
Robust Process Mining with Guarantees

Robust Process Mining with Guarantees

Author: Leemans, Sander J.J.

A catalogue record is available from the Eindhoven University of Tech-
nology Library.

ISBN 978-90-386-4257-4

Keywords: business process mining, business process discovery, block-
structured process models, process trees, rediscoverability, conformance
checking, enhancement, Inductive visual Miner, Inductive Miner

The work in this thesis has been funded by the Netherlands Organisation
for Scientific Research under the “Don’t Search for the Undesirable!
Avoiding "Blind Alleys" in Process Mining” project (612.001.201).

SIKS Dissertation Series No. 2017-12.
The research reported in this thesis has been carried out under the aus-
pices of SIKS, the Dutch Research School for Information and Knowl-
edge Systems.

Copyright 2017 by Sander J.J. Leemans. All Rights Reserved.

Printed by Ipskamp Printing, Enschede, the Netherlands

Cover design by Lyanne Tonk
Ginkgo leaf by Ninjatacoshell, licensed under Creative Commons
Attribution-Share Alike 3.0 Unported

Robust Process Mining with Guarantees

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het
College voor Promoties, in het openbaar te verdedigen op dinsdag 9

mei 2017 om 16:00 uur

door

S.J.J. Leemans

geboren te Boxtel

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. B. Koren
promotor: prof.dr.ir. W.M.P. van der Aalst
copromotor: dr. D. Fahland
leden: dr. J. Carmona Vargas

(Universitat Politecnica de Catalunya)
Univ.-Prof.Dr.Dr.h.c. J. Esparza
(Technische Universität München)
prof.dr.ir. J.F. Groote
prof.dr.ir. U. Kaymak
prof.dr.ir. W.P.M. Nuijten

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Facilius per partes in cognitionem totius adducimur

Lucius Annaeus Seneca

vi

Contents

1 Introduction 1
1.1 Abstractions in Process Mining . 5
1.2 Process Discovery . 6
1.3 Conformance Checking . 11
1.4 Enhancement & Tool Support . 14
1.5 Contributions and Structure of this Thesis 16

2 Preliminaries 19
2.1 Multisets, Traces, Regular Expressions 20
2.2 Process Models . 20
2.3 Event Logs . 34
2.4 Directly Follows Relation . 37

3 Process Mining 39
3.1 Different Use Cases, Different Process Mining Techniques 41
3.2 Formal Key Challenges of Process Mining 46
3.3 Process Discovery . 58
3.4 Conformance Checking . 68
3.5 Enhancement & Tool Support . 76
3.6 Our Approach . 87

4 Recursive Process Discovery 95
4.1 Recursive Process Discovery . 96
4.2 Rediscoverability . 103

5 Abstractions 111
5.1 A Canonical Normal Form for Process Trees 113
5.2 Language Uniqueness with Directly Follows Graphs 121
5.3 Language Uniqueness with Activity Relations 131
5.4 Language Uniqueness with Interleaving 135
5.5 Language Uniqueness with Minimum Self-Distance 140
5.6 Language Uniqueness with Optionality & Inclusive Choice 148
5.7 Language Uniqueness with non-Atomic Process Models 170
5.8 Classes of Process Trees: Revisited . 177

6 Discovery Algorithms 183
6.1 Inductive Miner (IM) . 185
6.2 Handling Deviating & Infrequent Behaviour 202
6.3 Handling Incomplete Behaviour . 213
6.4 Handling More Constructs: τ , Ø and _ 229
6.5 Handling Non-Atomic Event Logs . 244
6.6 Handling Large Event Logs . 257
6.7 Tool Support . 273
6.8 Summary: Choosing a Miner . 275

7 Conformance Checking 281
7.1 Projected Conformance Checking Framework 283
7.2 An Example of Non-Conformance and Diagnostic Information 293
7.3 Guarantees . 299

viii

7.4 Tool Support . 300
7.5 Conclusion . 303
7.6 Ideas to Handle Unbounded & Weakly Unsound Petri Nets 306

8 Evaluation 309
8.1 Evaluated Process Discovery Algorithms 311
8.2 Scalability of Discovery Algorithms . 311
8.3 Log-Quality Dimensions . 317
8.4 Rediscoverability & its Challenges . 346
8.5 Evaluation of Log-Conformance Checking 356
8.6 Non-Atomic Behaviour . 361
8.7 Conclusion . 374

9 Enhancement & Inductive visual Miner 377
9.1 Inductive visual Miner (IvM) . 379
9.2 Deviations . 389
9.3 Frequency Information . 391
9.4 Projecting Performance Information on Process Trees 392
9.5 Animation . 394
9.6 Conclusion . 397

10 Conclusion 399
10.1 Process Discovery . 400
10.2 Conformance Checking . 402
10.3 Enhancement & Tool Support . 403
10.4 Remaining Challenges . 404

Bibliography 409

Summary 427

Acknowledgements 431

Curriculum Vitae 435

SIKS dissertations 437

Index 453

ix

x

1Introduction

1

In
tr
od

u
ct
io
n

Nowadays, considerable amounts of data are recorded by software, machines and or-
ganisations. For instance, high tech systems such as MRI-scanners log hardware and
software events, web servers log visits to web pages, ERP systems log business trans-
actions, and workflow (case management) systems log activity executions. However, it
might be unknown how an MRI-scanner is running, how the website is used, whether
business transactions are processed according to the intended process, i.e. how machines,
websites, etc. are used in reality. Therefore, the field of process mining [4] aims to extract
information from these recorded event logs, such that problems can be identified based
on facts, and consequently the processes, machines, web systems, etc. (to which we will
refer as systems) can be improved.

From these event logs, process mining aims to extract information, for instance busi-
ness process models (a representation of the order of steps taken in a process), per-
formance information (e.g. queueing points in the process), compliance with rules and
regulations (e.g. in which cases these rules are not adhered to), and social networks (e.g.
the identification of key people in an organisation) [4], in order to enable stakeholders
to gain a better understanding of the underlying system. The starting point for process
mining is an event log . Typically, such an event log consists of traces, each of which
consists of records of all steps (activities) in an end-to-end system execution, such as a
product being manufactured by a machine, a visitor navigating through the website and
making a purchase, or an insurance claim being submitted and handled. That is, a trace
consists of events, each of which describes a step in the process such as a machine being
switched on, a visitor requesting a web page or a filled-in form being submitted.

Three Process Mining Challenges. In this thesis, we focus on the three main
challenges in process mining: process discovery , conformance checking and enhance-
ment [4]. Figure 1.1 illustrates these challenges in their context. The blue-filled region
denotes a typical process mining project: an unknown system is executing, and from
the observable behaviour of the system, an event log is recorded. Process mining can
be applied when the precise inner workings of the system are unknown and subject of
study. Therefore, the first step performed in a process mining project is typically process
discovery , which aims to automatically discover a process model, e.g. a Petri net [137]
or a BPMN [4] model that describes the inner workings of the system, from an event
log. Because process discovery is unsupervised learning, we have to evaluate how well
the obtained model corresponds to reality. Thus, as a second step, to guarantee the cor-
rectness of conclusions drawn from process models, the model should be evaluated using
a log-conformance checking technique, which compares the model with the event log.
Comparing a model to a log requires the model to have valid semantics, thus the process
discovery technique needs to guarantee that the discovered model has clear semantics
and is free of deadlocks and other anomalies. Further insights can be derived from per-
formance, deviations and resource information (e.g. utilisation), which is projected onto
the event log and a process model by enhancement techniques. To do this, enhancement
techniques combine the result of log-conformance checking with the event log and the
process model, e.g. by indicating frequent and infrequently used steps in the model.

In a process mining project, a model of the system is typically not available. How-
ever, in some cases such a system model is available, and differences between the system
model and its implementation (i.e. the system) can be studied using a model-conformance
checking technique. Furthermore, in lab settings, such as in our evaluation, we use model-
conformance checking to assess the models discovered by process discovery techniques.

First, we give an overview of the three mentioned challenges, then we explain the

2

1

In
tr
od

u
ct
io
n

?

system

system model

event log model

enhanced modelenhanced log measures

process discovery

log-conformance
checking

model-conformance
checking

implementation

recording

enhancement enhancement

Figure 1.1: The context of process discovery, log-conformance checking,
model-conformance checking and enhancement. The blue-filled region denotes
the scope of a typical process mining project.

3

1

In
tr
od

u
ct
io
n

customer activity resource time stamp
455876 enter claim Suzie 17-11-2016 10:45
455876 validate request John 18-11-2016 13:50
455876 secondary check Stan 01-12-2016 16:55
455876 notify requester HAL 01-12-2016 16:55
455876 approve refund John 14-03-2017 11:22
455876 transfer refund HAL 15-03-2017 00:00
455931 enter request Famke 12-12-2016 13:00
455931 validate request John 13-12-2016 15:38
455931 transfer refund HAL 13-12-2016 15:38
. . .

(a) Excerpt of an artificial event log.

enter
claim

validate
request

secondary
check transfer

refund

notify
requester

notify
requester

(b) A BPMN model that could be discovered from the event log.

Figure 1.2: Example of an event log and a discovered process model. The log
contains events for two customers (455876) and (455931). The model describes
the process for these two customers.

central theme of this thesis, after which we review open problems of these challenges in
more detail.

Process Discovery. Process discovery aims to automatically obtain a process model,
e.g. a Petri net [137] or a BPMN [4] model, from an event log (in Section 2.2, we introduce
these process modelling formalisms). Such a process model describes the order of steps
that can be taken for each individual customer and may provide valuable insights, as
a model discovered from an event log shows what is actually happening in the system,
instead of what management thinks what happens, or what employees or customers say
what happens [11, 87].

For instance, Figure 1.2a shows an example event log of a fictitious insurance claim
process: each line denotes an event, and consists of a customer number, the executed
process step (activity), the resource executing the activity and the time at which the
event happened. All events that were executed for a particular customer form a trace.
Figure 1.2b shows a model that could be discovered from this event log. This BPMN
model describes the activities to be performed for each customer. We discuss further

4

1

In
tr
od

u
ct
io
n

1.1 Abstractions in Process Mining

challenges of process discovery and the limitations of existing approaches in Section 1.2.

Conformance Checking. Finding deviations between an event log and a model is
the aim of log-conformance checking techniques [94]. Log-conformance checking tech-
niques take an event log and a process model as input and return diagnostic information
as output (see Figure 1.1). These conformance checking techniques can be used to eval-
uate discovered process models (notice that the model should be machine-readable), e.g.
assess the balance between including and excluding behaviour that the discovery algo-
rithm chose. However, log-conformance checking techniques are not limited to using
discovered process models: logs can also be compared to reference implementations (i.e.
system models) or specially designed models to verify compliance with rules and regu-
lations (given a model that describes the rule or regulation, a log-conformance checking
technique will diagnose and report violations) [132]. In our example (Figure 1.2), the
skipping of the secondary check could be reported by log-conformance checking techniques
and if company policy requires all transfers of refunds to have completed a secondary
check, analysts could investigate the matter further.

Where a log-conformance checking technique compares an event log to a process
model, a model-conformance checking technique compares two process models. For in-
stance, in case a reference implementation or specification (a system model) is available, a
model-conformance checking technique can be used to verify that the system implements
the system model, and to study the differences between design and reality in the form
of a discovered process model. Furthermore, if the system changes over time, i.e. the
system exhibits concept drift [8], a model-conformance checking technique could be used
to diagnose the differences between the process models discovered on different periods
of event data in the event log. Similar strategies can be applied to compare different
instances of the same process, for instance different variants of the same process in dif-
ferent organisations or geographical areas [38, 61]. We discuss challenges and limitations
of existing log- and model-conformance checking techniques in Section 1.3.

Enhancement & Tool Support. The third challenge that we address in this thesis
is enhancement . That is, additional information of the event log is projected on the model
and event log to provide more insight into e.g. the performance, frequencies or social
aspects of the system. The discovered process model is enhanced with extra information
of the event log, such as time stamps, resource information or other data [91]. For
instance, Figure 1.2a shows an event log with time stamps.

We introduce a software tool that automates quick exploration of event logs by ap-
plying process discovery, conformance checking and enhancement techniques, to combine
strong points of commercial products (e.g. ease-of-use, practical applicability) with strong
points of academic software (e.g. reliability of results, ability to evaluate). We discuss
challenges of enhancement and our approach in Section 1.4.

1.1 Abstractions in Process Mining

As event logs are finite and thus often incomplete observations of system behaviour,
process mining techniques have to compensate for this missing information. Usually, to
handle this incompleteness, process discovery and conformance checking techniques use
abstractions of the behaviour of event logs and process models: process discovery tech-
niques use behavioural abstractions such as directly follows graphs [4, p.130][167] to avoid
having to make the assumption that all behaviour of the system is in the event log (and

5

1

In
tr
od

u
ct
io
n

1.2 Process Discovery

thereby disabling itself to include non-observed behaviour). Conformance checking tech-
niques use abstractions such as directly follows graphs [144], features [103], graphs [117],
causal footprints [57], weak order relations [179] and behavioural profiles [85, 164] to
avoid having to consider all behaviour of process models, which might be infeasible for
larger models. Currently, there is not a good understanding of either how these abstrac-
tions influence process discovery or conformance checking, nor whether their influence is
positive or negative.

In this thesis, we introduce systematic approaches to process discovery and con-
formance checking that can cover various forms of inputs/use cases, are extensible for
new operators, and allow to prove and derive quality guarantees systematically. Fur-
thermore, we perform a systematic investigation of abstractions in process discovery and
conformance checking and we introduce a tool that makes process discovery, conformance
checking and enhancements easily accessible to analysts.

In the remainder of this chapter, we discuss the challenges of process discovery, con-
formance checking and enhancement in more detail, as well as our approach to these
challenges. Furthermore, we introduce the guarantees that we seek to provide and the
abstractions we seek to use to achieve this. Finally, we summarise the contributions and
discuss the structure of this thesis.

1.2 Process Discovery

Process discovery techniques face several challenges. On the one hand, techniques should
be robust in handling real-life event logs and should provide guarantees. For instance,
techniques should guarantee to return models with clear semantics that free of deadlocks
and other anomalies, and should guarantee to rediscover the system. On the other hand,
techniques face trade-offs between the event log and the system and between including
and excluding behaviour, and these trade-offs might depend on the use case at hand. In
this section, we introduce challenges that we identified from existing techniques and we
introduce our approach.

Sound Semantics. A first challenge is that machines and software have difficulties
interpreting models that do not have well-defined semantics, thus to such models con-
formance checking techniques cannot be reliably applied. Such models can neither be
reliably interpreted nor evaluated and therefore conclusions drawn from them cannot be
guaranteed to be correct. Furthermore, the discovered model should be sound, i.e. free
of deadlocks, of unclear behaviour and of other anomalies. Even though an unsound
model might be useful for human interpretation, one should be careful with drawing
conclusions from such models, as these models might introduce ambiguity. Furthermore,
we consider a system by its behaviour, and each system can be described by a sound
model that describes this behaviour1, thus it should not be represented by models hav-
ing such soundness issues. Therefore, all process discovery algorithms should guarantee
to return sound models at all times. Unfortunately, many existing discovery techniques,
e.g. [4, 24, 33, 167, 173], do not guarantee to return sound models.

Rediscover the System. Second, as the main subject of study is the unknown sys-
tem, ideally, the discovered model expresses the same set of traces as the system. If a

1All systems can be described by for instance a Petri net with inhibitor arcs, as these are
Turing complete [127].

6

1

In
tr
od

u
ct
io
n

1.2 Process Discovery

discovery algorithm is able to discover such a model, the algorithm possesses rediscover-
ability [25, 88, 90]. Rediscoverability is a formal property that is usually proven using
assumptions on the system and the event log, but provides a baseline to compare discov-
ery algorithms. Furthermore, it establishes confidence in discovery algorithms: they are
not just working on a best-effort basis, but actually guarantee to return a model similar
to the system under the right (known) conditions [88].

Ensure Fitness and Precision. Third, process discovery algorithms operate in a
force field of goals, related to both the event log and the system underlying the event log.
We explain this force field using an example use case: the assessment whether a system
adheres to certain rules and regulations. This assessment can be performed using two
objectives: (1) the rules have not been violated, and (2) the system disallows violations
in the future. For (1), the discovered model should represent the event log well, while
for (2), the discovered model should represent the system well [4, Section 10.1][131].

To assess whether rules have been violated, the discovered model should represent
the event log well. That is, if enough behaviour of the event log is included in the
discovered model (the model has a high fitness [4, Section 6.4]), conclusions can be drawn
about the absence of behaviour, including violations. In fact, a few existing discovery
algorithms guarantee to return models with perfect fitness, e.g. [173]. The model shown
in Figure 1.2b does not have a perfect fitness with respect to the log in Figure 1.2a, as
for customer 455931 a refund is transferred while no secondary check took place.

However, in order to draw conclusions about the absence of behaviour, the discovered
model should not allow for too much more behaviour than the behaviour recorded in the
event log. Therefore, the discovered model should describe little more behaviour than
the event log (the model should have a high log precision [4, Section 4.6]). The model
shown in Figure 1.2b does not have a perfect log precision with respect to the log in
Figure 1.2a, as there is no customer for which a transfer is made before the customer is
notified.

If the goal of the analysis is to describe the future behaviour, e.g. to ensure that
deviations cannot occur, then the discovery algorithm needs to discover a model that
resembles the system, instead of the event log. That is, algorithms try to discover models
that include most of the behaviour of the system (the model should have a high recall [4,
Section 4.6]). However, not too much behaviour unrelated to the system should be
included in the model (the model should have a high system precision [4, Section 4.6]).

Thus, discovery techniques typically aim to discover models with as high fitness, log
precision, recall and system precision as possible. Ideally, techniques guarantee perfection
in one or more of these measures. However, in Chapter 3, we will show that optimising for
these four concepts often involves trade-offs, i.e. there might be event logs and systems for
which no discovered model with a high fitness, log precision, recall and system precision
exists [40].

Exclude Abnormal Behaviour. Fourth, not all use cases might require strict
optimisation on the aforementioned concepts. That is, if the aim of the analysis is to
analyse the majority of behaviour or the “happy flow” of the system, it makes little sense
to enforce a fitness guarantee if this results in an unreadable and incomprehensible model.
Furthermore, for such use cases, typically only the most occurring behaviour should be
included in the model. For instance, if an insurance company suddenly receives an
abnormally high number of claims due to a severe storm, parts of the normal procedure
could be temporarily disabled to speed up service to customers. If the goal of the process

7

1

In
tr
od

u
ct
io
n

1.2 Process Discovery

mining project is to explore and gain a better understanding of the process, it could be
beneficial to exclude such abnormal behaviour and not include it in the discovered model.

