can refer to any element of this solution space
as a DFG-Matrix. Given a DFG-Matrix, we define its neighbourhood as the set of all
the matrices having one different cell value (i.e. DFGs having one more/less edge). In
the following, every time we refer to a DFG we assume it is represented as a DFG-
Matrix.

Objective Function. It is possible to define the objective function as any function
assessing one of the four quality dimensions for discovered process models (introduced
in Section 2). However, being interested in optimizing the APDAs to discover the most
accurate process model, in our optimization framework instantiations we refer to the
objective function as the F-score of fitness and precision. Furthermore, we remark
that our framework could operate also with objective functions that take into account
multiple quality dimensions striving for a trade-off, e.g. F-score and model complex-
ity, provided the multiple quality dimensions can be combined into a unique objective
function.

Having defined the solution space, a solution neighbourhood, and the objective
function, we can turn our attention on how ILS, TABU, and SIMA navigate the solution
space. ILS, TABU, and SIMA share similar traits in solving an optimization problem,
especially when it comes to the navigation of the solution space. Given a problem and
its solution space, any of these three S-metaheuristics starts from a (random) solution,
discovers one or more neighbouring solutions, and assesses them with the objective
function to find a solution that is better than the current one. If a better solution is
found, it is chosen as the new current solution and the metaheuristic performs a new
neighbourhood exploration. If a better solution is not found, e.g. the current solution
is locally optimal, the three metaheuristics follow different approaches to escape the
local optimum and continue the solution space exploration. Algorithm 1 orchestrates
and facilitates the parts of this procedure shared by the three metaheuristics. However,
we must define the functions GenerateNeighbours (GNF) and UpdateDFG (UDF).

The GNF receives in input a solution of the solution space, i.e. a DFG, and it
generates a set of neighbouring DFGs. By definition, GNF is independent from the
metaheuristic and it can be as simple or as elaborate as we demand. An example of a
simple GNF is a function that randomly selects neighbouring DFGs turning one cell
of the input DFG-Matrix to 0 or to 1. Whilst, an example of an elaborate GNF is a
function that accurately selects neighbouring DFGs relying on the feedback received
from the objective function assessing the input DFG, as we show in Section 3.4.
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The UDF (captured in Algorithm 2) is the core of our optimization framework,
and it implements the metaheuristic itself. The UDF receives in input the selected
metaheuristic (ω), the neighbouring DFGs and their corresponding objective function
scores (S), the current DFG (Gc), the current score (sc), the APDA (α), and the event
log (L ). Then, we can differentiate two cases: i) among the input neighbouring DFGs
there is at least one having a higher objective function score than the current; ii) none
of the input neighbouring DFGs has a higher objective function score than the current.
In the first case, UDF always outputs the DFG having the highest score regardless of
the selected metaheuristic (see Algorithm 2, lines 4, 11, and 33 – respectively for ILS,
TABU, and SIMA)). In the second case, the current DFG may be a local optimum, and
each metaheuristic escapes it with a different strategy. Figures 3, 4, and 5 show the
high-level control flow of how ILS, TABU, and SIMA update the current DFG (that
is, the UDF – Algorithm 2). Iterative Local Search applies the simplest strategy, it
perturbs the current DFG (Algorithm 2, line 7). The perturbation is meant to alter the
DFG in such a way to escape the local optimum, e.g. randomly adding and removing
multiple edges from the current DFG. The perturbed DFG is the output of the UDF.
Tabu Search relies on its three memories to escape a local optimum (Algorithm 2,
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Figure 3: UDF when selecting ILS as optimization metaheuristic.

line 25 to 30 ). The short-term memory (a.k.a. Tabu-list), which contains DFG that
must not be explored further. The intermediate-term memory, which contains DFGs
that should lead to better results and, therefore, should be explored in the near future.
The long-term memory, which contains DFGs (with characteristics) that have been
seen multiple times and, therefore, not to explore in the near future. TABU updates
the three memories each time the UDF is executed. Given the set of neighbouring
DFGs and their respective objective function scores (see Algorithm 1, map S), TABU
adds each DFG to a different memory. DFGs worsening the objective function score
are added to the Tabu-list. DFGs improving the objective function score, yet less than
another neighbouring DFG, are added to the intermediate-term memory. DFGs that do
not improve the objective function score are added to the long-term memory. Also, the
current DFG is added to the Tabu-list, it being already explored. When TABU does not
find a better DFG in the neighbourhood of the current DFG, it returns the latest DFG
added to the intermediate-term memory. If the intermediate-term memory is empty,
TABU returns the latest DFG added to the long-term memory. If both these memories

11



Algorithm 2: Update DFG Function (UDF)
input : Metaheuristic ω , Neighboring-DFG Scores Map S, Current DFG Gc, Current best score sc, DFG-based

APDA α , Event Log L

Gb← Gc;1
if ω = ILS then2

for G ∈ GetMapKeys(S) do3
if GetMapElement(S, G ) > sc then4

Gb← G ;5
sc← GetMapElement(S, G );6

if Gb = Gc then Gb← PerturbDFG(α , Gc);7

if ω = TABU then8
stmp← sc;9
for G ∈ GetMapKeys(S) do10

if GetMapElement(S, G ) > sc then11
Gb← G ;12
sc← GetMapElement(S, G );13

remove Gb from S;14
sc← stmp;15
for G ∈ GetMapKeys(S) do16

if GetMapElement(S, G ) ≥ sc then17
if GetMapElement(S, G ) > sc then18

add G to IntermediateTermMemory(ω);19
else20

add G to LongTermMemory(ω);21

else22
add G to TabuList(ω);23

add Gc to TabuList(ω);24
if Gb = Gc then25

if IntermediateTermMemory(ω) 6=∅ then26
Gb← GetLastIntermediateTermMemoryElement(ω);27

else28
if LongTermMemory(ω) 6=∅ then Gb← GetLastLongTermMemoryElement(ω);29
Gb← DiscoverDFG(α , L );30

if ω = SIMA then31
for G ∈ GetMapKeys(S) do32

if GetMapElement(S, G ) > sc then33
Gb← G ;34
sc← GetMapElement(S, G );35

if Gb = Gc then36
for G ∈ GetMapKeys(S) do37

sn← GetMapElement(S, G );38

if e−
|sn−sc |

T > Random(0,1) then39
Gb← G ;40

return Gb;41
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are empty, TABU requires a new (random) DFG from the APDA, and outputs its DFG.
Simulated Annealing avoids getting stuck in a local optimum by allowing the se-

lection of DFGs worsening the objective function score (Algorithm 2, line 36 to 40
). In doing so, SIMA explores areas of the solution space that other S-metaheuristics
do not. When a better DFG is not found in the neighbourhood of the current DFG,
SIMA analyses one neighbouring DFG at a time. If this neighbour does not worsen the
objective function score, SIMA outputs it. Instead, if the neighbouring DFG worsens
the objective function score, SIMA outputs it with a probability of e−

|sn−sc|
T , where sn

and sc are the objective function scores of (respectively) the neighbouring DFG and
the current DFG, and the temperature T is an integer that converges to zero as a lin-
ear function of the maximum number of iterations. The temperature is fundamental to
avoid updating the current DFG with a worse one if there would be no time to recover
from the worsening (i.e. too few iterations left for continuing the exploration of the
solution space from the worse DFG).
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Figure 4: UDF when selecting TABU as optimization metaheuristic.
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3.4. Framework Instantiation
To assess our framework, we instantiated it for three APDAs: Split Miner [9],

Fodina [34], and Inductive Miner [24]. These three APDAs are all DFG-based, and
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they are representatives of the state of the art. In fact, the latest APDAs literature review
and benchmark [8] showed that Fodina, Split Miner, and Inductive Miner outperformed
other APDAs when their hyperparameters were optimized via a brute-force approach.
Therefore, we decided to focus on those DFG-based APDAs that would benefit the
most from the application of our optimization framework.

