Causal Reasoning over Decisions in Process Models

Sander Leemans, Niek Tax

Process mining

Causal reasoning

Ice cream causes drowning: it has been shown that the more ice creams are sold, the more people drown.

correlation ⇒ causation

causal inference \neq a directly follows b

Causal reasoning in process mining

- ► Interventions → cycle time¹
- ► Interventions → outcome likelihood²
- Negative outcome → explain³

Today:

- Causal soft long-distance dependencies
 - \rightarrow inform interventions
 - ightarrow inform process redesign

Let's take this a step further:

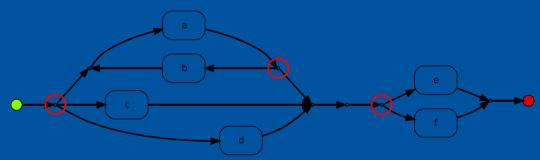
► Increasing likelihood of b increases likelihood of e

³Qafari, M.S., van der Aalst, W.M.P.: Case level counterfactual reasoning in process mining. CAiSE Forum 2021

²Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Process mining meets causal machine learning: Discovering causal rules from event logs. ICPM 2020

¹Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive process monitoring for cost-aware cycle time reduction. ICPM 2021

Process trees & choices



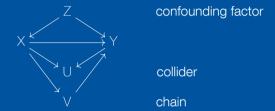
Language: $\{(c,e), (c,f), (a,e), (a,f), (a,b,a,e), (a,b,a,f), (a,b,a,b,a,e), (a,b,a,b,a,f) \dots\}$

¹Our causal technique also supports Directly Follows Models.

Causal reasoning

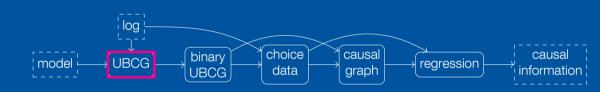
Causal graph:

- ▶ Nodes: decision variables
- ► Edges: "there might be a causal relation"
 - missing edges denote information
 - ▶ directed acyclic graph

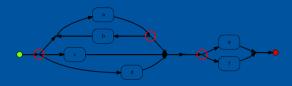


From a causal graph and observational data, in some cases the strength of causal relations can be computed.

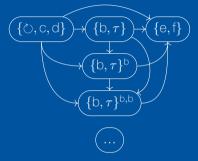
Our approach



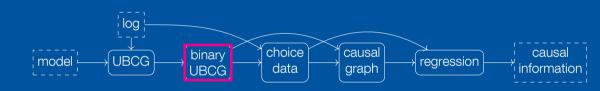
Upper bound causal graph



- ► Nodes: choices
 - ► Unfold loops
- ► Edges: add all edges, except if they violate the model

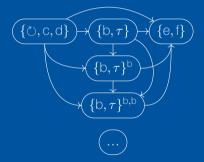


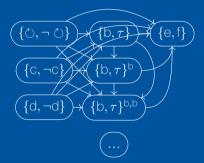
- ▶ Process trees
- ► Directly follows models

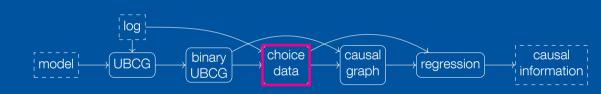


Binary UBCG

- ► Split nodes into binary choices
- ► The split nodes have no causal relation

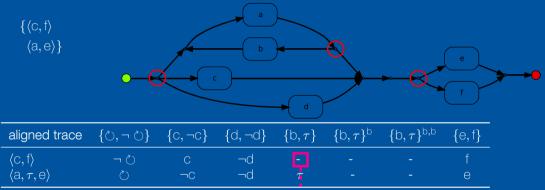




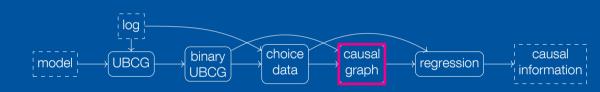


Choice data

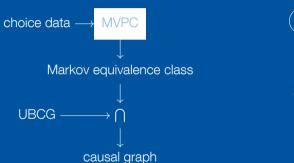
- ► Align each trace
- ► Record choices taken

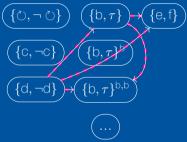


Three-symbol logic

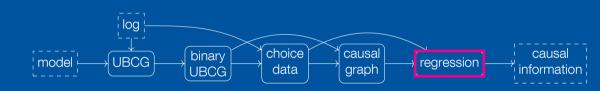


Causal discovery

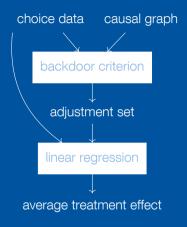


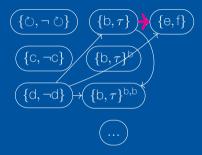


¹Ruibo Tui. Causal Discovery in the Presence of Missing Data. AISTATS 2019.



Regression





Linear regression:

$$\{e,f\} = c_0 + c_1\{b,\tau\} + c_2\{d,\neg d\}$$

- ► Adjustment set {{d, ¬d}}
- ightharpoonup b increases the probability of e by c_1

Assumptions

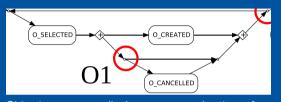
Wishful thinking Conjectures

- ► One causal graph from conjunction with UBCG
- ► Treatment effect identifiable from causal graph as per backdoor criterion

Assumptions

- ► Model denotes moments of choice correctly
- ► No unmodelled confounding factors

Evaluation: applicability



Skipping o_cancelled causes a reduction of o_cancelled by 0.62 in the second loop run.

- ► 5 real-life logs
- ▶ 2 discovery techniques

► Choices: 2 - 288

► UBCG edges: 1 - 23776

► Causal graph edges: 0 - 7

Run time: 0.04 - 75s

Conclusion

- Causal relations are there and can be detected
- ► It's feasible
- User not flooded

You have been watching...

PM + causal analysis

- ► UBCG
 - ► Process trees
 - Directly follows models
- binary UBCG
- choice data
- causal graph
- regression

Gaps

- ► Visualise & explain
- ▶ Linear probability model

Future work

- Confounding factors from event data
- Causal analysis on Petri nets
- Case study

Sander Leemans s.leemans@bpm.rwth-aachen.de http://leemans.ch