Include Missing Behaviour. Fifth, as process discovery techniques aim to provide
new information to analysts, they should not simply represent the event log, as that would
not induce any new information (in contrast to Petri net synthesis techniques [26]). That
is, process discovery techniques deliberately do not assume that all possible behaviour of
the system is present in the event log. Such an assumption could pose infeasibly strong
requirements on event logs: a behaviourally complete event log of a system that consists of
10 concurrent activities has 3,628,800 possibilities of execution, and the probability that
a reasonably sized event log of such a real-life system would contain every possibility at
least once is negligible. Thus, discovery algorithms need to generalise over the behaviour
in the event log to deduce the behaviour of the system. Many discovery algorithms
approach this by using an abstraction of the event log instead of the event log itself,
such as a directly follows graph. In Chapter 5, we conduct a systematic study into
several of these abstractions, and the implications the abstractions have on discovering
the behaviour of the system.

Thus, discovery algorithms should be robust to too little and too much behaviour in
the event log by making trade-offs to include or exclude behaviour.

Handle More Types of Event Logs. Finally, several non-standard types of event
logs can be distinguished; process discovery techniques might benefit from considering
these types. For instance, in our evaluation, we will show that current discovery tech-
niques are well able to handle event logs with up to a million events and 100 activities
when given limited RAM. However, much larger event logs could be extracted, for in-
stance from the detector control software of the Large Hadron Collider, in which over
25,000 independent control systems collaborate to control e.g. power and aircondition-
ing, resulting in very complicated behaviour [83]. Obviously, any representable event
log would contain much more than a millon events and discovery techniques need to be
adapted to handle such complexity.

In the lion’s share of existing process discovery techniques, it is assumed that activity
executions are instantaneous (atomic). However, in some event logs, the duration of
activity executions takes time, i.e. are non-atomic. Process discovery techniques should
be aware of non-atomic event logs in order to benefit from the extra information it
provides (we will show this in Section 5.7).

Our Approach. Balancing rediscoverability, fitness, precision, excluding abnormal
behaviour and including missing behaviour depends on the goal of process mining in a
particular situation. In Chapter 3 we will argue that a single process discovery algorithm
that always achieves the perfect trade-off cannot exist. Therefore, in this thesis, we
present a family of process discovery techniques. That is, we introduce a framework,
the Inductive Miner framework (IM framework), that constructs process models. To
guarantee soundness, the IM framework limits itself to recursive process models, i.e.
process trees, which will be described in Chapter 2. As process trees are sound by
definition, all algorithms that implement the IM framework guarantee soundness. The
IM framework discovers process models recursively, starting with the identification of the
most important behaviour in an event log, splitting the event log into smaller sublogs and
recursing until a base case is found. A process discovery technique can fully implement
the IM framework by providing parameter functions for each of these steps. Furthermore,

8

1

In
tr
od

u
ct
io
n

1.2 Process Discovery

the IM framework aids algorithms in providing guarantees such as termination, perfect
fitness (i.e. all behaviour of the event log is in the discovered model), perfect log precision
(i.e. all behaviour of the discovered model is in the event log) and rediscoverability.

To aid in rediscoverability proofs, we provide a general proof framework for rediscov-
erability. This proof framework expresses rediscoverability in terms of abstractions, such
that it aids abstraction-based algorithms. Furthermore, we linked the proof framework to
the IM framework by expressing proof obligations in terms of the parameter functions of
the IM framework. Consequently, we use the proof framework to prove rediscoverability
for all algorithms introduced in this thesis.

As described before, many discovery algorithms use abstractions in order to avoid the
assumption that all behaviour of the system is present in the event log. However, this
implies that models with different behaviour but equivalent abstractions exist, and thus
that discovery algorithms are insensitive to some behaviour. We perform a systematic
study to these abstractions and their influence on rediscoverability, to better understand
the capabilities and limitations of the algorithms introduced in this thesis and existing
algorithms. That is, we describe the abstractions, and explore the boundaries of the
systems that can be uniquely identified by the abstraction, by defining classes of systems
such that provably no two systems of the class have the same abstraction.

Using the results of the abstractions study, we introduce several discovery algorithms
that implement the IM framework, as illustrated in Table 1.1. Using the IM framework
and the proof framework, we prove that all of these algorithms guarantee soundness,
termination, and rediscoverability. These algorithms illustrate the flexibility of the IM
framework: for each algorithm, large parts of earlier algorithms are reused, and nev-
ertheless algorithms with different focus and strategies emerge. That is, we introduce
algorithms to handle event logs with deviations, to handle logs with little-used parts and
to handle logs in which the abstractions are not fully covered, i.e. incomplete logs. The
flexibility of the IM framework is exploited further by the introduction of algorithms
that handle different types of event logs, i.e. logs in which events take time (non-atomic
event logs). Furthermore, we adapt the IM framework slightly to handle large event logs,
i.e. with tens of millions of events and thousands of activities, by introducing the IMd
framework and corresponding algorithms.

The IM framework and the discovery algorithm that use it have been implemented
in the ProM framework [58]. We argue that these algorithms are robust: they return a
sound model at all times, they offer several guarantees and, as shown in our evaluation,
they handle logs with deviations, logs with little-used parts and incomplete logs, they
perform well on real-life event logs and they are scalable.

For instance, Figure 1.3 shows the results of an existing discovery algorithm (α [4,
p.130]) and an algorithm introduced in this thesis (IMfa, see Section 6.4.3), on the
same real-life event log of a mortgage application process of a financial institution [56].
Both models are shown here as Petri nets, which will be introduced in Section 2.2.2. The
model discovered by α contains unconnected (i.e. unrestricted) activities, does not contain
a clear end state and therefore, the set of traces that this model represents is unclear.
Little information can be derived from this model. In contrast, the model returned by
IMfa is structured and sound, thus contains no unconstrained activities, deadlocks or
other anomalies, and the set of traces that this model represents is clear, which makes
it suitable for further analysis. As different use cases might require different discovery
techniques, we present a family of discovery techniques, all of which return models that
are guaranteed sound.

2Future work.
3We chose not to guarantee fitness for IMd (see Section 6.6.6).

9

1

In
tr
od

u
ct
io
n

1.2 Process Discovery

g

m v

p

e

h

d

f

o

j
c

b

n

i

x

q

w

k
l

r

t

a

s

u

(a) The result of the α-algorithm [4, p.130].

j g

e

r

h

s

d t
u

q w

b

c

i

k x

o

f

l
v

m p

(b) The result of an algorithm introduced in this thesis (IMfa).

Figure 1.3: Two discovery techniques applied to a real-life event log [56]. The
activity names have been replaced with letters.

10

1

In
tr
od

u
ct
io
n

1.3 Conformance Checking

Table 1.1: The family of discovery algorithms, and their guarantees and pur-
poses. Due to the frameworks, all algorithms guarantee soundness, termination
and rediscoverability. The algorithms will be introduced in Chapter 6.

us
e
ca
se
s

fr
am

ew
or
k

fit
ne
ss

gu
ar
an
te
ed

in
fr
eq
ue
nt

&
de
vi
at
in
g

be
ha
vi
ou

r

in
co
m
pl
et
e

be
ha
vi
ou

r

IM framework IM IMf IMc
discover more behaviour IM framework IMa IMfa -2

handle non-atomic event logs IM framework IMlc IMflc IMclc
handle larger logs IMd framework IMd3 IMfd IMcd

1.3 Conformance Checking

As process discovery algorithms introduce absent and exclude present behaviour of the
event log, an essential step after discovering a model is to evaluate this model. A confor-
mance checking technique can be used to perform this evaluation. We consider two types
of conformance checking in this thesis: log-conformance checking and model-conformance
checking. A log-conformance checking technique compares a process model and an event
log, and advises on their differences. If a particular part of the model and the event
log deviate strongly, then the model might not represent that part of the system well,
conclusions about that part might not be valid for the underlying system, and these con-
clusions should be drawn with care. A model-conformance checking technique compares
two process models with one another. Even though in typical process mining projects the
system is unknown, a reference model from which the system was implemented might
be available (the system model in Figure 1.1). Furthermore, process models based on
different subsets of the event log can be compared. Event data from e.g. different periods
or geographic regions may be used to construct multiple models of the same system and
subsequently, the systems of these periods or geographic regions may be compared using
model-conformance checking.

Typically, conformance checking techniques express the ‘amount’ of behaviour that
two models or a log and a model have in common, what ‘part’ of behaviour in the
log/system model is represented in the discovered model, or vice versa. Two major
challenges of conformance checking techniques are to (1) quantify this amount or part,
as models might contain unbounded behaviour, and (2) avoid the state-space explosion
problem, as models might contain much or unbounded behaviour. To solve both chal-
lenges, also conformance checking techniques often use an abstraction of behaviour, such
as the directly follows graph or other behavioural relations [164, 57, 179, 85] (as described
earlier in this chapter). However, a downside, shared with process discovery techniques
that use abstractions, applies: the measures become insensitive to certain differences in
behaviour: if two types of behaviour have the same abstraction, the conformance check-
ing technique cannot distinguish them. Techniques that do not use such abstractions,
such as [19], tend to have issues dealing with large event logs, as we will show in our
evaluation in Chapter 8.

11

1

In
tr
od

u
ct
io
n

1.3 Conformance Checking

model 1

projected model

deterministic
finite

automaton

model 2

projected model

deterministic
finite

automaton

event log

projected log

project projectproject

construct state space

construct state space

recall/fitness

precision

Figure 1.4: The PCC framework.

In this thesis, we aim to avoid the state-space explosion problem by using an ab-
straction, while avoiding the insensitivity by choosing an abstraction that is sensitive to
a large class of models.

Our Approach. In this thesis, we introduce the Projected Conformance Checking
framework (PCC framework), which supports both log- and model-conformance checking
and aims to support large models and event logs, i.e. with over a hundred thousand
events and hundreds of activities, which existing techniques cannot handle. The PCC
framework combines ideas from existing techniques: it uses automata as abstraction to
capture all possible behaviour. That is, model, log and system model are played out [4]
and all their behaviour is recorded in automata. However, to improve scalability, the
PCC framework considers subsets of activities. That is, for each subset of a fixed size
(e.g., all pairs or triplets of activities), the event log, system and/or model are projected
onto the activities of the subset, and all projected behaviour is compared to compute
fitness, recall, log precision and/or system precision. Figure 1.4 shows the approach of
the PCC framework (we will discuss its details in Chapter 7). These measures on subsets
of activities provide information on two levels: as summarative measures (when averaged
over all subsets) and on the parts of the model that deviate from the event log (when
averaged over activities, see for instance Figure 1.5). Using the result of our study of
abstractions in Chapter 5, we show classes of models for which the PCC framework can
reliably decide language equivalence.

We compare the PCC framework to existing techniques, and find that the PCC
framework can handle real-life event logs and models discovered from these event logs that

12

1

In
tr
od

u
ct
io
n

1.3 Conformance Checking

Figure 1.5: A screenshot of the results of the PCC framework, projected on
a process model.

Figure 1.6: Excerpt of a real-life event log [36]. The complete model contains
151 activities; the activity names have been replaced with letters.

13

1

In
tr
od

u
ct
io
n

1.4 Enhancement & Tool Support

contain hundreds of activities, which the existing techniques cannot handle. Furthermore,
the experiments suggest that the PCC framework needs less computation time. For
instance, on the model of which an excerpt is shown in Figure 1.6, the PCC framework
computed fitness and log-precision in less than a second, while the existing approach [19]
could not compute an answer. The PCC framework handled all real-life event logs of
the experiment, whereas current state-of-the-art techniques could not handle logs with
more than 100 different activities.

1.4 Enhancement & Tool Support

Commercially available process mining tools offer many enhancements, and these en-
hancements give analysts many more insights into the process than plain process mod-
els. However, enhancements projected on unsound models or on models without clear
semantics can be unreliable. Therefore, we considered these enhancements offered by
commercially available process mining tools, and selected the enhancements that benefit
from sound models with clear semantics. For these enhancements, we describe univer-
sally applicable techniques, challenges and concepts. Furthermore, we develop a process
mining tool that makes process discovery, conformance checking and the identified en-
hancements available in an easy-to-use package. In this section, we first describe the four
enhancements we consider in this thesis, after which we describe the process mining tool.

First, Figure 1.7a shows a model enhanced with frequency information. That is,
the activities (i.e. the boxes) are annotated with the number of times the activities
were executed and the edges between the activities are annotated with how often the
edge was used in the routing of cases through the process model. Second, Figure 1.7b
shows a model enhanced with performance information. That is, activities are annotated
and coloured with the duration of the activities. Third, the availability of conformance
checking results allows for the visualisation of deviations on the model. For instance, in
Figure 1.7c, it is visualised that in 57 + 4749 cases, an event happened that was not
described by the model. The location of these deviations in the model is denoted by red-
dashed edges. Finally, Figure 1.7d shows a still from a model enhanced with animation.
In this animation, the tokens, which represent traces, flow over the model. Whenever an
event was executed in the trace, a token flows over the activity that belongs to that event.
Tokens of all traces combined provide insights into e.g. bottlenecks, changes in the process
and seasonal effects. Animation and deviations can only be computed and visualised if the
model is sound and has clear semantics, which illustrates the need for process discovery
techniques that guarantee such models and robust conformance checking techniques that
can handle these models.

Insights gained from enhancement techniques may often lead to new research ques-
tions, and thus explorative process mining projects are typically iterative. For instance,
a model is discovered, which is evaluated and enhanced, after which e.g. the event log is
filtered (to zoom in) on a particular part of the process. After this, the analysis may be
repeated [61]. To support this iterative process, easy-to-use software support is neces-
sary [91]. Commercial tools such as Celonis Process Mining and Fluxicon Disco provide
the ease-of-use, but do not provide the semantics and conformance checking, which is
necessary to evaluate a discovered model and to validate the conclusions drawn from a
model [91]. Academic tools provide semantics and conformance checking, however lack
the ease-of-use and robustness (e.g. if a model like in Figure 1.3a is discovered, confor-
mance checking might not give useful answers [89]) required for software support [91].

Therefore, we introduce a software tool, the Inductive visual Miner (IvM), which

14

1

In
tr
od

u
ct
io
n

1.4 Enhancement & Tool Support

(a) Frequency: the numbers on the edges and in the activities denote how often that
edge/activity was executed.

(b) Performance: the digits in the activities denote the average duration of that ac-
tivity. For instance, A_DECLINED took on average 0 days, 37 seconds and 999
milliseconds.

(c) Deviations: the red-dashed edges denote points in the model where the log and the
model disagree.

(d) Animation: the yellow dots flow over the model according to the model and indicate
e.g. bottlenecks.

Figure 1.7: Enhancements in Inductive visual Miner.

15

1

In
tr
od

u
ct
io
n

1.5 Contributions and Structure of this Thesis

combines the process discovery techniques described in this thesis with existing confor-
mance techniques (alignments) and the enhancements described in this thesis. That is,
IvM takes an event log as input and discovers a process model using the process discov-
ery techniques described in this thesis, aligns the event log and the model such that they
agree (i.e. computes an alignment), and enhances the model and event log using per-
formance, deviations, animation, and frequency information (the enhancements shown
in Figure 3.28 were computed and visualised by IvM). All of these steps are performed
automatically, and the user gets a result without further interaction necessary. Based on
the given results, a user can influence each step or apply filters, after which IvM auto-
matically recomputes all necessary steps. Due to the quick interaction and visualisation,
IvM enables users to explore the process as it was recorded in the event log.

1.5 Contributions and Structure of this Thesis

In this thesis, we address the process mining challenges process discovery, conformance
checking and enhancement. To summarise, this thesis contains the following contribu-
tions:

1. A framework for process discovery algorithms (the IM framework, Chapter 4). The
IM framework guarantees soundness by its use of process trees, and aids algorithms
in guaranteeing fitness, log-precision and rediscoverability. The framework enables
discovery algorithms to focus on the most important behaviour in an event log,
instead of on all behaviour, and enables the design of efficient algorithms that are
robust to too little and too much behaviour in the event log.

2. A systematic study of language abstractions used in process discovery and confor-
mance checking (Chapter 5). We perform a systematic study to these abstractions
and their influence on rediscoverability to better understand the capabilities and
limitations of the algorithms presented in this thesis and existing algorithms. For
each abstraction, we study its expressive power, i.e. the class of models that can be
represented by the abstraction such that no two models of the class with a different
language have the same abstraction.

3. A family of discovery algorithms (see Table 1.1, Chapter 6). These algorithms
implement the IM framework and therefore guarantee soundness. Each algorithm
targets different types of event logs and addresses different challenges of process
discovery. Furthermore, all algorithms guarantee rediscoverability and some guar-
antee perfect fitness. No existing (set of) algorithm(s) possesses this combination
of properties.

4. A conformance checking framework (the PCC framework, Chapter 7). The PCC
framework supports both log-conformance and model-conformance checking and is
able to handle larger event logs and models than existing techniques, works faster
and supports multiple process modelling formalisms. Furthermore, for certain
classes of models, the PCC framework guarantees that the returned measures are
perfect if and only if the two models are language equivalent.

5. A discussion of enhancements and a process mining tool (the IvM, Chapter 9).
The IvM combines process discovery, conformance checking and enhancements in
an easy-to-use package.

The structure of the remainder of this thesis is shown in Figure 1.8. In this figure,
the techniques, concepts and frameworks of this thesis are shown in boxes, as well as the
dependency relations between them.

16

1

In
tr
od

u
ct
io
n

1.5 Contributions and Structure of this Thesis

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability
language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

Figure 1.8: Structure of this thesis.

We first introduce some basic notation such as Petri nets, automata, languages, event
logs (not in the figure) and process trees in Chapter 2. Furthermore, the figure shows the
guarantees that are provided or enabled for each technique, concept or framework. We
elicit guarantees and other requirements of process discovery, conformance checking and
enhancement in more detail by considering existing techniques in Chapter 3. In Chap-
ter 4, we study rediscoverability in more detail, introduce the formal rediscoverability
proof framework and introduce the IM framework for process discovery.

We perform a systematic study towards the abstractions that are used in both process
mining and conformance checking in Chapter 5. In Chapter 6, we introduce concrete
discovery algorithms that use these abstractions, i.e. we introduce several algorithms that
implement the IM framework, and prove guarantees such as fitness and rediscoverability
for these algorithms. We describe the PCC framework, i.e. our conformance checking
framework, which supports both log- and model-conformance checking, in Chapter 7.
In Chapter 8, we evaluate both process discovery algorithms and conformance checking
techniques (this is not denoted in the figure). For discovery algorithms, including the ones
introduced in this thesis, we test their scalability, balancing of log criteria, and robustness
to abnormal and missing behaviour. Furthermore, we compare the PCC framework to
conformance checking techniques on scalability and their returned measures.

In Chapter 9, we discuss several challenges and solutions of model and event log
enhancement. Finally, Chapter 10 concludes the thesis.