To complete the instantiation of our framework for any concrete DFG-based APDA,
it is necessary to implement an interface that allows the metaheuristics to interact with
the APDA (as discussed above). Such an interface should provide four functions: Dis-
coverDFG and ConvertDFGtoProcessModel (see Algorithm 1), the Restart Function
(RF) for TABU, and the Perturbation Function (PF) for ILS.

The first two functions, DiscoverDFG and ConvertDFGtoProcessModel, are inher-
ited from the DFG-based APDA, in our case Split Miner, Fodina, and Inductive Miner.
We note that Split Miner and Fodina receive as input parameter settings that can vary
the output of the DiscoverDFG function. Precisely, Split Miner has two parameters:
the noise filtering threshold, used to drop infrequent edges in the DFG, and the paral-
lelism threshold, used to determine which potential parallel relations between activi-
ties are used when discovering the process model from the DFG. Whilst, Fodina has
three parameters: the noise filtering threshold, similar to the one of Split Miner, and
two threshold to detect respectively self-loops and short-loops in the DFG. Instead,
the DFG-based variant of Inductive Miner [24] that we integrated in our optimization
framework does not receive any input parameters.

To discover the initial DFG (Algorithm 1, line 1) with Split Miner, default param-
eters are used. 4 We removed the randomness for discovering the initial DFG because
most of the times, the DFG discovered by Split Miner with default parameters is al-
ready a good solution [9], and starting the solution space exploration from this latter
can reduce the total exploration time.

Similarly, if Fodina is the selected APDA, the initial DFG (Algorithm 1, line 1) is
discovered using the default parameters of Fodina, 5 even though there is no guarantee
that the default parameters allow Fodina to discover a good starting solution [8]. Yet,
this design choice is less risky than randomly choosing the values of the input param-
eters in order to discover the initial DFG, because it is likely Fodina would discover
unsound models when randomly tuned, given that it does not guarantee soundness.

On the other hand, Inductive Miner [24] does not apply any manipulation to the
discovered initial DFG. In this case, we pseudorandomly generate an initial DFG start-
ing from a given seed, to ensure determinism. Differently than the case of Fodina, this
is a suitable design choice for Inductive Miner, because it always guarantees block-
structured sound process models, regardless of the DFG.

Function RF is very similar to DiscoverDFG, since it requires the APDA to out-
put a DFG. The only difference is that RF must output a different DFG every time
it is executed. We adapted the DiscoverDFG function of Split Miner and Fodina to
output the DFG discovered with default parameters the first time it is executed, and
a DFG discovered with pseudorandom parameters for the following executions. The
case of Inductive Miner is simpler, because the DiscoverDFG function always returns
a pseudorandom DFG. Consequently, we mapped RF to the DiscoverDFG function.

4The default parameters of Split Miner are the most likely to yield the best results [9].
5The default parameters of Fodina are the most likely to yield the best results [34].
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Finally, function PF can be provided either by the APDA (through the interface) or
by the metaheuristic. However, PF can be more effective when not generalised by the
metaheuristic, allowing the APDA to apply different perturbations to the DFGs, taking
into account how the APDA converts the DFG to a process model. We chose a different
PF for each of the three APDAs.

• Split Miner PF. We invoke Split Miner’s concurrency oracle to extract the pos-
sible parallelism relations in the log using a randomly chosen parallelism thresh-
old. For each new parallel relation discovered that is not present in the current
solution, two edges are removed from the DFG, whils, for each deprecated par-
allel relation, two edges are added to the DFG.

• Fodina PF. Given the current DFG, we analyse its self-loops and short-loops
relations using random loop thresholds. As a result, a new DFG is generated
where a different set of edges is retained as self-loops and short-loops.

• Inductive Miner PF. Since Inductive Miner does not perform any manipulation
on the DFG, we could not determine an efficient way to perturb the DFG. Thus,
we set PF = RF, so that instead of perturbing the current DFG, a new random
DFG is generated. This variant of the ILS is called Repeated Local Search (RLS).
In the evaluation reported in Section 4, we use only RLS for Inductive Miner, and
both ILS and RLS for Fodina and Split Miner.

To complete the instantiation of our framework, we need to set an objective func-
tion. With the goal of optimizing the accuracy of the APDAs, we chose as objective
function the F-score of fitness and precision. Among the existing measures of fitness
and precision, we selected the Markovian fitness and precision presented in [6, 5].6 The
rationale for this choice is that these measures of fitness and precision are the fastest
to compute among state-of-the-art measures [6, 5]. Furthermore, these measures indi-
cate what edges could be added to or removed from the DFG to improve the fitness or
precision of the model. This feedback allows us to design an effective GNF.

In the instantiation of our framework, the objective function’s output is a data struc-
ture composed of: the Markovian fitness and precision of the model, the F-score, and
the mismatches between the model and the event log identified during the computation
of the Markovian fitness and precision, i.e. the sets of edges that could be added to
improve fitness or removed to improve precision. Algorithm 3 illustrates how we build
this data structure, its high-level control flow sketch is captured in Figure 6.

Given an event log and a process model, we generate their respective Markovian
abstractions by applying the method described in [5] (lines 1 and 2). We recall that
the Markovian abstraction of the log/model is a graph, where each edge represents a
subtrace7 observed in the log/model. Next, we collect all the edges of the Markovian
abstraction of the log and of the model into two different sets: El and Em (lines 3
and 4). These two sets are used to determine the Markovian fitness and precision of the
process model [5], by applying the formula in lines 5 and respectively 10. We note that
the edges in El that cannot be found in Em (set Ed f , line 6) represent subtraces of the

6We used the Boolean function variant with order k = 5.
7The length of the subtrace is determined by the order of the Markovian abstraction, in our case k = 5.
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Figure 6: Algotihm 3 – control flow sketch.

