

Comparative process mining

Compare different variants of a process...without upfront knowledge of the variants.

Logs with trace attributes

case ID	activity	timestamp	resource	amount	vehicleClass	
135	create fine	09:30	А	\$39	A	
135	send fine	09:39	В	\$39	Α	
135	insert notification	09:40	Α	\$39	Α	
136	create fine	10:45	Α	\$185	С	
136	payment	10:50	С	\$185	С	

amount \$39 create fine, send fine, insert notification) vehicleClass A amount \$185 kamount \$185 create fine, payment) vehicleClass C

...

....

Comparative process mining

Compare different variants of a process...without upfront knowledge of the variants.

Differences between groups of traces – by trace attributes.

An existing method: Process Comparison Methodology

From: Syamsiyah, Alifah, et al. "Business process comparison: A methodology and case study." Business Information Systems 2017.

Missing: stochastic awareness

```
\begin{split} \mathsf{L}_1 &= [\langle \mathsf{register}, \mathsf{check}, \mathsf{accept} \rangle^{10000}, \\ & \langle \mathsf{register}, \mathsf{check}, \mathsf{reject} \rangle^{10000}, \\ & \langle \mathsf{register}, \mathsf{accept} \rangle^1, \\ & \langle \mathsf{accept}, \mathsf{register} \rangle^1] \end{split}
```

```
\begin{split} \mathsf{L}_2 &= [\langle \mathsf{register}, \mathsf{check}, \mathsf{accept} \rangle^{9500}, \\ & \langle \mathsf{register}, \mathsf{check}, \mathsf{reject} \rangle^{9500} \\ & \langle \mathsf{register}, \mathsf{accept} \rangle^{1002}] \end{split}
```

About the research

- DO1 A method identifying differences between sub-logs,
- DO2 that is stochastic aware, and
- DO3 as automated as possible.

- 1. Problem identification
- 2. Design objectives
- 3. Design and development
- 4. Demonstration
- 5. Evaluation
- 6. Communication

Artefact: Probabilistic Process Comparison Method

Light parts are of PCM; dark parts are new.

P²MC: alpha attribute selection

- ► Remove IDs, timestamps and free-text
- Heuristic: unsupervised
 - categorise values
 - number of clusters
 - k-means clustering
 - average strength of centroid vectors
- ► Heuristic: supervised
 - ► Target: trace length
 - Random forest classifier
 - Average Gini impurity
- Ranked list of attributes.

P²MC: Identifying comparable sub-logs

P^2MC : in-depth comparison

Visualise stochastic differences on common DFG

- Directly follows graph
- ▶ Filter
- Relative frequency

$$\frac{\mathsf{L}_1(\mathsf{a}\to\mathsf{b})}{\sum_{(\mathsf{a},\mathsf{c}')\in\mathsf{DFG}}\mathsf{L}_1(\mathsf{a},\mathsf{c}')} - \frac{\mathsf{L}_2(\mathsf{a}\to\mathsf{b})}{\sum_{(\mathsf{a},\mathsf{c}')\in\mathsf{DFG}}\mathsf{L}_2(\mathsf{a},\mathsf{c}')}$$

Artefact: Probabilistic Process Comparison Method

Light parts are of PCM; dark parts are new.

Demonstration: Sepsis

- ► 777 traces
- ightharpoonup α attribute: diagnose
- ► cluster EMSC values {C,B,E,H,D,K,R} {S} {G,Q}

Demonstration: MIMICel

- ▶ 36737 traces
- $ightharpoonup \alpha$ attribute: icd_title
- cluster EMSC values
- ▶ In-depth on Headache and Altered mental status, unspecified.

Evaluation: Princess Alexandra Hospital

2 329 846 events 134 846 traces

ED pathways

48 activities

osis

You have been watching...

► P²CM Probabilistic Process Comparison Method

- α attribute selection.
- ► Identifying comparable sub-logs
- ► In-depth comparison
- ▶ Sepsis / MIMIC / PAH

Future work

- Further automate steps
- Process cubes
- Evaluate ease-of-use

Sander Leemans s.leemans@bpm.rwth-aachen.de http://leemans.ch

Bold claim

Considering the stochastic perspective makes things easier