17

18

2Preliminaries

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

2

P
re
li
m
in
ar
ie
s

2.1 Multisets, Traces, Regular Expressions

In this chapter, we first introduce some basic concepts and introduce several concepts
of process mining that will be used extensively in this thesis. In Section 2.2 we discuss
process models and event logs. Furthermore, we elaborate on a model and event log
abstraction, the directly follows relation, in Section 2.4. This notion is used in many
process mining techniques [4, 80, 173, 19, 143] and will be highly relevant for this thesis.

2.1 Multisets, Traces, Regular Expressions

A multiset is a set in which elements may occur multiple times, i.e. a multiset A is
a function of the elements of A to natural numbers, such that for an element a, Apaq
denotes how often a is included in A. For elements not occurring in the multiset, A
returns 0. For instance, let a, b and c be different elements, then the multiset A � ra2, bs
is the multiset in which Apaq � 2, Apbq � 1 and Apcq � 0.

• The expression a P A expresses that element a is in multiset A, i.e. that Apaq ¥ 1.

• To define multisets using formulas, we use a bracket notation. For instance, for a
multiset X, ra2|a P Xs denotes the multiset in which every element of X is included
twice as often, e.g. ra2|a P rx3, y2ss � rx6, y4s.

• The union of two multisets A and B, denoted with AZB, is the sum function, i.e.
let C � AZB, then for each element a it holds that Cpaq � Apaq �Bpaq.

• Similarly, in the multiset difference AY- B, for each element a, pAY- Bqpaq �
maxp0, Apaq �Bpaqq.

• A multiset A is a subset of multiset B, denoted with A � B, if and only if for all
elements a it holds that Apaq ¤ Bpaq.

• A set can be seen as a special case of a multiset, for which the returned value for
each element is bounded by 1. The function set transforms a multiset into a set:
setpLq � tt|t P Lu.

• For a given multiset A, the function MpAq returns the multisets in which all
elements of A occur infinitely often, and no other elements occur, i.e. for all
multisets A and A1 such that setpAq � setpA1q, it holds that A1 � MpAq and
setpMpAqq � setpAq.

A trace is a sequence of elements. For instance, xa, b, ay denotes the trace consisting of
an a followed by a b followed by an a again. Traces can be concatenated, e.g. xa, by�xc, dy �
xa, b, c, dy. The trace without elements is denoted with ε. To access the ith element of a
trace t, we write tpiq, and we denote the length of a trace t with |t|.

A regular expression expresses sets of traces using three operators: choice |, con-
catenation � and Kleene-star � [101]. In this notation, an expression describes a set of
traces, i.e. a for a P Σ describes the set txayu, and if A and B are expressions, then
A | B � AYB, A �B � ta � b | a P A^ b P Bu, and A� � ta, a � a, a � a � a, . . .u.

2.2 Process Models

In this section, we introduce the process modelling formalisms that are used in this thesis:
automata (Section 2.2.1), Petri nets (Section 2.2.2), Yet Another Workflow Language
(Section 2.2.3), Business Process Modelling and Notation (Section 2.2.4), and process

20

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

s0 s1

s3s2

a

bb

a

Figure 2.1: Example of an automaton, NFA and DFA.

trees (Section 2.2.5). The formalism of Petri nets is a well studied formalism that provides
executable semantics to many other formalisms. Furthermore, many process discovery
and conformance checking techniques use Petri nets, such as [4, 80, 173, 19, 143]. The
Yet Another Workflow Language (YAWL) formalism extends Petri nets with several
constructs. The Business Process Model and Notation (BPMN) language notation is
used in many end-user tools, and inspired the tooling described in Section 9.1.

However, Petri nets, YAWL models and BPMN models might suffer from certain
anomalies, such as the presence of deadlocks (see Chapter 1). To avoid such problems,
the process discovery and conformance checking techniques introduced in this thesis will
use a formalism that is well-behaved by design: process trees.

2.2.1 Automata
An automaton is one of the most basic ways to represent processes. In this section, we
present two types of automata: deterministic finite automata and nondeterministic finite
automata.

In the following, let Σ be an alphabet, i.e. the set of activities in the automaton.

Definition 2.1 (deterministic finite automaton). A deterministic finite automaton (DFA)
over an alphabet Σ is a tuple pS, s0, F,Aq which consists of:

• a finite set of states S;

• an initial state s0 P S;

• a set of final states F � S;

• a transition relation A : S � Σ Ñ S.

Graphically, a state is represented by a circle, the initial state has an unconnected
incoming edge, and the final state is represented by a circle with a double border. An
element of A, e.g. Aps, aq � s1, with a P Σ, s P S, s1 P S, is represented by a direct edge
from s to s1, annotated with a. For instance, Figure 2.1 shows an example of a DFA in
which Σ � ta, bu, S � ts0, s1, s2, s3u is the set of states, s0 is the initial state, F � ts3u
is the set of final states, and Aps0, aq � s1, Aps0, bq � s2, Aps1, bq � s3, Aps2, aq � s3 is
the transition relation.

Let si, sj P S be states in a DFA and let a P Σ, such that Apsi, aq � sj , i.e. from state
si there is an a-edge to sj . We denote this with si

a
ÝÑ sj , and semantically, this means

that the DFA starts in state si, executes activity a and ends up in state sj . Consider a
sequence of executions s0

a1ÝÑ s1
a2ÝÑ s2 . . . sn, such that s0 is the initial state of the DFA,

@1¤i¤n ai P Σ and @0¤i¤n si P S. We refer to such a sequence a1 . . . an as a trace. If

21

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

a
b

c

a

a

(a) DFA.

a b

c

a

(b) Minimal DFA.

Figure 2.2: Two DFAs with the same language.

sn P F , i.e., sn is a final state, then the trace is accepted by the DFA. The sets of all traces
that are accepted by a DFA is the language of the DFA. For instance, the language of the
DFA shown in Figure 2.1 is ab | ba, using the notation of regular language expressions.

Several DFAs could express the same language, e.g. the two automata of Figure 2.2
have the same language, however Figure 2.2 has fewer states. As proven in [101], for each
DFA there is a minimal DFA, i.e. a DFA with the same language for which there is no
DFA with the same language but fewer states. This minimal DFA is unique, i.e. there is
just one DFA with a minimum number of states [101]. Therefore, language equivalence
of two DFAs can be determined by examining their minimal DFAs, which we will use for
our conformance checking framework in Chapter 7. Figure 2.2b is the minimal DFA of
our example.

A language that can be represented by a DFA is a regular language. Languages that
are not representable by DFAs are for instance tanbn|n P Nu, i.e. any number of a-s
followed by the same number of b-s. For this language, the automaton would need to
count the number of a-s. As the number of states in a DFA is bounded, for each DFA
there is trace of the language not properly recognised by the DFA [101]. We denote the
set of all regular languages and all process models with regular languages regardless of
process modeling formalism with L.

In another class of automata, an automaton has an initial state, but no final states,
and its traces are therefore assumed to have no end. Process discovery has been studied
on such automata, e.g. on reactive continuously running systems [155], and in the context
of Linear Time Logic (LTL) [107]. However, given the context of business processes, in
this thesis we limit ourselves to languages with termination.

Many more types of automata have been defined, e.g. non-deterministic finite au-
tomata and infinite automata. For more information, please refer to [101].

For most practical process models, DFAs are not well suited, as each possible state
the process can be in needs an explicit state in a DFA: DFAs of real-life processes can
be prohibitively large and therefore may be difficult to understand by human analysts.
Therefore, in the next sections, we discuss process modelling formalisms and notations
that can represent state spaces more compactly.

2.2.2 Petri Nets
In this section, we introduce Petri nets [137], two subclasses of Petri nets, and several
extensions. Petri nets can denote some state spaces more compact, especially in presence
of concurrent behaviour, i.e. independent executions do not lead to a state space explo-

22

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

a

b

c

d

Figure 2.3: A sound workflow net.

sion. We first introduce general Petri nets. Second, we introduce two subclasses of Petri
nets that are used in many process discovery techniques. We illustrate the limitations of
Petri nets by recalling two extensions that make Petri nets Turing complete.

Definition 2.2 (Petri net, unlabelled Petri net). A Petri net over a given alphabet Σ is
a tuple pP, T,A,M0, F, lq consisting of:

• a set of places P ;

• a set of transitions T , such that P X T � H;

• a multiset arc relation A � MppP � T q Y pT � P qq;

• an initial marking m0 � MpP q;

• a set of final markings F , being a set of multisets over P ;

• a partial labelling function l : T Ñ Σ.

In case l is an bijective function, i.e. l is a one-to-one correspondence between T and Σ,
then the net is an unlabelled Petri net.

Graphically, places are represented by circles, transitions are denoted by rectangles,
and arcs are denoted by directed arcs between places and transitions. The initial marking
is denoted by a black dot (a token). In case the net has one final marking, the places
that are part of this final marking are denoted with a doubly bordered circle. Figure 2.3
shows an example.

For a transition or place e, let e denote the post set of e, i.e. all places/transitions
to which e has outgoing arcs: e � tj | pe, jq P Au. Similarly, e denotes the pre set
of e: t � tj | pj, eq P Au. We canonically extend pre and post sets to multisets if A
is a multiset. The marking of a Petri net denotes the state of the net, and consists of
possibly multiple tokens in places, i.e. a marking is a multiset of places. A transition t
is enabled in a marking m if all places from which t has incoming arcs contain at least
one token: t � m. If transition t is enabled in marking m, it can fire, thereby changing
the marking of the Petri net to a new marking m1, such that it removes tokens from the
places connected to its incoming arcs, and produces tokens on places connected with its
outgoing arcs: m1 � m Z tY- t. We extend this to sequences of transition firings: the
Petri net starts in the initial marking m0, and a sequence of transition firings brings the
Petri net to a final marking mn P F .

The firing of a transition t semantically denotes the execution of its labelled activity,
i.e. the firing of t denotes the execution of lptq. If l does not map t, then t does not
denote the execution of an activity: t is a silent transition. The sequence of labelled
transitions in a firing sequence that brings the Petri net from the initial marking m0 to a
final marking mn P F denotes a trace of the Petri net. We denote such a firing sequence

23

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

a

b

c

(a) A workflow net with an unreachable
final marking.

a

b

c

d

e

(b) A workflow net with remaining to-
kens.

Figure 2.4: Two workflow nets with soundness issues.

using m0 mn. The set of all such labelled firing sequences is the language of the Petri
net, which for a net M is denoted with LpMq.

Alternatively, Petri nets could be defined without final markings: the language of
such a Petri net would contain every labelled firing sequence that starts in the initial
marking m0. That is, in Definition 2.2, F would consist of all possible markings. Such
Petri nets could for instance be used to model continuous processes, or when in case
only events are logged without a categorisation into traces [155]. However, the business
processes we consider in this thesis have a clear ending, and the traces in event logs have
a clear end as well. Therefore, in this thesis, we limit ourselves to workflow nets.

Workflow nets. Workflow nets are a subclass of Petri nets, that is used by many
process discovery algorithms [4, 80, 173], due to their rather natural representation of
the final markings by a single place without any outgoing arcs [4, 17].

Definition 2.3 (workflow net). A workflow net is a Petri net pP, T,A,m0, F, lq such
that
• there is a single i P P such that i � H;
• there is a single o P P such that o � H;
• all places (P) and transitions (T) are on a path from i to o;
• the initial marking consists of i: m0 � ris;
• the only final marking consists of o: F � trosu.

For instance, Figure 2.3 shows a workflow net: its language is txa, b, c, dy, xa, c, b, dyu.
Workflow nets might suffer from several behavioural anomalies: the final marking

might not be reachable, or there might be tokens remaining in the net after a token
reaches the sink place. Figure 2.4a shows an example of a workflow net in which the final
marking is not reachable: after firing either a or b, the net is in a deadlock because c
would require both a and b to be fired. Figure 2.4b shows an example of a workflow net
in which there can be remaining tokens after the sink place is reached: after firing a, b
and c, d can fire, which puts a token in the sink place, but there is a remaining token in
the place left of d.

Workflow nets that do not have such issues are sound, i.e. a workflow net has sound-
ness if each transition can fire from the initial marking and from each reachable marking
it is possible to reach the final marking [4]. Formally:

24

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

. . .

Figure 2.5: Single-entry-single-exit regions: the dashed regions have only one
incoming and one outgoing arc.

Definition 2.4 (soundness). Let W � pP, T,A, ris, ros, lq be a workflow net, in which i
is the source place and o is the sink place. W is sound if and only if:

• every transition can be fired, i.e. @tPT Dros m t � m;

• from every marking, reachable from ris, it is possible to reach ros, i.e. @ris m m
ros;

• every marking, reachable from ris, that puts a token in o has no other tokens, i.e.
@ris m o P mñ ros � m.

The soundness property can be summarised in three requirements: (1) every transi-
tion can be fired in some marking that is reachable from the initial marking m0, (2) the
final marking (i.e. with one token in the sink place) is reachable from m0, and (3) once
a token is put in the sink place, the rest of the net is empty.

In [3], it was proven that the problem of deciding soundness for a workflow net is
equivalent to deciding whether its short-circuited net (i.e. connecting the sink place to
the source place using a silent transition) is live and bounded, i.e. from every reachable
marking, it is possible to eventually fire every transition, and there exists a number k
such that no place in the net has more than k tokens in any reachable marking.

In the next chapter, we will show the importance of soundness for process mining.
Here, we continue with a class of process models that are guaranteed sound: block-
structured workflow nets. A workflow net is block structured if for every place or tran-
sitions with multiple outgoing arcs, there is a corresponding place or transition with
multiple incoming arcs. The parts of the net between the outgoing and incoming arcs
form regions, and no arcs can exist between regions, i.e. the regions have a single entry
and a single exit. In Figure 2.5, the transitions bound the two dashed regions, and there
cannot be an arc between the regions. Due to this structure, block-structured workflow
nets are inherently sound.

An example is shown in Figure 2.6: the filled regions denote the blocks of the block
structure. Block-structured workflow nets are sound by definition, and therefore we will
use block-structured workflow nets in the techniques presented in this thesis.

Free-Choice Petri Nets. Another class of Petri nets are free-choice Petri nets. In
such nets, two transitions that share places from which they have incoming arcs, share
all such places [67]. For instance, Figure 2.7 shows free choice and a non-free choice con-
structs. Free choice nets are a well-studied subclass of Petri nets, as several properties,

25

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

b

c

d e

f

g

a

Figure 2.6: A block-structured workflow net; filled regions denote the block
structure.

a b

(a) A free choice construct.

a b

(b) A non-free choice construct.

Figure 2.7: Free choice Petri nets.

such as reachability of a marking, liveness and boundedness, are decidable [67]. Further-
more, several process discovery algorithms provide guarantees if the system model can
be expressed as a free choice Petri net, e.g. the α algorithm [4, p.130] (see Section 3.3.2).

Extensions. Several extensions to Petri nets have been proposed. For instance, a
reset arc between a place and a transition removes all tokens from the place on execution
of the transition, while not influencing the precondition of the transition. Figure 2.8a
contains an example: the language of this sound workflow net consists of traces that start
with an a followed by a b and any combination b and c such that there are never more
c’s executed than b’s, and end with a d.

Another extension is the inhibitor arc. An inhibitor arc between a place and a tran-
sition alters the precondition of the transition, which can only fire if the place is free of
tokens. Figure 2.8b shows an example: the language of this sound workflow net consists
of traces that start with an a followed by any combination b and c such that there are
never more c’s executed than b’s, and end with a d when the number of b’s and c’s that
were executed is equal. A reset arc can be transformed into an inhibitor arc, but the
reverse is not necessarily true [4]. The addition of inhibitor arcs makes Petri nets Turing
complete [127].

2.2.3 Yet Another Workflow Language
The Yet Another Workflow Language (YAWL) was designed to provide an illustrative
implementation of a set of typical constructs to represent how cases flow through the

26

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

a b c d

(a) A Petri net with a reset arc.

a b c d

(b) A Petri net with an inhibitor arc.

Figure 2.8: Examples of Petri net extensions.

process: the workflow patterns [12]. YAWL is both a process modelling language and an
engine that implements workflow systems by interpreting models written in the YAWL
language [82]. We used parts of the YAWL language in the main formalism of this thesis,
process trees, which will be introduced in Section 2.2.5.

The YAWL language extends Petri nets using syntactic sugaring, and several con-
structs that extend the expressibility of Petri nets:

• Data. Control-flow in YAWL can be constrained using data elements. These data
elements influence routing of cases. For instance, a gold customer (and this fact
is present as a data element in the case) might be routed differently than a silver
customer. Using data elements, YAWL is Turing complete.

• Cancellation regions. A transition in YAWL can have an associated cancellation
region that includes some elements of the model: upon execution of the transition,
all tokens that are present in the elements in the cancellation region are removed.
Cancellation regions closely resemble reset arcs of Petri nets.

• Or-splits and or-joins. A YAWL transition can be annotated as being an or-split.
That is, upon execution of the transition, a selection of the output arcs is made.
Only via the selected arcs a token is produced. The selection must consist of at
least one arc, and in YAWL, the selection is determined by data elements.
A transition annotated as an or-join performs the opposite task: it waits for tokens
on all incoming arcs as long as a via an arc a token could still arrive. As soon as
no token can arrive anymore, the transition fires. These or-joins have complicated
semantics, which can even lead to paradoxes [59].

• Multiple instance subprocesses. YAWL models can be nested, and such a nested
subprocess can be instantiated multiple times using a multiple instance YAWL
element. For instance, in an insurance claim, a subprocess could be ‘send a form
to all witnesses and wait for a reply’. As soon as a sufficient number of witness

27

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

(a) start (b) end (c) concurrency (d) exclusive choice (e) inclusive choice

Figure 2.9: BPMN routing constructs.

a

b

(a) A BPMN model.

a

b

c

(b) An “unsound” BPMN model.

Figure 2.10: Two BPMN models.

forms have been received, the multiple instance subprocess finishes and the process
continues.
The multiple instance notion is convenient for repeating subprocesses and the
YAWL construct offers flexibility: it is possible to model that 10 witness forms
must be sent, and after 3 received forms the process should continue.
Furthermore, it is possible to model that an unspecified (unbounded) number of
subprocesses can be started, and all must finish before the multiple instance finishes
and the process can continue. This construct brings the YAWL language outside
the class of regular languages (see Section 2.2.1), as the model needs to keep track
of an unbounded number of started subprocesses, and this cannot be modelled in
a finite automaton. (Note that other YAWL constructs and data have the same
effect.)

2.2.4 Business Process Model and Notation

Recently, the Business Process Model and Notation (BPMN) has become one of the most
widely used languages to model business processes [4]. Given its wide use in industry
and the rather intuitive semantics of basic routing constructs, we took inspiration from
the BPMN notation for our software tools, which will be introduced in Section 9.1.