Algorithm 3: Assess Quality with Markovian Accuracy
input : Event Log L , Model m

MarkovianAbstraction L← GenerateMarkovianAbstraction(L );1
MarkovianAbstraction P← GenerateMarkovianAbstraction(m);2
Set El ← GetEdges(L);3
Set Em← GetEdges(P);4

f ← 1− |El \Em|
|El |

;5

Set Ed f ← El \Em;6
Set E f ←∅;7
for e ∈ Ed f do8

E f ← E f∪ ExtractDFGEdges(e);9

p← 1− |Em\El |
|Em | ;10

Ed p← Em \El ;11
Set Ep←∅;12
for e ∈ Ed p do13

Ep← Ep∪ ExtractDFGEdges(e);14

s← 2· f ·p
f+p ;15

return (s, f , p,E f ,Ep);16

log that cannot be found in the process model. Vice-versa, the edges in Em that cannot
be found in El (set Ed p, line 11) represent subtraces of the process model that cannot
be found in the log. We analyse these subtraces to detect directly-follows relations, i.e.
DFG edges (lines 9 and 14), that can be added or removed from the DFG that generated
the process model in order to either improve fitness or precision. Precisely, the DFG
edges that can be added to improve fitness are those captured by the directly-follows
relations that we can find in the Markovian abstraction edges in set Ed f . On the other
hand, the edges that can be removed to improve precision are those captured by the
directly-follows relations that we can find in the Markovian abstraction edges in set
Ed p. Once these edges to be added or removed are identified (sets E f and Ep), we can
output the final data structure, which comprises the Markovian fitness and precision,
their F-score, and the two sets E f and Ep.

Given the above objective function’s output, our GNF is described in Algorithm 4,
while Figure 7 captures its high-level control flow sketch. This function receives as
input the current DFG (Gc), its objective function score (the data structure sc), and the
number of neighbours to generate (sizen). If fitness is greater than precision, we retrieve
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Algorithm 4: Generate Neighbours Function (GNF)
input : CurrentDFG Gc, CurrentMarkovianScore sc, Integer sizen

if getFitnessScore(sc) > getPrecisionScore(sc) then1
Set Em← getEdgesForImprovingPrecision(sc);2

else3
Set Em← getEdgesForImprovingFitness(sc);4

Set N←∅;5
while Em 6=∅∧|N| 6= sizen do6

Edge e← getRandomElement(Em);7
NeighbouringDFG Gn← copyDFG(Gc);8
if getFitnessScore(sc) > getPrecisionScore(sc) then9

if canRemoveEdge(Gn, e) then add Gn to N;10
else11

addEdge(Gn, e);12
add Gn to N;13

return N;14

from sc the set of edges (Em) that could be removed from Gc to improve its precision
(line 2). Conversely, if precision is greater than fitness, we retrieve from sc the set of
edges (Em) that could be added to Gc to improve its fitness (line 4). The reasoning
behind this design choice is that, given that our objective function is the F-score, it is
preferable to increase the lowest of the two measures (precision or fitness). That is,
if the fitness is lower, we increase fitness, and conversely if the precision is lower we
increase precision. Once we have Em, we randomly select one edge from it, generate
a copy of the current DFG (Gn), and either remove or add the randomly selected edge
according to the accuracy measure we want to improve (precision or fitness), see lines 7
to 13. If the removal of an edge generates a disconnected Gn, we do not add this latter to
the neighbours set (N), line 10. We keep iterating over Em until the set is empty (i.e. no
mismatching edges are left) or N reaches its maximum size (i.e. sizen). We then return
N. The algorithm ends when the maximum execution time or the maximum number of
iterations is reached.
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4. Evaluation

We implemented the proposed optimization framework as a Java command-line
application.8 This tool uses Split Miner, Fodina, and Inductive Miner as the underlying
APDAs, and the Markovian accuracy F-score as the objective function (cf. Section 3.4).
Using this implementation, we undertook to empirically evaluate the magnitude of
improvements in accuracy delivered by different instantiations of the framework.

4.1. Dataset, Quality Measures, and Experimental Setup
For our evaluation we used the dataset of the benchmark of automated process

discovery approaches in [8], which to the best of our knowledge is the most recent
benchmark on this topic. This dataset includes twelve public logs and eight private
logs. The public logs originate from the 4TU Centre for Research Data, and include
the BPI Challenge (BPIC) logs (2012-17), the Road Traffic Fines Management Process
(RTFMP) log and the SEPSIS log. These logs record executions of business processes
from a variety of domains, e.g. healthcare, finance, government and IT service manage-
ment. The eight proprietary logs are sourced from several companies in the education,
insurance, IT service management and IP management domains.

Table 1 reports the characteristics of the logs. The dataset comprises simple logs
(e.g. BPIC13cp) and very complex ones (e.g. SEPSIS, PRT2) in terms of percentage of
distinct traces, and both small logs (e.g. BPIC13cp and SEPSIS) and large ones (e.g.
BPIC17 and PRT9) in terms of total number of events.

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f BPIC152f BPIC153f BPIC154f BPIC155f
Total Traces 13,087 1,487 7,554 41,353 902 681 1,369 860 975

Dist. Traces(%) 33.4 12.3 20 36.1 32.7 61.7 60.3 52.4 45.7
Total Events 262,200 6,660 65,533 369,485 21,656 24,678 43,786 29,403 30,030
Dist. Events 36 7 13 9 70 82 62 65 74

(min) 3 1 1 3 5 4 4 5 4
Tr. length (avg) 20 4 9 9 24 36 32 34 31

(max) 175 35 123 167 50 63 54 54 61

Log BPIC17f RTFMP SEPSIS PRT1 PRT2 PRT3 PRT4 PRT6 PRT7 PRT9 PRT10
Total Traces 21,861 150,370 1,050 12,720 1,182 1,600 20,000 744 2,000 787,657 43,514

Dist. Traces(%) 40.1 0.2 80.6 8.1 97.5 19.9 29.7 22.4 6.4 0.01 0.01
Total Events 714,198 561,470 15,214 75,353 46,282 13,720 166,282 6,011 16,353 1,808,706 78,864
Dist. Events 41 11 16 9 9 15 11 9 13 8 19

(min) 11 2 3 2 12 6 6 7 8 1 1
Tr. length (avg) 33 4 14 5 39 8 8 8 8 2 1

(max) 113 2 185 64 276 9 36 21 11 58 15

Table 1: Descriptive statistics of the real-life logs (public and proprietary).

From each of these logs, we discovered 16 process models by applying the follow-
ing techniques:

• Split Miner with default parameters (SM);

• Split Miner with hyper-parameter optimization9(HPOsm);

• Split Miner optimized with our framework using the following optimization
metaheuristics: RLSsm, ILSsm, TABUsm, SIMAsm;

8Available under the label “Optimization Framework for Automated Process Discovery” at http://
apromore.org/platform/tools.
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• Fodina with default parameters (FO);

• Fodina with hyper-parameter optimization9 (HPOfo);

• Fodina optimized with our framework using the following optimization meta-
heuristics: RLSfo, ILSfo, TABUfo, SIMAfo;

• Inductive Miner IMd;

• Inductive Miner optimized with our framework using the following optimization
metaheuristics: RLSimd, TABUimd, SIMAimd.

