Leveraging Frequencies in Event Data a Pledge for Stochastic Process Mining

Sander Leemans

About me

- Bachelor & master: computer science and engineering
- Master: science education and communication
- ► PhD: robust process mining with guarantees
- Postdoc/lecturer/senior lecturer QUT, Australia
- ► Professor of BPM, RWTH Aachen, Germany

Processes

process

Process Mining

4

Event Log

case ID	activity	timestamp	resource	amount	vehicleClass	
135	create fine	09:30	Α	\$39	A	
135	send fine	09:39	В	\$39	Α	
135	insert notification	09:40	Α	\$39	Α	
136	create fine	10:45	Α	\$185	С	
136	payment	10:50	С	\$185	С	

⟨create fine, send fine, insert notification⟩
⟨create fine, payment⟩

٠.,

Process mining,

Process discovery

- $\triangleright \alpha, \alpha^{++}, \alpha^{\$}, \dots$
- **▶** ILP
- ▶ Heuristic Miner
- ► Flexible Heuristics Miner
- ▶ Genetic Miner
- ► Split Miner
- ► Evolutionary Tree Miner
- Directly Follows Model Miner
- ▶ Indulpet Miner
- ► Inductive Miner infrequent
- ► Inductive Miner all operators
- ► Inductive Miner ...

sound

visual Miner

Process mining

Model quality

Alignments

demo

Discovered model and process language equivalent if:

- ▶ process ∈ class
- event log without noise
- event log complete

Process mining

Enhancement

demo

Process mining,

Frequencies

```
\begin{split} \mathsf{L}_1 &= [\langle \mathsf{register}, \mathsf{check}, \mathsf{accept} \rangle^{10000}, \\ & \langle \mathsf{register}, \mathsf{check}, \mathsf{reject} \rangle^{10000}, \\ & \langle \mathsf{register}, \mathsf{accept} \rangle^1, \\ & \langle \mathsf{accept}, \mathsf{register} \rangle^1] \end{split}
```

```
\begin{split} \mathsf{L}_2 &= [\langle \mathsf{register}, \mathsf{check}, \mathsf{accept} \rangle^{9500}, \\ & \langle \mathsf{register}, \mathsf{check}, \mathsf{reject} \rangle^{9500} \\ & \langle \mathsf{register}, \mathsf{accept} \rangle^{1002}] \end{split}
```

Frequencies in process mining

Simulation & recommendation

ad-hoc

- ▶ Derived from log
- ► Testing on training logs
- ► No idea of quality
- ▶ No reasoning on quality
- Adjust stochastic perspective
- ▶ Verify stochastic perspective

Part of the model's behaviour captured in the log

model ∩ log model

Precision

- ► Token replay
- ► Visited edges in model
- ► Visited edges in state space
- ► Visited edges in history-based state space
- Entropy
- ► Earth-movers' distance

Reliability of conclusions

Stochastic process mining

Stochastic process models

Stochastic Petri net: 1 1 a b

3

Stochastic language:

$$[\langle a, c \rangle^{0.25}$$
$$\langle b, c \rangle^{0.75}]$$

Stochastic process mining

Stochastic process discovery

- ► GDT_SPN Miner
- ▶ Weight estimators
- ▶ Toothpaste Miner
- ► Stochastic Declare

Toothpaste Miner

Step 1: construct trace model Step 2: apply reduction rules

- ► e.g.: concurrent reduction
- ► e.g.: probabilistic loop roll

$$[\langle a,b\rangle^2,\langle b,a\rangle,\langle c,c,c\rangle]$$

Internally: probabilistic process trees

Stochastic conformance checking

Earth Movers' Stochastic Conformance

$$M = [\langle a, c \rangle^{0.25}, \langle b, c \rangle^{0.75}]$$

$$L = [\langle a, c \rangle^{0.70}, \langle b, c \rangle^{0.25}, \langle a \rangle^{0.05}]$$

Earth Movers' Stochastic Conformance:

1 - minimum cost

$$1 - 0.275 = 0.725$$

Cost:

①: $0.05 * \delta(\langle b, c \rangle, \langle a \rangle)$

2: 0.45 * $\delta(\langle b, c \rangle, \langle a, c \rangle)$

Complexity: polynomial

however

future work: loop unfolding & concurrency

 δ : normalised Levenshtein trace distance:

①: 0.05 * 1

②: 0.45 * 0.5

¹Leemans, van der Aalst, Brockhoff, Polyvyanyy. Stochastic Process Mining: Earth Movers' Stochastic Conformance. Information Systems

Stochastic process mining

Cohort Analysis: trace attributes

case ID	activity	timestamp	resource	amount	vehicleClass	
135	create fine	09:30	Α	\$39	А	
135	send fine	09:39	В	\$39	Α	
135	insert notification	09:40	Α	\$39	Α	
136	create fine	10:45	А	\$185	С	
136	payment	10:50	С	\$185	С	

amount \$39 {create fine, send fine, insert notification}vehicleClass A amount \$185 {create fine, payment}vehicleClass C

...

Cohort Analysis

¹Leemans, Shabaninejad, Goel, Khosravi, Sadiq, Wynn. Identifying Cohorts: Recommending Drill-Downs Based on Differences in Behaviour for Process Mining. ER 2020

Causal analysis

Ice cream causes drowning: it has been shown that the more ice creams are sold, the more people drown.

Correlation ≠ causation

The choice between a and b causally influences the choice between x and y.

We can increase x by increasing a.

¹Leemans, Tax. Causal Reasoning over Control-Flow Decisions in Process Models. CAiSE 2022

Even more goodies

Relation process - outcomes Stochastic process drift Anomaly detection Stochastic + data models

You have been watching...

A pledge for stochastic process mining

- Simply there
- ► Reliability of conclusions

Goodies

- Cohort analysis
- Causal analysis

Stochastic process mining techniques

- Stochastic process discovery (Toothpaste Miner)
- Stochastic conformance checking (Earth Movers' Stochastic Conformance checking)

Sander Leemans s.leemans@bpm.rwth-aachen.de http://leemans.ch