A BPMN model is similar to a Petri net, however uses gateways as routing constructs,
a job served by the tasks (transitions) in Petri nets. The constructs most relevant for this
thesis are summarised in Figure 2.9. An example BPMN model is shown in Figure 2.10a,
which has the language pab | baqpab | baq�. BPMN models might have similar issues as
Petri nets, e.g. Figure 2.10b shows a model which Petri net translation would not be
sound. For more information, please refer to [54].

28

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

2.2.5 Process Trees
Both Petri nets and BPMN models might suffer from soundness issues. As described
in Chapter 1, in process mining, models with soundness issues might be challenging for
techniques, and for many use cases, unsound models should be discarded. Therefore, in
this thesis we focus on a modelling formalism that is guaranteed to be free of soundness
issues: the process tree. By using process trees, discovery algorithms and conformance
checking techniques need not to worry about soundness, as soundness is guaranteed by
construction.

A process tree is an abstract hierarchical representation of a block-structured workflow
net: a rooted tree in which the leaves are annotated with activities or the silent activity
τ and all other nodes are annotated with operators. We assume a finite alphabet Σ to
be given, then we define the syntax of proces trees recursively as follows:

Definition 2.5 (process trees syntax). Let Σ be an alphabet of activities, then

• activity a P Σ is a process tree;

• the silent activity τ (τ R Σ) is a process tree;

• let M1 . . .Mn with n ¡ 0 be process trees and let ` be a process tree operator, then
`pM1, . . .Mnq is a process tree, which we sometimes write as `

. . .MnM1

.

To define the semantics of process trees, we again assume a finite set of activities Σ
to be given. The language of an activity a is the trace xay, representing the execution
of that activity (a process step). The language of the silent activity τ contains only the
empty trace ε. The language of a process tree operator is a combination of the languages
of its children.

Formally, the language of a process tree is defined recursively as follows, in which `
denotes any process tree operator (in this thesis ` P t�,Ñ,^,Ø,	,_u), and in which
`L denotes an operator-specific function that combines the languages of its children:

Definition 2.6 (process tree semantics). Let Σ be an alphabet of activities, then

Lpτq � tεu
Lpaq � txayu for a P Σ

Lp`pM1, . . .Mnqq � `LpLpM1q, . . .LpMnqq

We refer to such functions `L as language-join functions, and each process tree
operator has a different language-join function.

This thesis uses six process tree operators: �, Ñ, ^, 	, Ø and _. The � operator
describes the exclusive choice between its children, Ñ the sequential composition, ^
the concurrent composition, Ø the interleaved (i.e. non-overlapping) composition, 	 the
repetitive composition and _ the optional concurrent composition.

In the remainder of this section, we finish the definition of the semantics of process
trees by giving the language-join function for each operator, and showing a corresponding
Petri net.

Exclusive Choice

The exclusive choice operator (�) expresses that a trace of one of the children of the
operator must be included, i.e.:

29

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

Definition 2.7 (exclusive choice semantics). Let L1 . . . Ln be languages, such that n ¥ 1.
Then,

�LpL1, . . . , Lnq � L1 Y L2 Y . . .Y Ln

For instance, the language of the process tree �pa, bq is txay, xbyu. An exclusive
choice operator can be translated to a block-structured workflow net as follows, in which
M1 . . .Mn are process trees. In this translation, the dotted boxes denote the translations
of the subtrees M1 . . .Mn.

�

Mn. . .M1

. . .

M1

Mn

Sequence

The sequence operator (Ñ) expresses that a trace of all children must be included in
order, i.e.:

Definition 2.8 (sequence semantics). Let L1 . . . Ln be languages, such that n ¥ 1. Then,

ÑLpL1, . . . , Lnq � L1 � L2 � � �Ln

For instance, the language of the process treeÑpa, bq is txa, byu. A sequence operator
can be translated to a block-structured workflow net as follows, in which M1 . . .Mn are
process trees:

Ñ

Mn. . .M1

M1 . . . Mn

Concurrency

The concurrency operator (^) expresses that a trace of all children must be included,
and these traces may overlap. The following definition uses the shuffle-product operator
�, which we will define afterwards.

Definition 2.9 (concurrent semantics). Let L1 . . . Ln be languages, such that n ¥ 1.
Then,

^LpL1, . . . , Lnq � L1 � L2 � . . . Ln

For instance, the language of the process tree ^pa, bq is txa, by, xb, ayu.
The shuffle product S1 � . . . Sn takes sets of traces from S1 . . . Sn and interleaves

their traces @1¤i¤n ti P Si while maintaining the order within each subtrace ti. Let t be
a trace, and let f be a bijective function that maps each event of t to a subtrace tj and
to a position in that subtrace, i.e. f : t1 . . . |t|u Ñ tpj, kq | 1 ¤ j ¤ n^ k ¤ |tj |u. Then,

t P t1 � . . .� tn ô Dfunction f

@1¤i1 i2¤|t|^fpi1q�pt,k1q^fpi2q�ptj ,k2q k1 k2 ^

@1¤i¤n^fpiq�pt,kq tpiq � tjpkq

30

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

where f is a bijective function mapping each event of t to an event in one of the ti [30].
For instance,

txa, byu� txc, dyu � txa, b, c, dy, xa, c, b, dy, xa, c, d, by,

xc, d, a, by, xc, a, d, by, xc, a, b, dyu

A concurrent operator can be translated to a block-structured workflow net as follows,
in which M1 . . .Mn are process trees:

^

Mn. . .M1

. . .

M1

Mn

Interleaving

The interleaving operator (Ø) expresses that a trace from all children must be included,
and that these traces cannot overlap. The following definition uses the permutation
function ppnq, which returns all permutations of the numbers t1 . . . nu.

Definition 2.10 (interleaved semantics). Let L1 . . . Ln be languages, such that n ¥ 1.
Then,

ØLpL1, . . . , Lnq �
¤

pi1...inqPppnq

ÑLpLi1 , . . . , Linq

For instance, the language of the process tree Øpa,Ñpb, cqq is txa, b, cy, xb, c, ayu.
Notice that we only define the language here: in a real-life system, the choice in which
order the children are executed might be made incrementally, even though the definition
does not explicitly express this. An interleaved operator can be translated to a block-
structured workflow net as follows, in which M1 . . .Mn are process trees.

Ø

Mn. . .M1

M1

Mn

Compared with concurrency, for interleaving a critical section place is added, which
ensures that at any time, only one subtree can be executing.

Loop

The loop operator () expresses that each trace first contains a trace from the first child
(the loop body). Then, the trace either ends or contains a number of times a trace from
a non-first child (a loop redo) followed by a trace from the loop body again.

Definition 2.11 (loop semantics). Let L1 . . . Ln be languages, such that n ¥ 2. Then,

	LpL1, . . . , Lnq � L1p�LpL2, . . . , LnqL1q
�

31

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

For instance, 	pa, b, cq is the composition of a trace of the body a, then zero-or-
more times a trace from a redo part (b or c) and a body a again: appb | cqaq�, i.e.
txay, xa, b, ay, xa, c, ay, xa, b, a, c, ay, xa, c, a, b, ay, xa, b, a, b, ay . . .u. A loop operator can be
translated to a block-structured workflow net as follows, in which M1 . . .Mn are process
trees:

	

Mn. . .M2M1

M1

M2

. . .

Mn

Inclusive choice

The inclusive choice operator (_) expresses that a trace from at least one child is included,
and that these traces may overlap. The following definition uses the subset-function qpnq,
which returns the set of all subsets of the numbers t1 . . . nu, without the empty subset.

Definition 2.12 (inclusive choice semantics). Let L1 . . . Ln be languages. Then,

_LpL1, . . . , Lnq �
¤

ti1...imuPqpnq

^LpLi1 , . . . , Limq

For instance, the language of the process tree _pa, bq is txay, xby, xa, by, xb, ayu. An
inclusive choice operator can be translated to a block-structured workflow net as follows,
in which M1 . . .Mn are process trees:

_

Mn. . .M1

p1

later

first

skip
M1

later

first

skip
Mn

p2

32

2

P
re
li
m
in
ar
ie
s

2.2 Process Models

b

c

d e

f

g

a

Figure 2.11: A Petri net corresponding to the process tree
Ñp�p^pa, bq, cq,�p	pÑpd, eqq, fq, gq. The filled regions denote the block
structure derived from the process tree operators.

Place p1 denotes that no subtree has been scheduled for execution yet, while place p2

denotes that a child has been scheduled. We use this construct to ensure that at least one
subtree is executed, which corresponds to the semantics of the _-operator. We added
dashed regions to clarify the Petri net constructs that are added for each subtree. The
constructs that are necessary for each subtree include three silent transitions: one to skip
execution of the subtree (this can only be done if p2 denotes that another subtree has been
scheduled), one to schedule the subtree as the first child to be executed (this can only be
done if p1 denotes that no other subtree has been scheduled), and finally one to schedule
the subtree if another subtree has already been scheduled (this can only be done if p2

denotes that another subtree has been scheduled). Once a subtree is scheduled, it must
be executed, however the order in which the scheduled subtrees are executed is arbitrary.
Once all subtrees have been executed or skipped, the rightmost silent transition joins the
inclusive choice.

In YAWL models, or-joins might have complex semantics, even leading to para-
doxes [59], but such issues do not appear in block-structured models, as for each or-join
there is a corresponding or-split, and such structures (local synchronising merge workflow
pattern [12]) do not risk expressing paradoxical behaviour.

Example

For instance, consider the process tree ME � Ñ

�

g	

fÑ

ed

�

c^

ba

. The language of ME is

pab | ba | cqpdepfdeq� | gq. Each process tree is easily translatable to a sound block-
structured workflow net. For example, the workflow net corresponding to ME is shown
in Figure 2.11.

33

2

P
re
li
m
in
ar
ie
s

2.3 Event Logs

Furthermore

Based on the language-join functions, the order of children for �, ^,Ø, _, and the order
of non-first children of 	 are arbitrary. For instance, �pa, bq � �pb, aq, ^pa, bq � ^pb, aq
and 	pa, b, cq � 	pa, c, bq but Ñpa, bq � Ñpb, aq and 	pa, b, cq � 	pb, a, cq.

The lowest common ancestor of two nodes in a tree is the node connecting the two
nodes, e.g. in 	

cÑ

ba

, the lowest common ancestor of a and c is the 	 node. In this

thesis, we will use Σ to denote the set of activities of a process tree explicitly, e.g.
Σp�pa, bqq � ta, bu. We refer to the set of all process trees as T.

The process trees introduced here differ slightly from the process trees as defined
in [36, 148]. In [36], a loop has precisely three children: a body, a redo and an exit
subtree. The semantics are similar: the body is always executed, followed by a repeated
redo and body. However, the exit child is executed last. We decided to opt for n-ary
loop nodes, as these provide a more natural fit to the cut detection algorithms: these
algorithms, which will be introduced in Chapter 6, discover n-ary loops naturally, while
an exit-node would be indistinguishable from a sequence-node. Furthermore, we added
the interleaved operator.

2.3 Event Logs

In this section, we introduce the input format of discovery algorithms and many other
process mining techniques: event logs. We first introduce the most commonly used type
of event logs and their notation, i.e. in which activities are atomic. Second, we introduce
a variant of event logs in which activities take time. Third, we consider rich event logs,
i.e. event logs in which events have meta information attached.

2.3.1 Atomic Event Logs
A trace represents the activities that were executed for e.g. a particular customer, patient,
file or claim. An activity is a step in the process, e.g. the recording of an order or
treatment of a patient. Each such an execution is an event . Formally, a trace is a finite
sequence of events, e.g. xa, a, by denotes a trace in which first an event of activity a
occurred, then an event of activity a again and finally an event of activity b.

An atomic event log is a multiset of traces. For ease of notation, we will refer to an
atomic event log simply as an event log . For instance, rxa, a, by3, xb, by2s denotes an event
log in which the trace xa, a, by happened 3 times and xb, by happened twice. We refer to
the set of all atomic event logs as E. We denote ΣpLq for the alphabet of a log L, i.e., the
activities used in L, |L| for the number of traces in L and ||L|| for the number of events
in L.

2.3.2 Non-Atomic Event Logs
In atomic event logs, an event denotes the execution of an activity, but this execution
is assumed to be atomic and instantaneous. In this section, we introduce a concept of
event logs in which the executions of activities can take time.

34

2

P
re
li
m
in
ar
ie
s

2.3 Event Logs

as as ac ac

Figure 2.12: Two ways to explain the trace xas, as, ac, acy.

In a non-atomic event log, executions of activities are represented by two events
instead of one: one event denotes the start of the execution, while the other denotes the
completion of the execution. Thus, every event is marked as being either a completion or
a start event. Notation wise, we write ~L to denote a non-atomic event log. For instance,
the trace xas, bs, bc, acy denotes the trace in which first non-atomic activity ~a was started,
then ~b was started, after which ~b completed and finally ~a completed.

The atomic event logs introduced earlier can be mapped to the new notion by trans-
forming each event into both a start and completion event, e.g. xa, by is transformed to
xas, ac, bs, bcy (notice that this keeps the semantics of the atomic trace intact). We do
not assume events to contain any information on which start event belongs to which
completion event, e.g. in the trace xas, as, ac, acy, two explanations are possible (see Fig-
ure 2.12). We do not have to make this assumption as the discovery techniques presented
in this thesis do not need to know which as belongs to which ac.

We refer to a set of non-atomic traces as a non-atomic language.
Event logs adhering to the XES standard [77] might provide start and completion

information. For instance, the BPI Challenge log of 2012 (BPIC12) [56] contains this
information. The XES standard describes several extensions, which allow information to
be added events. The lifecycle:transition extension adds life cycle transitions to events,
i.e. events can denote state changes in a state machine that describes their life cycle.
Several life cycles with corresponding state machines have been proposed, in this the-
sis we will use only use the start and complete transitions. In this thesis (and in our
implementations) we ignore events with other life cycle transitions.

Non-Atomic Trace Consistency

Our notion of non-atomic traces inherently introduces a challenge: the start and com-
pletion events must not appear out of order to make sense, i.e. the number of ‘running’
activity executions must never be negative. For instance, the trace xac, asy makes little
sense, as activity a was completed before it started. We refer to a non-atomic trace
without such issues as a consistent trace, i.e. a trace for which one could construct a one-
to-one mapping between start and completion events, in which the start event appears
before its mapped completion event.

Definition 2.13 (consistent non-atomic trace). A non-atomic trace t � xa1, a2, . . . any
is consistent if there is a mapping X � N� N such that

• all mapped events are of the same activity:
@Xpai, ajqΣprxaiysq � Σprxajysq

• each completion event is mapped to one preceding start event:
@aiPt,ai is a completion event |tj | Xpaj , aiq ^ 1 ¤ j iu| � 1

35

2

P
re
li
m
in
ar
ie
s

2.3 Event Logs

• each start event is mapped to one following completion event:
@aiPt,ai is a start event |tj | Xpai, ajq ^ i j ¤ nu| � 1

• no other mappings are present:
@Xpai,ajq ai is a start event ^ aj is a completion event

However, even though we assume there is such a mapping, the discovery techniques
presented in this thesis do not need to know an actual mapping.

As inconsistent traces make little sense and to keep the algorithms and proofs simple,
in this thesis we assume that all non-atomic traces we encounter are consistent. In
practice however, inconsistent traces might be encountered, e.g. the BPIC12 log [56] has
three such start events that cannot be mapped to a corresponding completion event.
Therefore, we introduce a pre-processing step to solve inconsistencies.

We explain this step using an inconsistent example trace, xas, bs, bcy. This trace could
be made consistent in several ways:

xbs, bcy remove as
xas, bs, bc,acy add ac at the end
xas, bs,ac, bcy add ac in the middle
xas,ac, bs, bcy add ac in the beginning

Without further information, there is no reason why one of these options would prevail
over the others. Therefore, we pragmatically choose the last one, as that keeps the impact
of the inconsistency as small as possible by inserting a completion event right after the
unmatched start event. This is applied to all inconsistent traces in our tools as a pre-
processing step. Therefore, in the remainder of this thesis, we can assume that all traces
are consistent. In case more information is available, such as when the events are linked
to one another with the concept:instance extension of XES [77], our pre-processing step
could easily be preceded by a such a custom inconsistency resolver.

2.3.3 Richer Logs
In real-life event logs, events may be annotated with additional data elements such as
time stamps (when the event was executed), resources (by whom or what the event
was executed), the type of customer for which the event was executed, what decision
information was available when the event was executed, etc.

For instance, consider the following trace:B
alife cycle: start

time: 29-02-1900 12:32
resource: Sue

, blife cycle: start
time: 29-02-1900 12:36

resource: Bert

,

alife cycle: complete
time: 29-02-1900 13:52

resource: Sue

, blife cycle: start
time: 29-02-1900 14:00

resource: Bert

F

This trace consists of four events, and each event is annotated with a life-cycle transition,
a time stamp and a staff member who executed the event. For more information, please
refer to [77].

In most techniques presented in this thesis, we will not consider this extra event
information. However, in Chapter 9, we will present techniques to use this data, e.g. by
summarising the data and projecting it onto process models.

In the previous sections, we discussed process models and event logs. In the remain-
der of this section, we introduce an important abstraction of both: the directly follows
relation.

36

2

P
re
li
m
in
ar
ie
s

2.4 Directly Follows Relation

2.4 Directly Follows Relation

In this section, we introduce a language abstraction that is used in many process discovery
algorithms and implicitly in many conformance checking techniques: the directly follows
relation. Before we introduce the relation, we first establish some terminology on relations
and graphs.

A graph is a set of nodes combined with a set of edges, such that each edge connects
two nodes. The edges might be annotated, i.e. an edge weight attached. If the edges of
a graph have no direction, i.e. just connect two nodes without providing an ordering on
them, the graph is an undirected graph, which corresponds to a commutative relation on
the nodes. In a directed graph, the edges have a direction, i.e. go from a node to another
node, thereby establishing a non-commutative relation between the nodes of the graph.
A directed graph can be projected onto an undirected graph by ignoring the direction of
the edges.

A (directed) path is a sequence of nodes such that each sequential pair of nodes on
the path is connected by an edge (in the correct direction). Note that a path contains
at least one node. We define an undirected path of a directed graph (!) to be a path of
which the direction of the edges is ignored.

A connected component in an undirected graph is a non-empty set of nodes such that
there is a path between all pairs of nodes in the set. A strongly connected component in
a directed graph is a non-empty set of nodes such that between each pair of nodes in the
set, there is a directed path forth and a directed path back in the graph.

A directly follows relation � is a combination of a graph and two annotations. The
graph (directly follows graph) is a directed graph: its nodes are activities, its edges denote
which activities can directly follow one another. The two annotations J and K denote
the start and the end of a trace. Notice that these annotations are not part of the graph.