For each of the above metaheuristics, we set the maximum execution time to five
minutes and the maximum number of iterations to 50. The same timeout was also
applied to the hyper-parameter optimizations.

For each of the discovered models we measured fitness, precision, complexity and
execution time. For measuring fitness and precision, we adopted two different sets
of measures. The first set of measures is based on alignments, computing fitness
and precision with the approaches proposed by Adriansyah et al. [2, 1] (alignment-
based accuracy). Alignment-based fitness selects for each trace in the log, the closest
trace recognized by the process model, and measures the minimal number of error-
corrections required to align these two traces (a.k.a. minimal alignment cost). The final
fitness score is equal to one minus the normalized sum of the minimal alignment cost
between each trace in the log and the closest corresponding trace recognized by the
model. Alignment-based precision builds a prefix automaton from the event log, then
it replays the process model behavior on top of the log prefix automation (with the aid
of alignments) and counts the number of times that the model can perform a move that
the prefix automaton cannot. Each of these mismatching moves is called an escaping
edge. The final value of precision is function of the number of detected escaping edges.
For more details regarding the Alignment-based fitness and precision, we refer to the
corresponding studies [2, 1].

The second set of measures is based on Markovian abstractions, computing fitness
and precision with the approaches in [5]. The Markovian fitness generates a Markovian
abstraction from the behavior recorded in the event log and a Markovian abstraction
from the behavior allowed by the process model. As mentioned in the previous section,
a Markovian abstraction is a graph where each node represents a subtrace of a fixed
length. The Markovian fitness relies on a graph comparison algorithm [23] to identify
the edges of the Markovian abstraction generated from the log that do not appear in the
Markovian abstraction generated from the process model. Similarly, the Markovian
precision is calculated by identifying (via the same graph comparison algorithm [23])
the edges of the Markovian abstraction of the process model that do not appear in
the Markovian abstraction of the log. For more details regarding the Alignment-based
fitness and precision, we refer to the corresponding study [5].

For assessing the complexity of the models we relied on size, Control-Flow Com-
plexity (CFC), and Structuredness. Size is the total number of nodes of a process model;

9Using the Markovian accuracy F-score as objective function.
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Control flow complexity (CFC) is the amount of branching induced by the split gate-
ways in a process model; Structuredness is the percentage of nodes located inside a
single-entry single-exit fragment of a process model.

Note that we did not measure the generalization of the discovered process models
because available generalization measures assess the capability of an APDA to gener-
alise the behavior recorded in the event log during the discovery of a process model,
and they do not assess the generalisation of the process model itself [32]. However,
this should not be seen as a limitation of this study, since our objective is to analyse
the benefits yielded by our optimization framework in terms of F-score (through fitness
and precision).

We used the results of these measurements to compare the quality of the models
discovered by each baseline APDA (SM, FO, IMd) against the quality of the models
discovered by the respective optimized approaches.

All the experiments were performed on an Intel Core i5-6200U@2.30GHz with
16GB RAM running Windows 10 Pro (64-bit) and JVM 8 with 14GB RAM (10GB
Stack and 4GB Heap). The framework implementation, the batch tests, the re-
sults, and all the (public) models discovered during the experiments are available
for reproducibility purposes at https://doi.org/10.6084/m9.figshare.
11413794.

4.2. Split Miner

Tables 2 and 3 show the results of our comparative evaluation for Split Miner. Each
row reports the quality of each discovered process model in terms of accuracy (both
alignment-based and Markovian), complexity, and discovery time. We held out from
the tables four logs: BPIC13cp, BPIC13inc, BPIC17, and PRT9. For these logs, none
of the metaheuristics could improve the accuracy of the model already discovered by
SM. This is due to the high fitness score achieved by SM in these logs. By design,
our metaheuristics try to improve precision by removing edges, but in these four cases,
no edge could be removed without compromising the structure of the model (i.e. the
model would become disconnected).

For the remaining 16 logs, all the metaheuristics consistently improved the Marko-
vian F-score over that achieved by SM. Also, all the metaheuristics performed better
than HPOsm, except in two cases (BPIC12 and PRT1). Overall, the most effective op-
timization metaheuristic was ILS, which delivered the highest Markovian F-score nine
times out of 16, followed by SIMAsm (eight times), RLSsm and TABUsm (six times
each). We note however that the F-score difference between the four metaheuristics is
small (in the order of one to two percentage points).

Despite the fact that the objective function of the metaheuristics was the Marko-
vian F-score, all four metaheuristics also optimized in half of the cases the alignment-
based F-score. This is due to the fact that any improvement on the Markovian fitness
translates into an improvement on the alignment-based fitness. This does not hold for
precision. The result highlights the partial correlation between alignment-based and
Markovian measures, already discussed in the previous section.

By close inspection to the complexity of the models, we note that most of the times
(nine cases out of 16) the F-score improvement achieved by the metaheuristics comes
at the cost of size and CFC. This is expected, since SM tends to discover models with
higher precision than fitness [9]. To improve the F-score, new behavior is added to the
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Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

SM 0.963 0.520 0.675 0.818 0.139 0.238 51 41 0.69 3.2
HPOsm 0.781 0.796 0.788 0.575 0.277 0.374 40 17 0.58 4295.8

BPIC12 RLSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.3
ILSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.4

TABUsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 140.7
SIMAsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 151.1

SM 0.772 0.881 0.823 0.150 1.000 0.262 20 14 1.00 0.8
HPOsm 0.852 0.857 0.855 0.449 1.000 0.619 22 16 0.59 575.8

BPIC14f RLSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 139.0
ILSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 151.3

TABUsm 0.955 0.775 0.855 0.856 0.999 0.922 26 31 0.69 154.7
SIMAsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 140.3

SM 0.899 0.871 0.885 0.701 0.726 0.713 111 45 0.51 0.7
HPOsm 0.962 0.833 0.893 0.804 0.670 0.731 117 55 0.45 1242.3

BPIC151f RLSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 163.6
ILSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 166.8

TABUsm 0.948 0.843 0.892 0.774 0.805 0.789 125 64 0.33 187.2
SIMAsm 0.920 0.839 0.878 0.772 0.807 0.789 125 63 0.43 160.4

SM 0.783 0.877 0.828 0.514 0.596 0.552 129 49 0.36 0.6
HPOsm 0.808 0.851 0.829 0.561 0.582 0.572 133 56 0.30 1398.9

BPIC152f RLSsm 0.870 0.797 0.832 0.667 0.670 0.668 156 86 0.20 158.3
ILSsm 0.869 0.795 0.830 0.663 0.680 0.671 157 86 0.20 157.6

