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Causal reasoning

Ice cream causes drowning:

it has been shown that the more ice creams are sold,

the more people drown.

correlation 6=⇒ causation

causal inference 6= a directly follows b
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Causal reasoning in processmining

I Interventions → cycle time1

I Interventions → outcome likelihood2

I Negative outcome → explain3

♥

Today:

I Causal soft long-distance dependencies

→ inform interventions

→ inform process redesign

Let’s take this a step further:

a
b

c
d

e

f

I Increasing likelihood of b increases

likelihood of e

3Qafari, M.S., van der Aalst, W.M.P.: Case level counterfactual reasoning in process mining. CAiSE Forum 2021
2Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process mining meets causal machine

learning: Discovering causal rules from event logs. ICPM 2020
1Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive process monitoring for

cost-aware cycle time reduction. ICPM 2021
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Process trees & choices

Language: {〈c, e〉, 〈c, f〉, 〈a, e〉, 〈a, f〉, 〈a,b, a, e〉, 〈a,b, a, f〉, 〈a,b, a,b, a, e〉, 〈a,b, a,b, a, f〉…}

1Our causal technique also supports Directly Follows Models.
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Causal reasoning

Causal graph:

I Nodes: decision variables

I Edges: “there might be a causal relation”

I missing edges denote information
I directed acyclic graph

X Y

Z

U

V

confounding factor

collider

chain

From a causal graph and observational data,

in some cases the strength of causal relations

can be computed.
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Our approach
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Upper bound causal graph

I Nodes: choices

I Unfold loops

I Edges: add all edges, except if they

violate the model

{�, c,d} {b, τ} {e, f}

{b, τ}b

{b, τ}b,b

…

I Process trees

I Directly follows models
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Outline
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Binary UBCG

I Split nodes into binary choices

I The split nodes have no causal relation

{�, c,d} {b, τ} {e, f}

{b, τ}b

{b, τ}b,b

…

{�,¬ �}

{c,¬c}

{d,¬d}

{b, τ} {e, f}

{b, τ}b

{b, τ}b,b

…
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Choice data

I Align each trace

I Record choices taken

{〈c, f〉
〈a, e〉}

aligned trace {�,¬ �} {c,¬c} {d,¬d} {b, τ} {b, τ}b {b, τ}b,b {e, f}

〈c, f〉 ¬ � c ¬d - - - f

〈a, τ, e〉 � ¬c ¬d τ - - e

Three-symbol logic
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Causal discovery

choice data MVPC

Markov equivalence class

⋂
UBCG

causal graph

{�,¬ �}

{c,¬c}

{d,¬d}

{b, τ} {e, f}

{b, τ}b

{b, τ}b,b

…

1Ruibo Tui. Causal Discovery in the Presence of Missing Data. AISTATS 2019.
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Regression

backdoor criterion

causal graphchoice data

adjustment set

linear regression

average treatment effect

{�,¬ �}

{c,¬c}

{d,¬d}

{b, τ} {e, f}

{b, τ}b

{b, τ}b,b

…

Linear regression:

{e, f} = c0 + c1{b, τ}+ c2{d,¬d}
I Adjustment set {{d,¬d}}
I b increases the probability of e by c1
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Assumptions

(((((((
Wishful thinking Conjectures

I One causal graph from conjunction with UBCG

I Treatment effect identifiable from causal graph as per backdoor criterion

Assumptions

I Model denotes moments of choice correctly

I No unmodelled confounding factors
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Evaluation: applicability

O1

O2 O3 O4

Skipping o_cancelled causes a reduction of

o_cancelled by 0.62 in the second loop run.

I 5 real-life logs

I 2 discovery techniques

I Choices: 2 - 288

I UBCG edges: 1 - 23 776

I Causal graph edges: 0 - 7

I Run time: 0.04 - 75s

Conclusion

I Causal relations are there and can be

detected

I It’s feasible

I User not flooded
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You have beenwatching…

PM + causal analysis

I UBCG

I Process trees
I Directly follows models

I binary UBCG

I choice data

I causal graph

I regression

Gaps

I Visualise & explain

I Linear probability model

Future work

I Confounding factors from event data

I Causal analysis on Petri nets

I Case study

Sander Leemans

s.leemans@bpm.rwth-aachen.de

http://leemans.ch
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