Definition 2.14 (directly follows relation). Let Σ be an alphabet such that J R Σ and
K R Σ and let L be a language over Σ. We define the following relations:

a� bô DtPL t � x. . . a, b, . . .y

J� aô DtPL t � xa, . . .y

a�K ô DtPL t � x. . . , ay

J�K ô DtPL t � ε

For readability, we often write StartpLq for the set of all start activities (ta P Σ |
J� au), and EndpLq for the end activities (ta P Σ | a�Ku). Directly follows relations
can be derived from event logs and models. Therefore, for a log L we denote the directly
follows graph of L with �pLq. Similarly, for a process model M , we use the shorthand
�pMq to denote�pLpMqq, and StartpMq and EndpMq for StartpLpMqq and EndpLpMqq.

Let d be a directly follows relation, then we denote Σpdq for the alphabet over which
d was defined. We denote Startpdq for the start activities of d and Endpdq for the end
activities of d.

In the directly follows graph that is derived of a process model, frequency information
(i.e. how often each edge in the directly follows graph was observed), is not available.
In event logs, such information is available and useful for discovery algorithms to assess
which behaviour occurred more frequently than other behaviour. Therefore, we extend
the directly follows relation with frequency information for event logs: the sets of start
and end activities become multisets, and the edges of the directly follows graph become

37

2

P
re
li
m
in
ar
ie
s

2.4 Directly Follows Relation

a b

c

de

f ε
2

2

10

3

3

3

3

7

3

3

3

3

Figure 2.13: Example of a directly follows graph.

annotated with a weight, denoting how often some relation happened in the event log.
For instance, consider the following event log:

L � rε2, xa, b, fy3, xf, a, by2, xe, d, a, by3, xd, e, a, by, xf, a, b, c, a, bys

then, its activities are

ΣpLq � ta, b, c, d, e, fu

its start and end actvities are

StartpLq � ra3, d, e3, f2s

EndpLq � rb7, f3s

and its directly follows graph is

�pLq � rJ�K2, J� a3, J� d, J� e3, a� b10, b� c, b� f3,

c� a, d� a3, d� e, e� a, e� d3, f� a3, b�K7,

f�K3s

A graphical representation of this relation is shown in Figure 2.13, in which the annota-
tions J and K are visualised by open-ended edges, and the empty trace is denoted with
ε.

Furthermore, let �� denote the transitive closure of a directly follows graph, i.e. for
two activities a and c

a��cô D0¤n,b1...bnPΣpLq a� b1� b2 . . . bn� c

Notice that a��a is not a tautology.
In this chapter, we introduced event logs and process models, and we discussed the

directly follows relation, which is a language abstraction used by many process discovery
techniques. We will use this relation extensively in this thesis, especially in Chapter 5.
In the next chapter, we will describe the process mining problems that are addressed in
this thesis: process discovery, conformance checking and model enhancement.

38

3Process Mining

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

3

P
ro
ce
ss

M
in
in
g

?

system

system model

event log model

enhanced modelenhanced log measures

process discovery

log-conformance
checking

model-conformance
checking

implementation

recording

enhancement enhancement

Figure 3.1: Process discovery, conformance checking and enhancement in their
context. The coloured region denotes the scope of a typical process mining
project.

In the previous chapter, we discussed some of the core concepts of process mining tech-
niques: event logs, process modelling notations and directly follows graphs. In Chapter 1,
we introduced three challenges of process mining: process discovery , conformance check-
ing and model enhancement . In this chapter, we elaborate on these challenges and discuss
related work.

We explained these challenges using Figure 3.1: a system implements a system model,
the system executes and these executions are recorded in an event log. To gain insight into
the behaviour of the system, a process discovery technique uses the event log to obtain
a process model that describes the system. To provide insight into the match between a
log and the model, a log-conformance checking technique measures the correspondence
between a log and a model. Notice that the model could be discovered by a discovery
technique, but could also have been made by hand. Process discovery and conformance
checking techniques are typically concerned with the control flow of a process, i.e. the
conditions on and the order in which the process steps can be performed. Besides control
flow, process models can express more information, for instance on process performance.

40

3

P
ro
ce
ss

M
in
in
g

3.1 Different Use Cases, Different Process Mining Techniques

A model-enhancement technique annotates a process model with aggregated information
of the event log, such as time, life cycle or resources, thereby enabling analysts to assess
the process on these perspectives. To gain insight into the system as it is running, instead
of how the organisation thinks it runs, in typical process mining projects these steps are
used. These steps are contained in the blue coloured region in Figure 3.1. We will
describe an example process mining project in Section 3.1.

In a typical exploratory process mining project, the system is subject of study but un-
known. However, in evaluative process mining projects, a reference system model might
be available, using which the system is implemented. To gain insight into the differences
between two process models, e.g. the system and the system model, a model-conformance
checking technique measures the correspondence between two process models, e.g. the
system model and the discovered model, to provide insight in their differences. Another
application of model-conformance checking is to compare models discovered from event
logs from different scopes (e.g. time periods or geographical locations) of the same system
to detect differences between these scopes.

In this chapter, we introduce these three process mining problems in more detail: we
start with a description of common use cases (Section 3.1), after which we discuss formal
challenges of process discovery and conformance checking, and gather formal requirements
for both in Section 3.2. In Section 3.3, we discuss existing process discovery techniques
and gather practical requirements. In Section 3.4, we do the same for conformance
checking techniques, and in Section 3.5 for model enhancement techniques. We finish with
a high-level description of our approach and how it addresses the identified challenges in
Section 3.6.

3.1 Different Use Cases, Different Process Mining
Techniques

Process mining projects (denoted by the blue-coloured region in Figure 3.1) can have
several use cases, each of which might require different characteristics of the techniques
used. Moreover, use cases may change during the project. We illustrate several use cases
using a case study, after which we discuss more common use cases.

Case Study. In [61], we described a real-life process mining project, performed at
IBM, a leading multinational technology and consulting corporation, in a hardware ser-
vice department. In particular, a spare parts purchasing process was analysed, which is
performed independently at several locations around the world. The event log extracted
from this process contained hundreds of thousands of events related to thousands of
orders of spare parts.

The initial goal of this process mining project was to gain insight into the process and
see what would stand out. Therefore, as a first step, several event logs were extracted,
each covering a different perspective of the data. As a second step, a process model
was discovered using the algorithms that will be described in Chapter 6 and tools that
will be discussed in Chapter 9, and this model was discussed with process experts. The
main purpose of this process model was to narrow the discussion to points of interest:
it was not important that this model showed all behaviour of the event log, as the most
occurring behaviour was sufficient. This allowed the process experts to identify several
areas of interest in the process model, and the analysis was continued iteratively on these
areas by filtering the event log.

41

3

P
ro
ce
ss

M
in
in
g

3.1 Different Use Cases, Different Process Mining Techniques

Variant 2 : executed X but (almost) always skipped Y and Z

Variant 1 : (almost) always skipped X but executed Y and Z

X Y Z

X Y

Z

W

W

Figure 3.2: Repetitive filtering of the event logs. The bottom process shows
that activity X was executed before activity Y sometimes, while these should
be mutually exclusive (image: [61]).

On one such filtered event log, a more detailed analysis revealed that in order to cancel
an order, users were required to perform two steps, i.e. do double work (see Figure 3.2).
This conclusion was validated in the SAP system that supported the process, and changes
were proposed to improve the process by making the second step automated. As this
analysis went into more detail, a more detailed model was necessary.

In another analysis, the process was compared over the four locations worldwide.
In this analysis, as a first step, the event log was split into four sublogs, each covering
the cases handled in one location. Second, all sublogs were filtered to represent around
80% of the most-occurring behaviour (i.e. traces). For one of these sublogs, say location
1, a process model was discovered, which described the “happy flow”, i.e. the majority
of normal behaviour. Second, this model of location 1 was compared to the sublogs of
locations 2, 3 and 4 using log-conformance checking techniques, to spot differences in
their executions of the process (see Figure 3.3). Here, the filtering was applied on the
event logs themselves, instead of in the discovery algorithms. Therefore, the discovery
algorithm was not expected to filter infrequent behaviour. This analysis revealed different
bottlenecks in the process at different geographical locations.

These differences were further investigated in a further analysis, revealing that these
differences were likely caused by a difference in pricing models, i.e. in some locations,
suppliers were paid for unsuccessful repairs, while in other locations the suppliers were
not paid in these cases. This led to a proposal to implement order confirmations, and
equalise the process over the four locations.

In this case study, the goals changed during the project, and the process mining
techniques had to be flexible to deal with the changing requirements. Furthermore, both
process discovery, conformance checking and log filtering were used in an iterative fashion.
Each time a model was discovered, it led to new insights and new questions. Therefore,
an iterative process was used in which event logs were repeatedly filtered.

42

3

P
ro
ce
ss

M
in
in
g

3.1 Different Use Cases, Different Process Mining Techniques

Geo 1

Geo 2

Geo 3

Figure 3.3: A process executed in four locations. A “happy flow” model of
a location is compared to the sublogs of three other locations. Light-coloured
activities are less often executed.

Other Use Cases. Another common use case is to get a better understanding of
the process as it is running, instead of how the organisation thinks it runs. For such
a use case, it is important that the model is understandable (the model has a high
simplicity , i.e. uses few constructs to express its behaviour), and less important that
the model describes all behaviour of the event log (the model has a high fitness, i.e.
the model describes most behaviour of the event log) or describes little more behaviour
than the event log (the model has a high log precision, i.e. the event log contains most
of the behaviour of the model) (we will explain fitness and log precision in more detail
in Section 3.3, and simplicity in Section 3.2.3). Such models are sometimes called 80%
models or happy flow models, i.e. as a rule of thumb 80% of the behaviour can often be
expressed using only 20% of the model complexity [4]. However, conclusions should be
drawn with great care: if fitness or log precision is too low, conclusions cannot be drawn
reliably as the model does not fully capture the behaviour in the event log. For instance,
Figure 3.4a shows a Petri net which is an 80% model of the event log rxa, by8, xb, ay2s.
Based on the model, one could conclude that a is always followed by b. However, the event
log and the model do not fit one another perfectly: in two traces, b and a are reversed.
Thus, one should conclude that in most of the traces, a is followed by b, instead of that
this is always the case. In contrast, Figure 3.4b shows another Petri net, which allows for
any behaviour. Based on this model, one could conclude that a and b can be executed
repeatedly. However, the model is not very precise: it allows for much more behaviour
than the behaviour that was seen in the event log, thus even though the model allows
for repeated execution, this never happened in reality.

Another use case is to find a process model that can be used for enactment , i.e.

43

3

P
ro
ce
ss

M
in
in
g

3.1 Different Use Cases, Different Process Mining Techniques

a b

(a) A Petri net.

a b

(b) A Petri net allowing for any behaviour.

Figure 3.4

form the basis from which a process engine manages a process. Then, it is important
that the model represents most of the behaviour of the system (the model has a high
recall). Depending on the context of the enactment, it might be important that the model
does not allow for too much extra behaviour (the model has a high system precision),
e.g. in security settings. For enactment, rediscoverability , i.e. the ability of a discovery
algorithm to rediscover the behaviour, i.e. the language, of a system, is a vital property,
as the enacted model should support the system well (we will introduce rediscoverability
in more detail in Section 2).

If the use case of the project is to perform auditing-related tasks, e.g. to ensure
behaviour is absent or present, the discovered model should have well-defined semantics,
such that log conformance checking techniques can show where deviations occurred. The
number of deviations should not be so high to become unmanageable, which implies that
the model should describe most of the event log (fitness). Furthermore, if the model
describes lots of behaviour that is not in the event log, conclusions that can be drawn
could be weakened (log precision). For instance, Figure 3.5a shows a process model based
on directly follows semantics, and was generated by Fluxicon Disco (FD) [79]. Behaviour
was filtered from this model, i.e. it does not represent all behaviour in the event log,
but it is not visible in the model which behaviour has been filtered out, which makes it
challenging to spot where the model deviates from the event log and to assess the quality
of this model. Therefore, conclusions on the absence of behaviour should not be drawn
based on this model. (In Section 3.3.2, we will show that such models have ambiguities
as well.) In contrast, Figure 3.5b shows a Petri net to which a log-conformance checking
technique has been applied, and this Petri net has been annotated with the result of a log-
conformance technique, e.g. the yellow large places and red-bordered transitions denote
deviations (In Section 3.4.1, we will explain these deviations in more detail). Using these
deviations, conclusions about absence of behaviour can be drawn, as the annotated model
contains all information that is present in the event log.

Finally, the certain types of analyses may require reasoning about all behaviour,
which requires all behaviour to be present (perfect fitness). In the next section, we will
show that such a perfectly fitting model is always achievable, but often not desirable. If
the process does not allow for an understandable perfectly fitting model, alternatively
one could obtain an 80% model and study deviations using a log conformance checking
techniques.

In the next section, we formalise challenges related to process discovery and confor-
mance checking. Thereafter, we discuss discovery techniques, in Section 3.4, we discuss
conformance checking techniques and we discuss enhancement techniques in Section 3.5.

44

3

P
ro
ce
ss

M
in
in
g

3.1 Different Use Cases, Different Process Mining Techniques

13.087

5.010

2.907

4.852

16.570

2.515

2.515

2.907

7.367

17.394

2.515

7.030

4.852

2.234

6.633

5.110

3.429

5.014

4.740

4.739

2.879

13.087

3.429

A_SUBMITTED\\COMPLETE

13.087

A_PARTLYSUBMITTED\\COMPLETE

13.087

A_PREACCEPTED\\COMPLETE

7.367

W_Completeren aanvraag\\SCHEDULE

7.371

W_Completeren aanvraag\\START

23.512

A_ACCEPTED\\COMPLETE

5.113

O_SELECTED\\COMPLETE

7.030

A_FINALIZED\\COMPLETE

5.015

O_CREATED\\COMPLETE

7.030

O_SENT\\COMPLETE

7.030

W_Nabellen offertes\\SCHEDULE

6.634

W_Completeren aanvraag\\COMPLETE

23.967

W_Nabellen offertes\\START

22.406

W_Nabellen offertes\\COMPLETE

22.976

A_DECLINED\\COMPLETE

7.635

W_Afhandelen leads\\SCHEDULE

4.771

W_Afhandelen leads\\START

5.897

W_Afhandelen leads\\COMPLETE

5.898

(a) An FD model. Deviations are not
visible.

(b) An annotated Petri net. The yellow
circles and purple parts of bars in the
blue boxes denote deviations.

Figure 3.5: Two models that do not correspond to their event logs.

45

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

3.2 Formal Key Challenges of Process Mining

In the previous section, we described a few typical use cases for process mining. In this
section, we provide an introduction of formal challenges to two of the process mining
problems that are addressed in this thesis, i.e. the problems of process discovery and
conformance checking. The problem of process discovery is to, given an event log, return
a process model, which ideally is “good”. The problem of conformance checking is to,
given a process model and either another model or an event log as input, return “good”
measurements and information on the correspondence between them. In this section,
we discuss what makes a “good” process model or conformance measurement, i.e. we
elaborate on challenges of these two process mining subfields.

Ideally, a discovery algorithm returns a process model with well-defined semantics
that is free of deadlocks, that is equal to the system, and is readable by both human
analysts and machines. As illustrated in Figure 3.1, two entities are relevant in assessing
the quality of a discovered process model or conformance measurement: the event log
and the system. Therefore, process discovery can be hampered by e.g. unclear semantics,
the system being difficult to capture neatly in the output formalism, the event log con-
taining too little behaviour, or the event log containing erroneous behaviour. The ideal
conformance checking technique expresses, using a few measures, how well a discovered
model satisfies these challenges, compared to a system or an event log, and the values of
these measures compare well with values obtained from other measures. Thereby, con-
formance checking techniques face similar challenges as discovery techniques: the model
might not have well-defined semantics, the event log might contain too little information
or too much false information to give reliable measurements on the underlying system,
the model might be complex, and the measures might be biased by little-relevant features
of the models and the event logs. In this section, we discuss these challenges of process
discovery and conformance checking in more detail. We will recall that not all of them
can necessarily be solved together: in real-life cases, different use cases of process mining
projects might influence which challenges prevail.

Discovery techniques enjoy many degrees of freedom: the formalism of the process
model, which behaviour to include in the process model, what behaviour to exclude,
and how neat and readable the process model will be. Some quality dimensions are
independent of the event log and universal to process models, such as producing sound
models and producing models that can be layout such that they can be understood by
human analysts. In this section, we gather formal requirements for process discovery
and conformance checking. We first argue in favour of process models having precise
semantics in Section 3.2.1, after which we discuss the relation between system, event
log and discovered model in Section 3.2.2. We finish with a summary of the desirable
properties of discovery algorithms and conformance checking techniques in Section 3.2.4.
After this section, in sections 3.3 and 3.4, we will study existing techniques and gather
practical requirements.

3.2.1 Models with Precise Semantics
Regardless of the use case at hand (see Section 3.1), all discovered process models need
to adhere to some universal quality criteria. Most importantly, for most use cases, the
model should have executable semantics, i.e. a language: for each trace it should be clear
whether it is described by the model. Even though a model without such semantics can
be useful for human interpretation, one should be careful with drawing conclusions from
such models, as they might impose ambiguity. Obviously, computers have difficulties

46

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

a

b

c

Figure 3.6: An unsound workflow net.

with models that do not have well-defined semantics, thus conformance checking tech-
niques cannot be reliably applied. For instance, reconsider the process model shown in
Figure 3.5a: in this model, the boxes denote activities, and the edges denote which ac-
tivities denote the process flow, i.e. which activity can be executed after which activity.
However, in this model it is not clear what the splits and joins represent: intuitively, all
splits and joins represent exclusive choices, however they might also represent inclusive
choices, interleavings and concurrencies [142]. Therefore, process discovery techniques
should return models with executable semantics, yielding a new Requirement DR1:

Requirement DR1. The model has a well-defined unambiguous language, and this
model should be guaranteed to be sound.

In order to determine whether a trace is represented by a process model, the model
needs two key ingredients: an initial state and a (possibly unlimited) set of final states.
In a workflow net, these ingredients are present by construction, and therefore many
process discovery techniques focus on workflow nets.

However, workflow nets might suffer from other issues. For instance, the workflow
net shown in Figure 3.6 has an issue: the final state, i.e. a token in the sink place and no
other tokens elsewhere, is not reachable. As a final marking is not reachable, this model
has no traces and thus has an empty language. Even though a human analyst might
be able to derive information from this model, conclusions should be drawn carefully as
the perceived language of this model can be ambiguous. Applying automated analysis
such as conformance checking to such models may lead to counterintuitive results. Fur-
thermore, unsound models are obviously undesirable, as in reality there should not be
unexecutable process steps, or customers waiting in a deadlock. Therefore, ideally a pro-
cess discovery algorithm guarantees that every process model it discovers is sound, and
as a first requirement for process discovery (Requirement DR1), any discovered model
should be sound.