TABUsm 0.870 0.794 0.830 0.665 0.667 0.666 150 83 0.23 176.8
SIMAsm 0.871 0.775 0.820 0.677 0.662 0.669 159 93 0.26 167.4

SM 0.774 0.925 0.843 0.436 0.764 0.555 96 35 0.49 0.5
HPOsm 0.783 0.910 0.842 0.477 0.691 0.564 99 39 0.56 9230.4

BPIC153f RLSsm 0.812 0.903 0.855 0.504 0.775 0.611 110 53 0.35 151.5
ILSsm 0.833 0.868 0.850 0.533 0.775 0.631 120 66 0.23 153.8

TABUsm 0.832 0.852 0.842 0.558 0.690 0.617 121 64 0.23 173.4
SIMAsm 0.827 0.839 0.833 0.565 0.694 0.623 123 71 0.18 159.4

SM 0.762 0.886 0.820 0.516 0.615 0.562 101 37 0.27 0.5
HPOsm 0.785 0.860 0.821 0.558 0.578 0.568 103 40 0.27 736.4

BPIC154f RLSsm 0.825 0.854 0.839 0.634 0.672 0.652 114 57 0.21 146.9
ILSsm 0.853 0.807 0.829 0.649 0.657 0.653 117 64 0.27 147.8

TABUsm 0.811 0.794 0.803 0.642 0.661 0.651 115 61 0.24 161.7
SIMAsm 0.847 0.812 0.829 0.624 0.649 0.636 117 61 0.18 148.2

SM 0.806 0.915 0.857 0.555 0.598 0.576 110 38 0.34 0.6
HPOsm 0.789 0.941 0.858 0.529 0.655 0.585 102 30 0.33 972.3

BPIC155f RLSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 159.3
ILSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 153.8

TABUsm 0.885 0.818 0.850 0.739 0.746 0.743 137 79 0.14 173.3
SIMAsm 0.867 0.811 0.838 0.734 0.727 0.731 137 78 0.16 154.3

SM 0.996 0.958 0.977 0.959 0.311 0.470 22 17 0.46 2.9
HPOsm 0.887 1.000 0.940 0.685 0.696 0.690 20 9 0.35 2452.7

RTFMP RLSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 142.8
ILSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 143.8

TABUsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 114.8
SIMAsm 0.986 1.000 0.993 0.875 0.893 0.884 23 15 0.39 131.0

SM 0.764 0.706 0.734 0.349 0.484 0.406 32 23 0.94 0.4
HPOsm 0.925 0.588 0.719 0.755 0.293 0.423 33 34 0.39 28,846

SEPSIS RLSsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 145.4
ILSsm 0.812 0.625 0.706 0.455 0.436 0.445 35 28 0.86 157.1

TABUsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 137.0
SIMAsm 0.806 0.613 0.696 0.477 0.445 0.460 35 30 0.77 137.2

Table 2: Comparative evaluation results for the public logs - Split Miner.
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Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Method Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

SM 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 0.4
HPOsm 0.999 0.948 0.972 0.989 0.620 0.762 19 14 0.53 298.3

PRT1 RLSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 155.3
ILSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 153.2

TABUsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 10.3
SIMAsm 0.983 0.964 0.974 0.814 0.722 0.765 20 15 1.00 132.6

SM 0.795 0.581 0.671 0.457 0.913 0.609 29 23 1.00 0.3
HPOsm 0.826 0.675 0.743 0.501 0.830 0.625 21 13 0.67 406.4

PRT2 RLSsm 0.886 0.421 0.571 0.629 0.751 0.685 29 34 1.00 141.4
ILSsm 0.890 0.405 0.557 0.645 0.736 0.688 29 35 1.00 172.3

TABUsm 0.866 0.425 0.570 0.600 0.782 0.679 29 33 1.00 143.1
SIMAsm 0.886 0.424 0.574 0.629 0.751 0.685 29 34 1.00 139.7

SM 0.882 0.887 0.885 0.381 0.189 0.252 31 23 0.58 0.4
HPOsm 0.890 0.899 0.895 0.461 0.518 0.488 26 14 0.81 290.2

PRT3 RLSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 138.4
ILSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 144.2

TABUsm 0.944 0.902 0.922 0.589 0.519 0.552 30 20 0.60 134.7
SIMAsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 133.7

SM 0.884 1.000 0.938 0.483 1.000 0.652 25 15 0.96 0.5
HPOsm 0.973 0.930 0.951 0.929 0.989 0.958 26 24 0.31 867.5

PRT4 RLSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 140.1
ILSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 152.3

TABUsm 0.955 0.914 0.934 0.883 0.988 0.932 26 26 0.77 138.6
SIMAsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 136.9

SM 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 0.3
HPOsm 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 105.1

PRT6 RLSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 141.1
ILSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 144.2

TABUsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 124.9
SIMAsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

SM 0.914 0.999 0.954 0.650 1.000 0.788 29 10 0.48 0.6
HPOsm 0.944 1.000 0.971 0.772 1.000 0.871 22 9 0.64 173.1

PRT7 RLSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 139.2
ILSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 142.9

TABUsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 134.0
SIMAsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 131.9

SM 0.970 0.943 0.956 0.905 0.206 0.335 45 47 0.84 0.5
HPOsm 0.936 0.943 0.939 0.810 0.243 0.374 30 22 0.73 1214.3

PRT10 RLSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 153.0
ILSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 155.4

TABUsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 117.6
SIMAsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 136.7

Table 3: Comparative evaluation results for the proprietary logs - Split Miner.
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Figure 8: BPIC14f model discovered with SIMAsm (above) and with SM (below).

Figure 9: RTFMP model discovered with SIMAsm (above) and with SM (below).

model in the form of new edges (note that new nodes are never added); this leads to new
gateways and consequently to higher size and CFC. On the other hand, when precision
is lower than fitness, and thus the metaheuristic aims to increase the value of precision
to improve the overall F-score, the result is the opposite: the model complexity reduces
as edges are removed. This is the case of the RTFMP and PRT10 logs. Supporting
examples of these two possible scenarios are Figure 8 and Figure 9. Figure 8 shows
the models discovered by SIMAsm and SM from the BPIC14f log, where the model
discovered by SIMAsm is more complex than that obtained with SM because it was
necessary to improve its fitness (adding edges). While Figure 9 shows the models
discovered by SIMAsm and SM from the RTFMP log, where the model discovered by
SIMAsm is simpler than that obtained with SM because it was necessary to improve
the precision (removing edges). Comparing the results obtained by the metaheuristics
with HPOsm, we can see that our approach allows us to discover models that cannot be
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discovered simply by tuning the parameters of SM. This relates to the solution space
exploration. Indeed, HPOsm can only explore a limited number of solutions (DFGs),
i.e. those that can be generated by underlying APDA (SM in this case) by varying its
parameters. In contrast, the metaheuristics go beyond the solution space of HPOsm by
exploring new DFGs in a pseudorandom manner.

In terms of execution times, the four metaheuristics perform similarly, having an
average discovery time close to 150 seconds. While this is considerably higher than
the execution time of SM (∼ 1 second on average), it is much lower than HPOsm, while
consistently achieving higher accuracy.

4.3. Fodina
Tables 4 and 5 report the results of our comparative evaluation for Fodina. In these

tables, we used “-” to report that a given accuracy measurement could not be reliably
obtained due to the unsoundness of the discovered process model. We held out from the
tables two logs: BPIC12 and SEPSIS, because none of the six approaches (base APDA,
hyper-parameter optimized and the four metaheuristics) was able to discover a sound
process model. This is due to Fodina’s design which does not guarantee soundness.

Considering the remaining 18 logs, eleven times all the metaheuristics improved
the Markovian F-score w.r.t. HPOfo (and consequently FO), whilst 16 times at least
one metaheuristic outperformed both FO and HPOfo. The only two cases where none
of the metaheuristics was able to discover a more accurate process model than HPOfo
were PRT2 and BPIC14f. In the former log, this is because none of the metaheuristics
discovered a sound process model within the given timeout of five minutes. However,
we note that HPOfo took almost four hours to discover a sound process model from the
PRT2 log. In the latter log, this is because all the metaheuristics discovered the same
model of HPOfo.

Among the optimization metaheuristics, TABUfo performed the best. This meta-
heuristic achieved 14 times out of 18 the highest Markovian F-score, followed by ILS
(ten times). However, like for Split Miner, the differences in the achieved F-score be-
tween the four metaheuristics are small. There is a difference of only 1-2 percentage
points between the metaheuristics with highest F-score and the one with lowest F-score.

In the case of Fodina, the results achieved by the metaheuristics on the alignment-
based F-score are more remarkable than the case of Split Miner, and in-line with the
results obtained on the Markovian F-score. Indeed, 50% of the times, all the meta-
heuristics were able to outperform both FO and HPOfo on the alignment-based F-score,
and more than 80% of the times, at least one metaheuristic scored a higher alignment-
based F-score than FO and HPOfo. Such a result is remarkable considering that the
objective function of the metaheuristics was the Markovian F-score.

Regarding the complexity of the models discovered by the metaheuristics, more
than 50% of the times, it is lower than the complexity of the models discovered by FO
and HPOfo, and in the remaining cases in-line with the two baselines. Such a difference
with the results we obtained for SM relates to the following two factors: (i) Split Miner
discovers much simpler models than Fodina, and any further improvement is difficult to
achieve; (ii) Fodina natively discovers more fitting models than Split Miner and hence,
the metaheuristics aim at improving precision, ultimately removing model edges, and
so reducing its complexity.

In terms of execution times, the four metaheuristics perform similarly, with an exe-
cution time between 150 and 300 seconds, slightly higher than the case of Split Miner.
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Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

FO 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 0.1
HPOfo 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 17.7

BPIC13cp RLSfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 290.6
ILSfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 151.2

TABUfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 95.2
SIMAfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 130.0

FO 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 0.291
HPOfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 112.0

BPIC13inc RLSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 304.7
ILSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 180.1

TABUfo 0.998 0.743 0.852 0.987 0.604 0.749 14 15 1.00 129.0
SIMAfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 146.1

FO - - - - - - 37 46 0.41 36.8
HPOfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 8612.7

BPIC14f RLSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 370.7
ILSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 365.5

TABUfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 358.5
SIMAfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 300.2

FO 1.000 0.760 0.860 1.000 0.480 0.650 146 91 0.26 0.3
HPOfo 1.000 0.756 0.861 1.000 0.479 0.648 146 91 0.26 130.5

BPIC151f RLSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 301.9
ILSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 198.4

TABUfo 0.916 0.830 0.871 0.802 0.778 0.790 129 67 0.33 177.5
SIMAfo 0.918 0.833 0.873 0.777 0.799 0.788 127 67 0.34 174.4

FO - - - - - - 195 159 0.09 48.5
HPOfo - - - - - - 187 145 0.11 118.7

BPIC152f RLSfo - - - - - - 181 131 0.09 306.0
ILSfo - - - - - - 175 120 0.11 276.1

TABUfo 0.876 0.754 0.810 0.653 0.608 0.630 177 120 0.13 262.3
SIMAfo - - - - - - 175 121 0.12 284.1

FO - - - - - - 174 164 0.06 4.3
HPOfo 0.983 0.601 0.746 0.925 0.208 0.339 163 161 0.07 402.9

BPIC153f RLSfo - - - - - - 166 141 0.07 303.5
ILSfo 0.924 0.713 0.805 0.701 0.444 0.543 158 131 0.10 247.1

TABUfo - - - - - - 163 131 0.09 235.5
SIMAfo - - - - - - 163 131 0.09 241.8

FO - - - - - - 157 127 0.15 1.3
HPOfo 0.995 0.660 0.793 0.973 0.302 0.461 153 126 0.14 443.0

BPIC154f RLSfo 0.887 0.790 0.836 0.708 0.610 0.655 127 77 0.17 308.3
ILSfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 300.5

TABUfo 0.864 0.806 0.834 0.675 0.652 0.663 127 74 0.17 274.5
SIMAfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 252.2

FO 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 2.4
HPOfo 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 238.1

BPIC155f RLSfo 0.886 0.810 0.846 0.727 0.703 0.715 150 94 0.11 303.4
ILSfo 0.884 0.819 0.850 0.719 0.724 0.722 147 90 0.13 268.1

TABUfo 0.886 0.814 0.849 0.723 0.730 0.727 149 92 0.11 217.1
SIMAfo 0.884 0.808 0.844 0.721 0.743 0.732 141 83 0.14 208.5

FO 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.69 22.4
HPOfo 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.71 9755.7

BPIC17f RLSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 309.9
ILSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 313.5

TABUfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 305.7
SIMAfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 319.2

FO 0.996 0.933 0.964 0.937 0.148 0.256 31 32 0.19 0.4
HPOfo 0.884 1.000 0.939 0.646 0.857 0.737 18 7 0.56 2666.2

RTFMP RLSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 268.7
ILSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 134.1

TABUfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 131.2
SIMAfo 0.987 1.000 0.993 0.847 0.923 0.883 28 27 0.11 133.9

Table 4: Comparative evaluation results for the public logs - Fodina.
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Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Method Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

FO - - - - - - 30 28 0.53 0.2
HPOfo 0.998 0.925 0.960 0.988 0.739 0.845 21 17 0.81 402.6

PRT1 RLSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 302.7
ILSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 183.1

TABUfo 0.994 0.957 0.976 0.981 0.844 0.907 21 17 0.86 149.3
SIMAfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 154.0

FO - - - - - - 38 45 0.76 92.7
HPOfo 1.000 0.276 0.432 0.998 0.148 0.258 29 78 1.00 12937.1