A weaker notion of soundness is weak soundness, i.e. a workflow net is weakly sound
if it is possible to reach the final state from the initial state. If a model is not weakly
sound, i.e. the final state of the model cannot be reached, then the language of that
model is by definition empty, i.e. does not contain any trace. In the case a language
is empty, language-based measures do not make much sense. A weakly sound model
suffices for several log conformance checking techniques, such as [19] and the techniques
we will introduce in Chapter 7 to get sensible measurements. Therefore, we add a new
requirement for conformance checking techniques, being that any weakly sound model
should be accepted. As weakly unsound models have empty languages, some techniques
may apply heuristics to derive more information from such models, i.e. make certain
assumptions such that the language of such models is not empty. If such heuristics are
applied, then the measurements on weakly unsound models should still be comparable

47

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

a

b

c

(a)

a

a

b

c

(b)

a

a

b

c

(c)

Figure 3.7: Three Petri nets with the same language.

to measures on weakly sound models.

Requirement CR1. The technique should return measures for all weakly sound mod-
els. If unsound models are accepted by the technique by applying heuristics, these mea-
surements should be comparable to measures on weakly sound models. Log conformance
techniques should only take language into account.

Besides a language, systems have more properties that determine its behaviour. For
instance, Figure 3.7 shows three language equivalent Petri nets. In the models of fig-
ures 3.7a and 3.7b, the choice for transition b and c is made at a different moment.
These models can be distinguished using bisimilarity , which entails that one model can
“mimic” all moves of the second or vice versa [4, Section 5.3]. That is, that a mapping
exists between the states of the first model and the states of the second model, such that
for every pair of mapped states, executing the same step in both models leads to two
states in both models that are mapped [4, Section 5.3]. The model in Figure 3.7c contains
silent transitions, which change the state of the system without a corresponding activity
execution. The models of figures 3.7a and 3.7c are distinguished by bisimilarity, as the
silent steps of Figure 3.7c cannot be mimicked in Figure 3.7a. However, intuitively, these
models are perfectly capable of mimicking one another’s visible steps and moments of
choice: the choice between b and c remains unclear unless either is executed. The equiv-
alence relations branching bisimilarity and weak bisimilarity capture this intuitive notion
by taking silent transitions into account. That is, the models of figures 3.7a and 3.7c are
branching and weakly bisimilar [73]. As both these bisimilarity notions are weaker than
bisimilarity, the models of figures 3.7a and 3.7b are branching and weak bisimilar as well.

As moments of choice and unobservable behaviour are not recorded in an event log,
and the models of Figure 3.7 have the same language, all of these models could pro-
duce the same event logs. Therefore, without further information, process discovery and
conformance checking algorithms could not make a reliable choice between any of these
three models or assess one as “better” over the others based on the event log. That
is, we argue that conformance checking techniques should only take the language of a
model into account (Requirement DR1). Using extra information, discovery algorithms
and conformance checking techniques could guarantee stronger notions (which could be
useful for analysts), but in this thesis, we limit ourselves to languages.

48

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

3.2.2 System - Log - Model Relations
Other quality dimensions depend on the system and the event log: we discuss the overlap
in behaviour between these entities using a Venn diagram (figures 3.8, 3.9 and 3.10): in
this diagram, each circle denotes the behaviour of either the system, the log, or a discov-
ered model. The concepts explained using this diagram are independent of a particular
notion of behaviour (branching behaviour, language, directly follows graph, activities,
. . .), however for the purposes of this thesis, we limit ourselves to languages. That is,
we only assume that we can clearly distinguish whether a trace belongs to system, log
and/or model. In [36], all 8 overlapping areas are discussed; here, we limit ourselves to
the areas most relevant to this thesis. Furthermore, we do not elaborate on the relation
of system models to systems, event logs and models, as in this thesis, we assume that
the system model perfectly represents the system.

Model - Log Relation

First, we discuss how the discovered model can be positioned with respect to the event
log, yielding log conformance concepts. In Figure 3.8a the green filled area denotes fitting
behaviour , i.e. behaviour of the event log that is present in the model [42]. The blue filled
area denotes the opposite, i.e. unfitting behaviour. For several use cases, it is important
that the model contains a lot of fitting behaviour. For instance, in auditing, conclusions
on the absence of real behaviour would be wrong when drawn from a model with lots of
unfitting behaviour, as such behaviour happened in reality but is not described in the
event log. However, if the model contains lots of imprecise behaviour, then conclusions
on the absence of behaviour could not be drawn in the first place. If a general overview
of the system is the aim of the analysis, a model with more unfitting behaviour might be
desirable (see Section 3.1).

In Figure 3.8b the green filled area denotes log-precise behaviour, i.e. behaviour of
the model that is present in the event log 1. Conversely, the blue area denotes imprecise
behaviour, i.e. behaviour of the model that is not in the event log. Log-precise behaviour
is important for similar use cases as fitting behaviour, e.g. in auditing, conclusions about
presence of behaviour should be drawn from a model with little log-imprecise behaviour,
as log-imprecise behaviour is behaviour that is included in the model but was not observed
in reality.

If the log and the model contain neither unfitting nor log imprecise behaviour, then
the model is equivalent to the log according to the behavioural notion of the Venn dia-
gram.

Measures. The log-conformance measure fitness describes the balance of fitting and
unfitting behaviour, i.e. in typical measures, fitness is 1 if all behaviour is fitting, i.e.
all behaviour of the event log is represented in the model, and 0 if all behaviour is
unfitting [42].

The log-conformance measure log precision denotes the part of behaviour in the event
log that is precise: if all behaviour of the model is present in the event log, then precision
is 1 [42]. In process discovery, the assumption is made that the event log does not
contain all behaviour, i.e. the event log only contains examples. If all possible behaviour
is assumed to have been recorded (which is not very realistic), one could just use the
event log as a prediction of future behaviour. Therefore, in many use cases, perfect log

1In contrast to literature we use the term log precise (instead of “precise”) to distinguish log
and system precision.

49

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

log model

system

(a) Fitting & unfitting behaviour.

log model

system

(b) Log-precise & -imprecise behaviour.

Figure 3.8: Log conformance concepts.

precision is not necessary. Notice that models and systems might have an unbounded
number of traces, e.g. in case of loops, while event logs are always bounded. Thus,
similar to [128], an event log can never contain all behaviour of a system that allows for
indefinite execution. Therefore, a model with a loop can conceptually never be perfectly
log precise. This challenges log measures, as these measures need to quantify how much
of the unbounded behaviour in the model is used in the bounded event log as well.

Ideally, log conformance measures provide guarantees, e.g. if fitness and log confor-
mance are both perfect, the log conformance measure should guarantee that the event
log and model are language equivalent (as discussed in Section 3.2.1, a stronger equiva-
lence notion is not feasible as the event log only contains a language). This yields a new
requirement:

Requirement CR2. The technique measures fitness and log precision between an event
log and a (system) model, and provides guarantees that these measures are perfect if and
only if the event log and the (system) model have the same language.

System - Model Relation

Second, we discuss how the discovered model can be positioned with respect to the
system, yielding system conformance concepts: in Figure 3.9a, the green coloured area
denotes recalled behaviour, i.e. behaviour of the system that is in the model as well.
Conversely, the blue coloured region denotes behaviour that is possible in the system,
but not in the discovered model. Process discovery algorithms aim to minimise the blue
and maximise the green region, as this ensures that the model describes all behaviour that
is possible in reality. In Figure 3.9b, the green coloured region denotes system-precise
behaviour, i.e. behaviour of the model that is also present in the system [94]. Conversely,
the blue coloured region denotes behaviour that is in the model, but not in the system, i.e.
superfluous behaviour that should be minimised. Recalled and system precise behaviour
are relevant for the same use cases as fitting and log precise behaviour, however taken
from the viewpoint of the system: if conclusions about the impossibility of behaviour
have to be drawn, the model should not contain (much) non-recalled behaviour. For the
possibility of behaviour, there should not be (much) system-imprecise behaviour.

50

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

log model

system

(a) Recalled & non-recalled behaviour.

log model

system

(b) System-precise & -imprecise behaviour.

Figure 3.9: System conformance concepts.

Measures. The system conformance measure recall measures the amount of recalled
behaviour compared to the unrecalled behaviour, i.e. if all behaviour of the system is in
the model, then recall is 1 [94].

As the system is unknown in typical process mining projects, the log measure gener-
alisation aims to estimate recall. That is, generalisation aims to indicate the likelihood
that future behaviour will be represented by the model [40], and computes this estimate
using only the event log. Generalisation techniques typically measure some property of
the combination of the event log and the discovered model, for instance the variety in the
event log: if the event log repeatedly contains the same behaviour, then generalisation
is assumed to be high, as it is likely that a future trace will be supported by the model.
However, if each trace in the event log represents different behaviour, then generalisation
is assumed to be low, as it is likely that a future trace has not seen before and is therefore
unlikely to be supported by the model [42].

In Section 3.4, we will discuss generalisation measures in more detail. However, in the
evaluation of thesis (Chapter 8), we will not use generalisation estimations but instead
measure recall directly using k-fold cross validation.

The system-conformance measure system precision measures the opposite of recall,
i.e. if all behaviour of the model is in the system, then system precision is typically 1 [94].
Ideally, a system conformance checking technique should guarantee that two models have
perfect recall and system precision if and only if they have the same behaviour (up to
some notion of behaviour, such as language equivalence or bisimilarity), yielding a new
requirement:

Requirement CR3. The technique measures recall and system precision between pro-
cess models, and provides guarantees that these measures are perfect if and only if some
behavioural notion of equivalence holds.

Similar to log precision, the measures recall and system precision are challenged by
the possible unboundedness of system and model. Furthermore, model-model comparison
might hit formal boundaries, e.g. for general Petri nets, language inclusion is undecid-
able [66], hence guarantees such as Requirement CR3 cannot be given, i.e. there cannot
exist a set of system conformance measures that can reliably detect whether the lan-
guage of a Petri nets includes the language of the other Petri net without making further
assumptions on the Petri nets.

51

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

log model

system

(a) Observed & unobserved behaviour.

log model

system

(b) Correct & deviating behaviour.

Figure 3.10: Log quality concepts.

Rediscoverability. If recall and system precision are both conceptually perfect and
the circles of the Venn diagram overlap completely, the system is rediscovered. That is,
the discovered model is language equivalent the system. A desirable property of discovery
techniques is to guarantee language equivalence of models and systems, which is captured
by a new requirement:

Requirement DR2. The technique guarantees rediscoverability.

We refer to this property as rediscoverability . Formally, rediscoverability is the abil-
ity of a process discovery algorithm to discover a model that is language equivalent to
the system, while making assumptions on the event log and the system. For instance,
for the α algorithm, rediscoverability has been proven. In Section 4.2, we will discuss
rediscoverability in more detail and introduce a formal framework that aids in proving it
for specific algorithms.

Log - System Relation

Finally, we describe how the event log and the system relate to one another, i.e. the two
remaining Venn diagrams denote the relation between a log and the system (Figure 3.10).
We refer to them as log quality concepts. In Figure 3.10a, the green coloured area
denotes the observed behaviour , i.e. the behaviour that is possible in the system that
actually happened and was recorded in the event log. Conversely, the blue coloured area
denotes the unobserved behaviour, i.e. behaviour that is possible in the system but has
not been observed in the event log. The more behaviour is observed, the easier it is for a
process discovery algorithm to describe the system correctly. From the log perspective, in
Figure 3.10b, the green coloured region denotes correct behaviour, i.e. behaviour recorded
in the event log that was also possible according to the system. We refer to incorrect
behaviour as deviating behaviour: this is denoted by the blue coloured region.

In typical process mining projects (as described in Section 3.1), a model of the system
is unavailable, but the event log can be influenced: more data can be extracted from the
system if the event log seems to be incomplete, and infrequent behaviour can be filtered.
The collection of Venn diagrams depicted in figures 3.8, 3.9 and 3.10 illustrates that if the
event log is close to the system, i.e. has little unobserved and little deviating behaviour,

52

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

then discovering a model that is close to the event log, i.e. with little unfitting or log
imprecise behaviour, will result in a model that closely resembles the system, i.e. has
little unrecalled and system imprecise behaviour. Conversely, if the event log has lots of
unobserved and deviating behaviour, or the discovered model has lots of unfitting or log
imprecise behaviour, then the discovered model might have lots of unrecalled and system
imprecise behaviour.

Measures. The log conformance concepts discussed earlier in this section apply to
systems as well, as these measures express the differences between logs and models:
completeness describes the balance of observed and unobserved behaviour, i.e. in typical
measures, completeness is 1 if all behaviour of the system is present in the event log.
Similarly, correctness describes the balance of correct and deviating behaviour.

For instance, in practise, we cannot expect an event log to contain all possible traces
of the system, i.e. be language complete, as this may require unbounded event logs in case
of loops. Furthermore, language complete event logs could become infeasibly large, e.g.
there are 10! � 3, 628, 800 possibilities to execute 10 activities concurrently, so an event
log with all behaviour would need to contain at least 3, 628, 800 traces. Furthermore,
this would prevent any new information to be gained by discovering a model. Therefore,
instead of considering an event log directly, process discovery algorithms typically con-
struct an abstraction of the behaviour in the event log first, and use that abstraction to
discover a model. This changes the notion of completeness, as the event log no longer
needs to contain all behaviour, but just enough traces to “cover” the abstraction, and
frees algorithms of the requirement that the log needs to contain every possible trace.

Challenges. As discussed earlier, rediscoverability relies on making assumptions on
event logs: the event log must contain enough correct information about the actual pro-
cess. Therefore, several glitches in the relation between event log and system might
challenge discovery. We discuss three of these challenges: one related to deviating be-
haviour, one related to infrequent behaviour and one related to completeness.

• As described, deviating behaviour is the occurrence of behaviour that is not part
of the system but ends up in the event log anyway. For instance, consider an HR
hiring process, during which the CEO kindly requests the department to hire a
certain person, or an insurance claim handling process that is flooded with claims
after a natural disaster and to help customers faster, mandatory checks are skipped.
If deviating behaviour ends up in the event log, a discovery algorithm might have
to handle it, e.g. exclude the behaviour from the model, depending on the use
case. If such abnormal behaviour is the subject of the analysis, it might need
to be included, whereas if the goal of the analysis is to visualise the big picture
and leave out details, it better be excluded. Deviating behaviour can interfere with
rediscoverability, because if the algorithm is unable to detect and exclude the noisy
behaviour, it will be included in the model and rediscovery fails as the system did
not contain this behaviour. Thus, process discovery algorithms need to be able to
handle deviating behaviour, i.e. decide to filter or include it, but also be flexible in
doing so, i.e. have the possibility to perform the opposite.

• A slightly different challenge arises from infrequent behaviour: infrequent behaviour
are the little-used parts of a system, i.e. behaviour that is supposed to happen, but
does not happen or happens in just a few cases in the event log. In the Venn
diagram of Figure 3.10, infrequent behaviour is part of the observed and correct
behaviour. The difference between deviating and infrequent behaviour is intention:

53

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

if behaviour is not part of the system, the behaviour is deviating and if it is,
the behaviour is infrequent. Systems with infrequent behaviour pose challenges
to rediscoverability, as discovery algorithms have to decide whether behaviour is
infrequent (and include it in the model if the entire system is to be described,
or exclude it if only the most frequent behaviour is to be described) or deviating
(and exclude it from the model). Obviously, this is difficult given just an event
log. Luckily, in some use cases it is not necessary to distinguish deviating and
infrequent behaviour, e.g. if the aim is to obtain the big picture of a process, both
must be excluded.

• In some cases, event logs might be incomplete, i.e. the event log contains too little
information for the complexity of the system. For instance, this might happen if the
event log was extracted from data spanning a short period, or if the system contains
many activities. The notion of completeness depends on the discovery algorithm,
and different algorithms have different completeness notions. For instance, for IM
(that we will introduce in Chapter 6) and the α algorithm, which both require
the directly follows relation (that we introduced in Section 2.4). If an event log is
incomplete for the combination of a system and a discovery algorithm, rediscovery
fails. Therefore, a third challenge for algorithms is to have a completeness notion
such that small event logs can already be complete.

Notice that the three challenges, i.e. deviating behaviour, infrequent behaviour and
incompleteness, might be ambiguous or overlapping. If the event log contains behaviour
that occurs little, this behaviour might be deviating (the system does not contain it), in-
frequent behaviour (the system contains it but it’s exceptional), or incomplete behaviour
(the system contains it and there’s similar behaviour that is unseen). For instance,
consider the example log used before:

rxa, b, c, dy18, xa, c, b, dy25, xa, d, b, cys

Three systems from which this log could have emerged are shown in Figure 3.11. The
trace xa, d, b, cy occurs seldom compared to the other traces. In the system shown in
Figure 3.11a, this trace would indicate incomplete behaviour, i.e. several other traces are
missing from the event log, e.g. xa, c, d, by. In Figure 3.11b, the trace would be deviating,
as this system does not allow for it. The model shown in Figure 3.11c includes this trace,
however the part of the model that supports this trace is rarely executed, thus the model
contains infrequent behaviour. It’s up to the discovery algorithm to choose, and solving
the ambiguity is a though challenge for discovery algorithms, in particular as the choice
might depend on the use case, which yields a new requirement:

Requirement DR3. The technique is able to distinguish deviating behaviour, infrequent
behaviour and incomplete behaviour, and guarantees rediscoverability in presence of these
challenges.

We argue that there cannot exist a discovery algorithm that performs this classifi-
cation correctly in all cases. Therefore, human involvement in algorithms will remain
necessary to make the right choice depending on the use case.

In [7], a different view on the relations between system, model and log is presented
in which for each trace, a model expresses a probability that that trace occurs, instead
of expressing simply whether a trace can happen. In this view, it is assumed that any
behaviour can happen, though most behaviour with low probability, which consequently
defines process discovery as the problem of finding a model that represents this trace
probability distribution well. In further research, discovery algorithms might be adapted
to include such distributions.

54

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

a

b

c

d

(a)

a

b

c

d

(b)

a

b

c

d

d b

a c

(c)

Figure 3.11: Three systems that could have produced the event log
rxa, b, c, dy18, xa, c, b, dy25, xa, d, b, cys.

3.2.3 Simplicity & Balancing Log Criteria

In the previous sections, three log conformance measures were introduced: fitness, log
precision and generalisation. In this section, we add a fourth one, simplicity , that ex-
presses whether a model is understandable by human analysts. Furthermore, we show
that discovery algorithms need to take these measures into account to avoid trivial un-
interesting models.