PRT2 RLSfo - - - - - - 48 56 0.08 301.0
ILSfo - - - - - - 48 56 0.08 308.1

TABUfo - - - - - - 53 70 0.08 313.0
SIMAfo - - - - - - - - - 854.9

FO 0.999 0.847 0.917 0.993 0.269 0.423 34 37 0.32 0.2
HPOfo - - - - - - 73 93 0.18 756.5

PRT3 RLSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 306.6
ILSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 157.3

TABUfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 138.1
SIMAfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 143.0

FO - - - - - - 37 40 0.54 46.0
HPOfo 1.000 0.858 0.924 1.000 0.965 0.982 32 41 0.50 10914.5

PRT4 RLSfo 0.997 0.859 0.923 0.993 0.990 0.991 31 37 0.52 317.4
ILSfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 314.4

TABUfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 300.1
SIMAfo 0.977 0.887 0.930 0.793 0.963 0.870 32 38 0.50 309.1

FO 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 0.1
HPOfo 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 25.0

PRT6 RLSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 278.8
ILSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 140.0

TABUfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 129.3
SIMAfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

FO 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 0.3
HPOfo 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 50.2

PRT7 RLSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 287.6
ILSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 140.3

TABUfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 129.7
SIMAfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 132.1

FO - - - - - - 32 45 0.72 53.1
HPOfo - - - - - - 24 18 0.54 2799.5

PRT9 RLSfo 0.969 0.999 0.984 0.894 0.893 0.893 23 21 0.91 301.5
ILSfo - - - - - - 34 26 0.15 263.2

TABUfo - - - - - - 36 30 0.14 185.8
SIMAfo 0.968 1.000 0.984 0.887 0.956 0.920 20 17 0.80 278.4

FO 0.990 0.922 0.955 0.961 0.087 0.159 52 85 0.64 0.2
HPOfo 0.872 0.958 0.913 0.659 0.786 0.717 35 28 0.60 750.8

PRT10 RLSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 301.1
ILSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 195.0

TABUfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 165.0
SIMAfo 0.965 0.963 0.964 0.874 0.809 0.840 44 47 0.25 161.2

Table 5: Comparative evaluation results for the proprietary logs - Fodina.
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4.4. Inductive Miner

Table 6 displays the results of our comparative evaluation for Inductive Miner. We
held out from the table the five BPIC15 logs, because none of the three metaheuristics
could discover a model within the five minutes timeout. This was due to scalability
issues experienced by the Markovian accuracy, already known for the case of IM [6].

In the remaining 15 logs, 13 times all the metaheuristics improved the Markovian
F-score w.r.t. IMd, and only for the BPIC17f log none of the metaheuristics could
outperform IMd. The best performing metaheuristic was SIMAimd, eight times achiev-
ing the highest Markovian F-score, followed by TABUimd and RLSimd, which scored
seven, and respectively, six times the highest Markovian F-score. Again, we note that
the differences in the achieved F-score across the four metaheuristics is small. There
are several cases in which multiple metaheuristics achieve the same F-score, and a
difference of only 1-2 percentage point between the best-performing and the worst-
performing metaheuristics.

The results of the metaheuristics on the alignment-based F-score are similar to the
case of Fodina, and they are broadly in-line with the results achieved on the Markovian
F-score. Indeed, 80% of the times, all the metaheuristics were able to outperform IMd,
failing only in two logs out of 15.

Regarding the complexity of the models discovered by the metaheuristics, we
recorded little variation w.r.t. the complexity of the models discovered by IMd. Size
and CFC did not notably improve nor worsen, except for the PRT9 and the BPIC14f
logs, where both size and CFC were reduced by about 30%.

In terms of execution times, the three metaheuristics perform similarly, with an
average execution time close to 300 seconds, meaning that the majority of the times
the solution-space exploration was interrupted by the timeout.

4.5. Discussion

The results of the evaluation show that the use of metaheuristics optimization brings
consistent improvements in accuracy with respect to the baseline discovery approaches,
in 80% of the cases. Furthermore, it produces consistently higher alignment-based F-
score, even though this measure was not used as an objective function, due to the low
scalability of alignment-based precision.

The drawback of using metaheuristics optimization is the longer execution time –
several minutes versus less than a few seconds for the baselines.

In a small number of cases the optimization framework did not yield any F-score
improvement with respect to the corresponding unoptimized approach, due to: (i) a
small solution-space (i.e. the baseline already discovers the best process model); or (ii)
scalability issues (i.e. the Markovian accuracy could be computed within the timeout).
While the former scenario is beyond our control and strictly relates to the complexity of
the input event log, the latter reminds us of the limitations of the state-of-the-art accu-
racy measures (and especially precision) in the context of automated process discovery,
and justifies our design choice of a modular optimization framework, that allows the
use of new accuracy measures as objective functions in the future, which may be able
to overcome such scalability issues.

Another remarkable finding is that the metaheuristically optimized versions of Split
Miner and Fodina consistently outperform their hyper-parameter optimized counter-
parts. This means that the space of possible process models that can explored by
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Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

IMd 1.000 0.168 0.287 1.000 <0.001 <0.001 30 28 1.00 0.7
BPIC12 RLSimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 300.0

TABUimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 309.4
SIMAimd 0.660 0.805 0.725 0.204 0.223 0.213 39 19 1.00 308.7

IMd 1.000 0.862 0.926 0.999 0.161 0.277 15 11 1.00 0.4
BPIC13cp RLSimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 301.4

TABUimd 0.990 0.888 0.936 0.942 0.414 0.575 10 7 1.00 101.8
SIMAimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 300.5

IMd 1.000 0.673 0.805 1.000 0.109 0.197 10 9 1.00 0.5
BPIC13inc RLSimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 301.5

TABUimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 71.9
SIMAimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 300.7

IMd 0.861 0.782 0.820 0.507 0.814 0.625 27 16 1.00 0.8
BPIC14f RLSimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 302.5

TABUimd 0.949 0.673 0.788 0.859 0.505 0.636 17 13 1.00 303.3
SIMAimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 300.8

IMd 1.000 0.679 0.808 1.000 0.284 0.442 34 23 1.00 1.5
BPIC17f RLSimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 302.7

TABUimd 0.693 0.817 0.750 0.262 0.204 0.230 28 13 1.00 83.8
SIMAimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 301.0

IMd 1.000 0.543 0.704 1.000 0.003 0.005 15 12 1.00 0.8
RTFMP RLSimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 321.1

TABUimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 52.1
SIMAimd 0.917 0.907 0.912 0.780 0.625 0.694 19 9 1.00 300.8

IMd 1.000 0.291 0.451 0.918 0.006 0.012 24 23 1.00 0.4
SEPSIS RLSimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 305.5

TABUimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 306.9
SIMAimd 0.813 0.581 0.678 0.482 0.310 0.377 25 16 1.00 301.6

IMd 1.000 0.748 0.856 1.000 0.025 0.048 14 11 1.00 0.5
PRT1 RLSimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 304.4

TABUimd 0.971 0.946 0.958 0.692 0.707 0.699 17 10 1.00 304.0
SIMAimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 300.7

IMd 1.000 0.243 0.390 1.000 0.109 0.196 13 11 1.00 0.9
PRT2 RLSimd 0.811 0.464 0.591 0.588 0.601 0.594 18 13 1.00 305.5

TABUimd 0.788 0.461 0.581 0.542 0.566 0.554 16 11 1.00 303.0
SIMAimd 0.792 0.413 0.543 0.524 0.674 0.590 18 13 1.00 307.3

IMd 0.827 0.890 0.857 0.328 0.253 0.286 26 10 1.00 0.4
PRT3 RLSimd 0.914 0.896 0.905 0.501 0.593 0.543 26 14 1.00 305.1

TABUimd 0.933 0.900 0.917 0.626 0.592 0.608 28 15 1.00 302.6
SIMAimd 0.930 0.898 0.914 0.562 0.539 0.550 29 17 1.00 300.8

IMd 0.880 0.811 0.844 0.876 0.967 0.919 27 13 1.00 0.5
PRT4 RLSimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 301.0

TABUimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 307.2
SIMAimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 300.8

IMd 0.917 0.988 0.951 0.524 0.350 0.420 18 6 1.00 0.4
PRT6 RLSimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 304.2

TABUimd 0.905 0.915 0.910 0.488 0.903 0.634 18 10 1.00 643.0
SIMAimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 300.6

IMd 0.852 0.997 0.919 0.618 0.407 0.491 21 5 1.00 0.4
PRT7 RLSimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 305.5

TABUimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 1013.9
SIMAimd 0.960 0.988 0.974 0.664 0.752 0.705 23 13 1.00 309.6

IMd 0.586 0.461 0.516 0.078 0.014 0.024 22 15 1.00 2.6
PRT9 RLSimd 0.945 1.000 0.972 0.851 1.000 0.919 16 9 1.00 304.2

TABUimd 0.946 1.000 0.972 0.856 0.947 0.899 18 10 1.00 306.6
SIMAimd 0.954 1.000 0.976 0.890 0.909 0.899 15 8 1.00 300.0

IMd 0.530 0.656 0.586 0.386 0.000 0.001 36 28 1.00 0.5
PRT10 RLSimd 0.859 0.961 0.907 0.664 0.691 0.677 30 24 1.00 300.3

TABUimd 0.912 0.907 0.909 0.790 0.484 0.600 30 24 1.00 33.1
SIMAimd 0.862 0.941 0.900 0.671 0.719 0.694 32 28 1.00 307.6

Table 6: Comparative evaluation results for the public and proprietary logs - Inductive Miner.
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tweaking the parameters in input (e.g. the noise filter threshold) is not as rich as the
space of process models that can be generated by repeatedly perturbing the DFG.

Finally, we found that all four metaheuristics considered in the evaluation led to
similar F-scores. The differences in F-score between the best-performing and the
worst-performing metaheuristics are generally negligible, in the order of 1-2 percent-
age points. For Inductive Miner, all four metaheuristics end up exploring the search
space in a similar manner, leading to the same results in several cases. This may be
explained by the fact that the set of possible models that Inductive Miner can generate
is narrower than that generated by Fodina or Split Miner, because Inductive Miner can
only generate block-structured models.

5. Conclusion

This paper showed that the use of S-metaheuristics is a promising approach to en-
hance the accuracy of DFG-based automated process discovery approaches. The out-
lined approach takes advantage of the DFG’s simplicity to define efficient perturbation
functions that improve fitness or precision while preserving structural properties re-
quired to ensure model correctness.

The evaluation showed that the metaheuristically optimized approaches consis-
tently achieve higher accuracy than the corresponding unoptimized baselines (Split
Miner, Fodina, and Inductive Miner - directly follows). This observation holds both
when measuring accuracy via Markovian F-score and via alignment-based F-score. As
expected, these accuracy gains come at the expense of higher execution times. This is
natural given that the metaheustics needs to execute the baseline approach several hun-
dred times and it needs to measure the accuracy of each of the resulting process models.
The evaluation also showed that the choice of optimization metaheuristic (among those
considered in the paper) does not have a substantial effect on the accuracy of the re-
sulting process models, nor on their size or complexity.

In its current form, the framework focuses on improving F-score. In principle, the
framework could also be used to optimize other objective functions, such as model
complexity, measured by number of edges or control-flow complexity measures, for
example. Related to the above, the framework could be extended to optimize multi-
ple dimensions simultaneously, using multi-objective (Pareto-front) optimization tech-
niques instead of single-objective ones. Along the same lines, it may also be possible
to adapt the framework in order to optimize one measure (e.g. F-score), subject to one
or more constraints on other measures (e.g. that the number of edges in the discovered
model must be below a given threshold). Lastly, another opportunity for future work
may be the automation of the best metaheuristic selection, without compromising the
time performance of the framework.

Another limitation of the proposed approach is that the DFG perturbations em-
ployed in the optimization phase do not use the frequencies of the directly-follows
relations (i.e. arc frequencies in the DFG are not used). In other words, the proposed
approach makes the following two design choices: (i) the perturbations either add an
arc or remove an arc but they do not alter the frequency of an arc; and (ii) the decision
as to which arcs to add or remove is not taken based on arc frequencies. The rationale
for the first of these design choices is that modifying the arc frequencies would require
us to have a criterion for deciding by how much should be frequencies be altered. This
criterion would have to be dependent on the way the underlying automated process
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discovery algorithm uses the arc frequencies. We opted not to do in order ensure the
optimization method is independent of the underlying base algorithm. The rationale
for the second choice is that the perturbations should have an element of randomness
in order to allow the metaheuristics to explore a wider subset of the search space. Poor
perturbations are likely to lead to solutions with lower F-scores, which are eventually
discarded by the metaheuristics, but a transformation that leads to solutions with lower
F-scores may later give rise to other solutions with higher F-score as the search un-
folds. This having been said, it is possible that perturbations that remove arcs based
on arc frequency might help the heuristics to focus on areas of the search space with
higher F-score. A direction for future work is to explore other perturbation heuristics
including frequency-aware ones.

A third limitation of the framework is that it only considers four S-metaheuristics.
There is room for investigating further metaheuristics such as variants of simulated
annealing, e.g. using different cooling schedules. Along a similar direction, this
study could be extended to investigate the trade-offs between S-metaheuristics and
P-metaheuristics in this setting.

Finally, the evaluation put into evidence scalability limitations of the Markovian
precision measure for some datasets. These limitations are not specific to this preci-
sion measure – they also apply, and sometimes to a larger extent, to other precision
measures including ETC precision and entropy-based precision [26]. There is a need
for more scalable measures of precision in order to make metaheuristic optimization
more broadly applicable in the context of automated process discovery.
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