Simplicity

The measure simplicity is intuitively defined as the understandability of a process model
by human analysts, which is a highly subjective and ambiguous definition. To measure
simplicity, typically circumstantial presumably complicating factors can be considered,
such as the size of the model, partitionability (e.g. structuredness), cyclicity (e.g. the
amount of looping behaviour or structures), concurrency [115] or redundant model ele-
ments [42], and all these factors can be measured in several ways. Furthermore, simplicity
could be measured with respect to an event log or system, i.e. it could express whether
the model is a complex representation of an event log or system. A detailed discussion
of simplicity measures is out of scope for this thesis, we refer to [116] for an overview of
simplicity measures defined in literature. In this thesis, we will use a size-based simplicity
measure. However, in the next section, we will show that discovery algorithms need to
take simplicity into account to avoid trivial uninteresting models.

55

3

P
ro
ce
ss

M
in
in
g

3.2 Formal Key Challenges of Process Mining

a

b

c

d

(a) An unsound model:
���fitting, log precise, ����general , simple.

a b

cd

(b) A flower model:
fitting, ((((

(log precise , general, simple.

a c b c

a b c c

a d c b

(c) A trace model:
fitting, log precise, ����general , ���simple .

a

b

c

d

(d) A general model:
fitting, ((((

(log precise , general, simple.

a

b

c

d

(e) A balanced model:
���fitting, log precise, ����general , simple.

Figure 3.12: Competing log quality criteria for the log
rxa, b, c, dy2, xa, c, b, dy2, xa, d, b, cys.

Balancing Log Measures

As process discovery algorithms take event logs as input and produce a model in an
output formalism, a challenge discovery techniques face is that they need to represent
the event log well in the output formalism [11]. In this section, we illustrate the challenges
that arise with respect to event logs using four of the log conformance quality measures:
fitness, log precision, generalisation and simplicity [4, Section 6.4.3].

Process discovery algorithms are challenged by these measures, as they should ideally
all be high, but they sometimes compete. Therefore, discovery algorithms have to strike
a balance between them. For instance, consider the following event log:

rxa, b, c, dy2, xa, c, b, dy2, xa, d, b, cys

Figure 3.12 shows several workflow nets that could describe this event log. The first
(Figure 3.12a) is not sound and its language of correctly terminating executions is empty,
as the final marking, i.e. a single token in the sink place, cannot be reached. Nevertheless,
it is perfectly log precise as all traces of the model, i.e. none, are represented in the event
log as well. The second (Figure 3.12b) is a flower model , i.e. it allows for any behaviour
(i.e. traces) of a, b, c and d. It is therefore perfectly fitting and general, but not log precise

56

3

P
ro
ce
ss

M
in
in
g

as it describes much more behaviour than seen in the event log. The third (Figure 3.12c)
is a trace model , i.e. it describes all traces of the event log and nothing else. It is
therefore fitting and log precise, but not general and not simple, as it is unlikely that
future behaviour will be represented in the model, and the model contains much more
constructs than the other models. The fourth (Figure 3.12d) is a model that provides
more information than the first three. It is fitting, general and simple. However, it
allows for more behaviour than seen in the event log and is thus not log precise. The
fifth (Figure 3.12e) seems to balance the quality criteria and seems to take the occurrences
of traces in the event log into account: only the trace xa, d, b, cy has been left out and
therefore the model is not fitting, but this left-out trace occurs just once in the log, and
it therefore seems reasonable to leave it out in exchange for a higher log precision and
simplicity.

In these examples, we illustrated that there might not be a model with a perfect or
high score for all four measures in the representational bias of the discovery algorithm.
Furthermore, even three of the four measures being perfect may still yield useless trivial
models that do not provide any new information (figures 3.12b and 3.12c). Therefore,
algorithms should avoid such trivial models and balance all four log measures, which
yields a new requirement:

Requirement DR4. The technique allows to balance log-conformance measures if the
behaviour of the event log does not fit the representational bias of the technique well.

However, this balance might depend on the use case: in our example, either of the
models in figures 3.12d (for instance for implementation purposes) or 3.12e (for a view
on the most-occurring behaviour) might be preferable (see Section 3.1). The challenge
is made more difficult by the fact that for some event logs, there exists no model that
scores well on all four log measures [42].

3.2.4 An Ideal Technique (1)

To summarise the previous sections, an ideal discovery technique takes an event log and
produces a process model, such that:

DR1 The model has a well-defined unambiguous language, and this model should
be guaranteed to be sound.

DR2 The technique guarantees rediscoverability.

DR3 The technique is able to distinguish deviating behaviour, infrequent be-
haviour and incomplete behaviour, and guarantees rediscoverability in pres-
ence of these challenges.

DR4 The technique allows to balance log-conformance measures if the behaviour
of the event log does not fit the representational bias of the technique well.

Similarly, an ideal conformance checking technique adheres to the following require-
ments:

CR1 The technique should return measures for all weakly sound models. If un-
sound models are accepted by the technique by applying heuristics, these
measurements should be comparable to measures on weakly sound models.
Log conformance techniques should only take language into account.

57

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

CR2 The technique measures fitness and log precision between an event log and
a (system) model, and provides guarantees that these measures are perfect if
and only if the event log and the (system) model have the same language.

CR3 The technique measures recall and system precision between process models,
and provides guarantees that these measures are perfect if and only if some
behavioural notion of equivalence holds.

As discussed before, discovery algorithms and conformance checking techniques sat-
isfying all of these requirements are unlikely to exist given the discussed trade-offs. In
the remainder of this chapter, we discuss existing process mining techniques and extract
practical requirements for conformance checking and process discovery. That is, the lists
of requirements will be extended in sections 3.3.3 and 3.4.3.

3.3 Process Discovery

Process discovery aims at discovering a process model from an event log. In the previous
chapter, we explored challenges and fundamental requirements of process discovery algo-
rithms. In this section, we explore more practical challenges and illustrate how existing
process discovery techniques solve these challenges.

In particular, we will consider existing techniques on rediscoverability (Require-
ment DR2) and balancing of log requirements (Requirement DR4).

To rediscover a system, a discovery algorithm requires a log to contain enough in-
formation about the system. As discussed in Section 3.2, if an algorithm would require
all behaviour to be present in the event log, there might be systems for which a lan-
guage complete event log is infeasible or even impossible (in case of loops). Therefore,
many process discovery algorithms use a language abstraction. Typically, abstractions
are rather small, e.g. the directly follows graph is quadratic in the number of activities of
the process: for a system with 10 concurrent activities, less than 10 � 9 � 90 traces could
suffice instead of 3, 628, 800 for language completeness. Therefore, an assumption that
an event log resembles an abstraction is much more likely to hold than an assumption
on the full behaviour of the system. In Chapter 5, we study such abstractions in more
detail.

3.3.1 Discovery Algorithms Guaranteeing Soundness
Many process discovery techniques have been proposed. In this section, we discuss some
techniques: we first discuss some algorithms that guarantee to return sound models, after
which we discuss some that do not provide this guarantee.

Evolutionary Tree Miner & Evolutionary Miner

The Evolutionary Tree Miner (ETM) [36, 39] and the Evolutionary Miner (EM) [119]
are process discovery algorithms that uses a genetic approach: they generate an initial
population of process models and iteratively alters this population until a predefined
criterion is met. Altering steps include cross-over between process models and random
changes. Moreover, in each iteration log performance of the population is measured and
only the best performing models are kept.

To guarantee soundness, both ETM and EM limit their search space to an abstract
hierarchical view of languages: process trees (Requirement DR1).

58

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

The ETM is very flexible: it can optimise any combination of any log based measure,
e.g. if the use case requires a fitting model over all else, then ETM can be configured to
prefer the best fitting models in population iterations, i.e. it satisfies Requirement DR4.
Moreover, ETM has proven its flexibility on the used formalism as well: techniques have
been proposed that let it discover configurable process trees, i.e. instead of a single process
tree, a family of trees is discovered, which has proven useful in comparing similar processes
over organisations [41]. EM differs from ETM in the log conformance measures used (in
particular, the log precision measure), the flavour of process trees and the altering steps.

However, given their random nature, it is difficult to provide guarantees with respect
to rediscoverability (Requirement DR2), and they tend to be intractable for real-life event
logs. As we will show in Chapter 8, ETM can be slow on real-life event logs as its state
space is huge, even though extensions have been defined [60] to traverse this state space
in a smarter way than randomly: using 1 activity at most once, there are 5 process trees
with a different language. For 2 activities, there are 46 trees with different languages,
but many more with equivalent languages. This yields a new requirement:

Requirement DR5. The algorithm should work fast on real-life event logs and systems.

Constructs Competition Miner

The Constructs Competition Miner (CCM) [134] uses a process model formalism similar
to the process trees used in ETM and EM (which were explained in Section 2.2.5), but
discovers a model constructively by recursion.

The first step in CCM is to derive an eventually follows graph, i.e. activity a is
eventually followed by b if there is a trace in the event log in which a happens somewhere
before b. Second, the recursion begins: first the most important behaviour, i.e. the
operator of the root of the process tree, is determined and the activities are divided in
a binary partition. Based on the operator and partition, the eventually follows graph
is split in two smaller sub-graphs, and on these sub-graphs, CCM recurses until a base
case, i.e. a graph containing a single activity, is encountered.

CCM guarantees soundness (as it uses process trees), supports deviating behaviour
filtering and is quite fast in practice, even though its run time is worst-case exponential
in the number of activities. As a witness of the running time, CCM has been applied
in streaming environments, in which the event log cannot be stored [133]. However, due
to the use of the eventually follows graph, rediscoverability cannot be proven (Require-
ment AP.5, which will be introduced in Section 4.2.2, does not hold) (Requirement DR2).

In most discovery algorithms (e.g. α, HM, LT, and more discussed below), choices in
a process model are considered to be independent, and each activity can only appear once
in the resulting model. A long-distance dependency between two moments of choice in a
process breaks this independence, and duplicate activities allow for activities appearing
twice in the model. Figure 3.13 shows an example: both workflow nets have the same
language, but the first uses a long-distance dependency, while the second uses a duplicated
activity. Furthermore, due to the process tree representation in which each activity
occurs at most once, CCM cannot represent long-distance dependencies and non-free
choice constructs, which yields a new requirement:

Requirement DR6. The algorithm should be able to (re)discover models with non-free
choice constructs, duplicate activities and long-distance dependencies.

59

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

a

b

c
d

e

(a) Long-distance dependency: the
choice between d and e depends on the
choice between a and b.

a

b

c

c

d

e

(b) Duplicate activity c.

Figure 3.13: Two language-equivalent workflow models: one with long-
distance dependencies, one with a duplicate activity.

Maximal Pattern Mining

The Maximal Pattern Miner (MPM) [99] uses patterns to cover the entire event log. First,
for each trace loops are folded, and second, a prefix tree is constructed of the entire event
log. This prefix tree is guaranteed to be sound. On this prefix tree, sub-parts are folded
and combined to discover concurrency and choice, thereby the soundness is preserved.
MPM is able to handle long-distance dependencies, duplicate activities (except under
concurrency) and non-free choice constructs (Requirement DR6). However, this often
comes at the price of simplicity: when applied to a typical real-life event log, the resulting
model may contain many duplicate activities [99].

The technique Process Miner (PM) [149] performs a similar strategy, i.e. it unfolds
loops, merges similar traces based on concurrency, merges these into a process tree, and
finally this process tree is minimised using reduction rules. In determining concurrency,
PM uses non-atomic event logs (see Section 2.3.2). That is, if two activity executions
overlap in time, they are considered concurrent. A downside of PM is that is was specif-
ically designed not to generalise, i.e. all and only behaviour of the event log is to be
included in the model [149].

3.3.2 Other Discovery Algorithms

Besides the class of soundness guaranteeing algorithms, many algorithms exist that do
not provide the soundness guarantee. In this section, we list a few.

α-algorithm. The α-algorithm (α) [4, p.130] was one of the first process discovery
algorithms. It constructively builds a Petri net from an event log L, using an intermediate
abstraction, i.e. a directly follows graph. The directly follows graph denotes for each
activity which activities can be executed immediately after it. From such a graph, the
α-algorithm first derives causal relations, i.e. for a pair of activities a and b, a ¡L b if
a is directly follows by b somewhere in the event log. Second, the causal relations are

60

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

a

c

b

Figure 3.14: An example pattern of the α-algorithm, based on the relations
aÑL b, cÑL b and a#Lc.

combined into activity relations:

aÑL bô a ¡L b^ a �¡L b

a#Lbô a �¡L b^ b �¡L a

a}Lbô a ¡L b^ b ¡L a

Informally, a ÑL b denotes that a and b are in a sequential relation, a#Lb that a and
b are mutually exclusive, and a}Lb that a and b are concurrent. From these relations, a
Petri net is constructed by searching for maximal patterns in the activity relations. For
instance, if a ÑL b, then there will be a place connected from a to b. Additionally, if
there is a c such that cÑL b and a#Lc, then the place also has a connection from c (see
Figure 3.14). For more information, please refer to [4, p.130].

As finding maximal patterns in the activity relations can be exponential in the number
of activities, the α-algorithm might be slow for event logs with lots of activities. In
Chapter 8, we will show that for larger common real-life event logs, we were unable to
discover a model using the α algorithm. Nevertheless, the α-algorithm works fast in
practice as it builds a Petri net using a constructive approach and is linear in the size
of the event log (assuming the number of activities is fixed). Rediscoverability has been
proven for the α-algorithm [25], using the assumption that the activity relations in the log
precisely match the activity relations in the system, which is equivalent to their directly
follows graphs being the same (Requirement DR2).

Some of the limitations on the system are that it cannot have short loops. Figure 3.15
shows an example of a short loop: activities b and c can directly follow one another in
both Figure 3.15a and Figure 3.15c. The pattern in the directly follows graph is that b
and c have a back and forth connection, and, on an event log derived from this model,
the α algorithm therefore considers these activities to be concurrent, as in Figure 3.15c,
even though the directly follows graphs of these models are different. This yields a new
requirement:

Requirement DR7. The algorithm should be able to (re)discover models with short
loops.

The short loop restriction was dropped in the α�-algorithm [111]. Further restrictions
include:

• the system cannot have long-distance dependencies. This was addressed in [171]
and is expressed in Requirement DR6;

• the system cannot have non free-choice constructs. This was addressed in α�� [168]
and is expressed in Requirement DR6;

61

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

a b

c

d

(a) A workflow net M1 with a short loop.

a
b

c
d

(b) Directly follows graph of M1.

a

b

c

d

(c) A workflow net M2 with concurrency.

a
b

c
d

(d) Directly follows graph of M2.

Figure 3.15: An example of short loops.

• the system cannot have silent transitions. This was addressed in α# [170, 172] and
in α$ [80], and yields a new requirement:

Requirement DR8. The algorithm should be able to (re)discover models with
silent steps.

• the system cannot have duplicate activities. This is expressed in Requirement DR6.

To the best of our knowledge, this last requirement has not been solved yet, and in
Section 5.8, we will show that it cannot be completely solved.

Another variant of the α algorithm, called the Tsinghua-α algorithm (Tα) [169], deals
with non-atomic event logs, i.e. event logs in which executions of activities take time (see
Section 2.3.2). This algorithm uses a variant of the directly follows relation that takes
activity instances into account instead of events. Furthermore, a new relation keeps track
of activities that overlap in time and hence are concurrent. Using these two relations, Tα
constructs a Petri net, similar to the other α variants. Due to the concurrency relation,
logs need to contain fewer traces, e.g. the normal α algorithm would need to observe
rxa, by, xb, ays to conclude concurrency, while Tα only needs to observe rxas, bs, ac, bcys.

A downside of the α-algorithm and its derivatives is that they do not guarantee the
discovery of sound models (Requirement DR1). As a consequence, neither fitness nor log
precision can be guaranteed. Moreover, neither any of these derivatives nor the original
algorithm is able to handle deviating behaviour, incompleteness or infrequent behaviour
(Requirement DR3).

Causal Nets / Heuristic Miner / Little Thumb / Fodina / Structured
Miner. In response to discovery algorithms having problems returning useful models
for deviating behaviour, infrequent behaviour and complex event logs, causal nets were
introduced in [9]. Causal nets aid soundness-seeking techniques by guaranteeing proper
completion and absence of deadlocks and livelocks: by definition, the language of a causal
net only consists of traces that reach the final state (Requirement DR1). As a side-effect,
syntactical OR-splits and joins are possible in causal nets. However, deadlocks, livelocks

62

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

and unreachable parts remain possible in causal nets, even though they are not considered
to be part of the behaviour of the net. Notice that in this thesis, we apply this strategy
of causal nets to Petri nets: only traces that end in a final marking are considered to
be part of the language of the net, and traces that end in a deadlock or livelock are
not considered to be part of the language. The causal net discovery technique proposed
in [154] uses Satisfiability Modulo Theories (SMT) to find the smallest causal net that
includes the event log. However, SMT problems become intractable for large event logs,
which was alleviated in [152], in which the event log is split in smaller parts recursively
before the SMT technique is applied to discover several smaller intermediate causal nets.
Afterwards, the intermediate causal nets are combined into the final causal net.

The Flexible Heuristic Miner (HM) [167] and the Little Thumb (LT) [166] apply a
strategy similar to α: they construct a directly follows abstraction and use activity rela-
tions to construct a causal or workflow net. However, to handle deviating and infrequent
behaviour (Requirement DR3), the activity relations are derived probabilistically, e.g. if
a ¡L b happened once and a ¡L b 400 times, then the probability that bÑL a is higher
than if b ¡L a happened twice and a ¡L b did not happen at all. These probabilities are
considered locally, i.e. no other activities have influence on the relation between a and
b. Next, the probabilistic relations are filtered: for each activity a, let b be the activity
with the strongest probabilistic ÑL-relation. Then, the outgoing relations of a that are
weaker than a ÑL b by a user-given relative threshold are removed. In LT, from the
filtered α activity relations a Petri net is constructed similar to the α-algorithm [166]. In
HM, first a causal net is constructed, which can be converted into a Petri net [167].

As LT uses the workflow net construction step of α, it inherits its exponential runtime
in the number of activities, while HM is polynomial (Requirement DR5). HM supports
long-distance dependencies and has been extended to partially support duplicate activ-
ities [33] (we will show limitations to this in Section 5.8, Requirement DR6), LT short
loops and non-free-choice constructs. However, both HM and LT do not guarantee the
discovery of sound models, and as a consequence fitness nor log precision can be guaran-
teed.

Fodina (FO) [33] extends HM with support for long-distance dependencies and du-
plicate activities (Requirement DR6): FO discovers these constructs by considering the
context of an activity c, that is which combinations of activities happen right before and
right after c. From this information (in our example: ptau, c, tduq and ptbu, c, tduq), the
long-distance dependency or duplicate activity is derived. A downside of this approach
is that it might imply that the completeness notion requires even larger event logs, e.g.
a model with a choice at the end of the process depending on a choice at the start of
a process might require the log to be language-complete. That is, a technique can only
decide that two choices are not dependent if all combinations of the choices have been
seen, and if dependent choices might be arbitrarily far apart, then all choices are assumed
to be depending on one another until all possible combinations have been seen, thus if a
single combination is missing, the model will change.

A shared downside of HM and FO is that they do not guarantee to return sound
models, and tend to return even weakly unsound models. To counteract this, the
Structured Miner (SM) [24] post-processes the models discovered by HM or FO. In this
post-processing step, the model is first translated to BPMN, after which the model is
transformed into a block-structured model by applying several transformation rules ex-
haustively [129]. For instance, one such rule resolves unmatched splits and joins (e.g.
a concurrent split and an exclusive choice join), by “pushing” the gateways outwards.
Figure 3.16 shows an example: the exclusive choice gateway in the center of the process
is pushed out, thereby duplicating c. The set of rules proposed in [24] is not complete,

63

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

a

b

c ñ

a

b

c

c

.

Figure 3.16: Example of a structuring rule of the Structured Miner.

i.e. not every model can be transformed into a fully block-structured model, and conse-
quently soundness is not guaranteed. Furthermore, the run-time complexity in terms of
activities and gateways in the BPMN model is Opnnq.

Theory of Regions & Integer Linear Programming Miner. The theory of
regions aims to find a Petri net which represents the same behaviour as a given speci-
fication of a system. We discuss two variants of this theory: state- and language-based
region theory. In early state-based region techniques, a Petri net is synthesised from a
state space such that the state space of the Petri net is branching bisimilar to the state
space of the log, by searching for sets of states such that every activity either enters this
set, exits it or never crosses the boundary of the set. These sets are the regions and
correspond to places in the discovered Petri net [62, 63].

Region-based techniques typically guarantee weak soundness. However, to guarantee
soundness, typical region-based techniques depend on certain properties of the state
space. For instance, a unique start and end activity might be required to guarantee that
the returned Petri net will be a workflow net, and the state space needs to be “elementary”
to guarantee liveness and absence of deadlocks [14]. The approach proposed in [49] drops
this last restriction and guarantees soundness for arbitrary bounded state spaces, however
it duplicates activities in the Petri net.

To obtain a state space from an event log, in [14] a two-stage approach is proposed
that first constructs a state space of the event log and generalises this state space by using
abstractions. Second, this approach uses the approach of [49] to generate a corresponding
Petri net, which might be forced to be a sound workflow net if each trace in the event log
is appended with an artificial start and an artificial end event beforehand and the state
space abstraction method is chosen carefully.

However, such techniques have difficulties generalising, to filter infrequent or deviating
behaviour [173], and might have long computation times.

Later techniques such as [46] adapt these techniques to generalise over the behaviour
of the event log, i.e. only require that the language of the model includes the event log
(i.e. perfect fitness). However, the inability to filter infrequent or deviating behaviour
remains. As a way to avoid lengthy computations, in [153] it is shown that state spaces
could be split before computing regions, thereby saving time. In [45, 44], heuristics are
proposed that split the event log in concurrent parts and continue computation on the
smaller split logs, putting their results concurrently in the final result (a strategy similar
to [152] for causal nets). Our approach will extend this divide-and-conquer idea to avoid
the further theory-of-regions computations altogether.

64

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

In language-based region theory, a Petri net is derived from a language, such that
the resulting net has the smallest behaviour possible while still containing the language.
Language-based region theory starts with a Petri net containing all transitions, but no
places. In this net, all behaviour is possible. Second, places are added that do not
prohibit any trace from the language. Thus, the main challenge is to choose the places
such that the behaviour is limited as much as possible, without excluding any behaviour
from the language. This principle is applied to process discovery by the Integer Linear
Programming Miner (ILP) [173]. The challenge is solved by translating the problem of
adding places to an ILP problem. An initial marking is always provided, and an optional
extension ensures that the net has no remaining tokens at the end of a trace from the
log. With this optional extension, ILP guarantees weak soundness, though for traces not
in the log, the net may reach a deadlock with tokens remaining in the net, or it might
be impossible to reach a final marking, thus soundness is not guaranteed.

Given this optional extension, one could assume the final marking to be the empty
marking. With that extension and assumption, the models returned by ILP have a defined
language, i.e. we can determine the traces that are included in the language of the model
(Requirement DR1), and then ILP guarantees perfect fitness and, for its representational
bias, best log precision. Moreover, due to its global nature, in contrast to the locally
working HM and α, ILP is able to discover workflow patterns such as the milestone, the
parallel interleaved routing, the critical section and the arbitrary cycle [12], yielding the
new requirement:

Requirement DR9. The algorithm should be able to (re)discover models with workflow
patterns such as the milestone, the parallel interleaved routing, the critical section and
the arbitrary cycle.

As a consequence of perfect fitness and best log precision for its representational bias,
ILP often suffers from overfitting, i.e. a lack of generalisation and deviating/infrequent
behaviour handling. These problems have been addressed in an extension [178]. However,
the discovered net is not guaranteed to be a workflow net, and even if a workflow net is
returned, it is not guaranteed to be sound. Furthermore, ILP is not a fast algorithm: the
ILP algorithm is exponential in the number of events in the log.

Fuzzy Miner & Fluxicon Disco. The Fuzzy Miner (FM) [78] and Fluxicon Disco
(FD) [79] apply the analogy of road maps to directly follows graphs: on such maps, roads
connect cities but not every road or city is equally important. Thus, little-used alleys
can be removed while highways remain (edge filtering) and suburbs and neighbourhoods
can be grouped into cities (activity clustering). This makes such models (fuzzy models)
suitable for interactive hierarchical exploration, and allows for balancing log-conformance
criteria, and yields a new requirement:

Requirement DR10. The algorithm should be able to balance log conformance criteria
depending on the use case at hand, and this balance should be influenceable by analysts.

In a fuzzy model, outgoing edges of an activity a mean that these activities might
be executed after the execution of a. However, as inherited from directly follows graphs,
it is not immediately clear whether this implies an exclusive choice, an inclusive choice,
an interleaving or a concurrency [142]. In some commercial tools, e.g. FD, concurrency
related edges, i.e. pairs of directly follows edges between two activities that overlap in
time, are filtered out in some cases, which makes the language ambiguous. Moreover,
fuzzy models might suffer from a problem, which is similar to a problem found in unsound

65

3

P
ro
ce
ss

M
in
in
g

3.3 Process Discovery

workflow nets: it might not always be possible to reach the end state (Requirement DR1).
Thus, these models are less suitable for enactment and concurrency detection.

Declare

A different angle to business processes is given by Declare. While Petri nets, BPMN
models and other formalisms describe what can happen, a Declare model can also ex-
press what can not happen [108]. Such constraints are expressed between activities, e.g.
activity a is always eventually followed by activity b. Declare models can be discovered
by algorithms, for instance in [174], all possible constraints are checked on the event
log and the ones that hold are returned. This method obviously overfits, thus in [51],
constraints are filtered using thresholds for support and confidence, while taking care
that the set of constraints remains satisfiable (Requirement DR1). Furthermore, many
Declare techniques make sure not to return models with overlapping constraints.

Despite the different angle and the much greater flexibility in modelling, a Declare
model still describes a language and all the challenges described before hold for it, with
the added complexity that executing a Declare model is challenging, as a next step is
only supported by the model if a final state can still be reached, i.e. a state in which no
constraints are violated2. Therefore, it is essential that discovery techniques guarantee
a satisfiable set of constraints. Furthermore, the (extensible) constraints of Declare are
based on LTL-formulae, which implies that there are regular languages (non star-free
languages) that are not expressible by Declare models [176], for instance the language
tpaaqn|n ¡ 0u [146].

Negative Events

Process discovery algorithms implicitly make assumptions about which behaviour can
and cannot happen. Negative events make this assumption explicit, as they show for
each prefix trace in an event log what activities can not happen [74]. Several methods
have been proposed to infer (discover) such negative events artificially, as they are not
commonly found in event logs [74]. Using negative events, process discovery becomes
a binary classification problem, and the generation of negative events provides an ex-
tra degree of freedom towards handling deviating behaviour. However, the technique
described in [74] does not guarantee soundness, and challenges related to log precision
and generalisation are shifted to the introduction of the negative events, i.e. these key
problems are not addressed.

Further Optimisations

Process discovery on larger or complex event logs, i.e. containing millions of traces or
hundreds of activities, can be challenging. Therefore, several techniques have been pro-
posed to decrease the run time complexity of process discovery and the complexity of its
resulting models. For instance, in [113] similar traces are clustered, which reduces com-
plexity (horizontal partitioning). In [45] and [16], traces are split in concurrent sub-traces
(vertical partitioning).

2Conjectured NP-complete: given a trace, checking whether it is in the Declare model can
be done in polynomial time (nondeterministic polynomial time), and the 3-SAT problem can be
solved by transforming it in polynomial time to a Declare model, using custom 3-ways constraints,
such that the 3-SAT-problem is satisfiable if and only if the Declare model has a trace (NP-hard).

66

3

P
ro
ce
ss

M
in
in
g

3.3.3 An Ideal Process Discovery Technique (2)
While discussing the practical challenges of existing algorithms we collected a list of
additional requirements that complements the list in Section 3.2.4:

DR5 The algorithm should work fast on real-life event logs and systems.

DR6 The algorithm should be able to (re)discover models with non-free choice
constructs, duplicate activities and long-distance dependencies.

DR7 The algorithm should be able to (re)discover models with short loops.

DR8 The algorithm should be able to (re)discover models with silent steps.

DR9 The algorithm should be able to (re)discover models with workflow patterns
such as the milestone, the parallel interleaved routing, the critical section and
the arbitrary cycle.

DR10 The algorithm should be able to balance log conformance criteria depending
on the use case at hand, and this balance should be influenceable by analysts.

Requirement DR10 is an extension of Requirement DR4 and entails that algorithms
are robust to deviating, infrequent and incomplete behaviour. This requirement is well
supported by various algorithms. However, the “best” support is provided by ETM and
EM, that allow fine-grained control of this balance.

Regarding Requirement DR5: the fast and robust algorithms tend to use an abstrac-
tion (α, HM, FO, FD, etc.) instead of the full event log (ETM, EM, ILP), and work
deterministically (α, HM, FO, FD, etc.) instead of randomly (ETM, EM).

Duplicate activities (Requirement DR6) are not well supported by abstraction-based
algorithms (α, HM, FO, etc.) and ILP. They are supported by the current algorithms that
discover process trees (ETM, CCM), however these algorithms provide no rediscovery
guarantees. To deal with duplicate activities, several techniques have been proposed
that are independent from specific discovery techniques. For instance, [23] and [105]
pre-process the event log to detect certain types of duplicate activities, annotate the
event log (e.g. each occurrence of an activity a is labelled with a sequence number: the
first occurrence in a trace is renamed to a1, the second to a2 etc.), and continue with a
discovery technique.

As shown in the discussion of α, Requirement DR7 is inherent to using a directly
follows graph, that cannot distinguish a short loop from two concurrent activities. Al-
gorithms not using the directly follows graph (ETM, EM, ILP, etc.) tend to have little
problems with this construct.

Requirement DR8 comes with Petri nets, i.e. silent transitions, and process trees,
i.e. τ leaves. These silent steps do not cause an event to be recorded in a trace on
execution, and therefore cannot be observed directly, which makes them hard to detect.
The algorithms that do not use an abstraction (ETM, EM) support this construct, unless
it is not in the representational bias of the algorithm (ILP).

The only algorithm in our study that supports workflow patterns such as the milestone
(Requirement DR9) is ILP. This is due to the abstractions used by other algorithms that
are often activity-based, e.g. in a directly follows relation, these constructs are hard to
detect. Moreover, these constructs often do not fit the representational bias of algorithms.
For instance, the ETM does not use an abstraction, but its use of process trees limits
support for these constructs, as they cannot be easily expressed in process trees.

Up till now, there is no discovery algorithm that satisfies all of these requirements.
We would prioritise balancing and speed, however we argue that a desirable algorithm

67

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

process model process model event log

model-conformance checking log-conformance checking

Figure 3.17: The context of two types of conformance checking.

(re)discovering all the mentioned constructs cannot exist, as the more models a technique
can (re)discover, the more information it needs in an event log to distinguish all of these
models. In Section 5.8, we elaborate on this.

Most of the algorithms we considered use a language abstraction: we encountered
directly follows graphs and eventually follows graphs as typical abstractions. Algorithms
that do not use an abstraction, such as ETM or ILP, tend to be able to (re)discover
more constructs, such as short loops, milestones and long-distance dependencies. These
constructs are challenging for other, abstraction-based, algorithms, as these constructs
express more complex behaviour than what can be captured with only the relation be-
tween two activities. A downside of these techniques is that they tend to be slow on
real-life logs, and that that they may yield overfitting models.

ILP can guarantee to return weakly sound models, MPM and the approach described
in [14] can guarantee soundness and all discovery algorithms that use process trees guar-
antee soundness. In the approach presented in this thesis, we will fix the output formalism
to process trees, and leave implementing algorithms free to use abstractions or not. In
Section 3.6, we introduce our approach, we formally define it in Chapter 4, elaborate on
abstractions in Chapter 5 and introduce process discovery techniques in Chapter 6.

In the next section, we consider existing conformance checking techniques.

3.4 Conformance Checking

Conformance checking aims to derive information from the difference between a process
model and either a system or an event log (see Figure 3.17). Furthermore, conformance
checking aims to measure the quality of an, e.g. discovered, model with respect to the
event log or the system. In Section 3.2, we introduced conformance checking and its
challenges. In this section, we describe how existing techniques measure the quality of
a model, and what information can be derived from these measures. Furthermore, we
extend the list of requirements started in Section 3.2.4. We first discuss log conformance,
after which we discuss system conformance.

68

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

a

b

c

(a) A Petri net P .

t � xb, cy

(b) A trace.

trace - b c
model a b -

(c) An alignment.

trace - b c
model a - c

(d) An alignment.

trace b c - -
model - - a c

(e) An alignment.

trace - b - c
model a - b -

(f) An alignment.

Figure 3.18: An example of a Petri net, a trace and some alignments of them.

3.4.1 Log Conformance Checking
Log conformance checking provides insight in the relation between an event log and a
(system) model, for instance to verify that the model is describing the behaviour in the
event log well, and that therefore the model resembles reality. In many specific use cases
of log conformance checking, it is useful to have an estimate of which path a given trace
took through the model, i.e. how the trace can be projected onto the model, as this
provides information about how model and log are alike or differ, and where they differ.
For instance, this could show that certain parts of a model are skipped in reality, or that
extra activities are executed: this information is essential for computing animations,
measuring frequency and measuring performance (see Section 3.5). Projecting a trace on
a model can be done unambiguously if the model does not contain duplicate activities
and the trace is part of the language of the model. However, if the trace is not part of the
language of the model or the model contains duplicate activities, then projecting might
be more difficult.

We discuss several techniques to perform log conformance checking: we first elaborate
on techniques that use such projections, and second we discuss other techniques.

Alignment-based Approaches

An alignment is the result of a projection of a trace on a model: an alignment contains
the trace and a path through the model, interleaved to match, e.g. pairing events in the
log with executions of transitions in the model while preserving execution order of log
and model [19].

For instance, Figure 3.18a contains a Petri net P , Figure 3.18b shows a trace t, and
Figure 3.18c shows an alignment between P and t. In this representation of an alignment,
the top row represents t and the bottom row represents a trace of the language of P .
Trace t is not in the language of P , i.e. t R LpP q, as a is missing from t. Such an omission
is a model move, which is represented by a - on the top row. Moreover, b and c are
exclusive but t contains both. In this alignment, only b corresponds to the model; c is
omitted. Such an omission is a log move, which is represented by a - on the bottom row.
In this alignment, t and the trace of P agree on b, which makes b a synchronous move.

69

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

Notice that the alignment given in Figure 3.18c is not the only possible alignment:
figures 3.18d - 3.18f show a few more alignments of trace xb, cy to model P . An optimal
alignment is an alignment with a minimum number of log and model moves. In our
example, the alignments of figures 3.18c and 3.18d are optimal, as there is no alignment
of t and P with less than two log/model moves. Optimal alignments can be computed,
but a major challenge for alignment-based techniques is their complexity. The complex-
ity of the optimal alignment computation is worse than exponential. Even optimised
implementations of these techniques cannot deal with millions of traces or hundreds of
activities [94, 123]. Therefore, we add a new requirement:

Requirement CR4. The algorithm should work fast on real-life models and event logs.

To alleviate this problem, decomposition techniques have been proposed, for instance
using passages [5, 16], single-entry-single-exit decompositions [123], or even more general
constructs [6]. However, in practice alignment computations might be slow up to the
point that they become infeasible to compute on large models encountered in practice
(as will be shown in Chapter 8).

The example illustrates a limitation of alignments as well: even though it’s tempting
to consider an optimal alignment to be the most likely explanation of the path that a
trace in reality took through a model, this might not be correct: in our example, both
optimal alignments provide an equally likely explanation whether b or c was executed.
Obviously, alignments cannot provide guarantees about what happened in reality as well.
Nevertheless, they are useful in spotting problems in models, computing animations and
measuring performance, given the limitations described.

An alignment can exist if and only if the model can reach a final state (weak sound-
ness [19], Requirement CR1).

Three Levels of Insights. Alignments may provide insights into the conformance
of log and model on three levels. First, fitness and log precision measures summarise
the conformance in a number. We will discuss these summarative measures later in this
section.

Second, the information of the alignment, i.e. model moves, log moves and syn-
chronous moves, can be aggregated and projected on the model, possibly leading to
insights into which parts of the model deviate from the event log. Figure 3.19 shows an
example: on this workflow net, places coloured yellow denote that log moves occurred
when the place was marked, and their sizes increase with the number of log moves. Sim-
ilarly, a red border around a transition denotes that a model move happened, i.e. that
activity was skipped, and a green/purple bar denotes how often this happened.

Third, the information of the alignment can be projected on the event log. Figure 3.20
shows an example: the sequence of wedges represents the events in a trace. The colour
denotes the type of model move: green for synchronous moves, purple for model moves
and yellow for log moves. Using this information, deviations between model and log can
be traced back to individual traces in the event log.

Log-conformance checking techniques ideally support all three levels, thus we add a
new requirement:

Requirement CR5. Log-conformance techniques should provide insights at three levels:
summarative numbers, projections on models and projections on event logs. Similarly,
system conformance techniques should provide two levels: summarative numbers and pro-
jections on models.

70

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

Figure 3.19: Example of an alignment projected to a Petri net: a yellow-filled
circle denotes the location of log moves and purple parts of activities denote
model moves.

Figure 3.20: Example of an alignment projected to a trace. Each wedge
represents an event in a trace: a green wedge represents a synchronous move, a
grey wedge a move on a silent transition, a purple wedge a model move and a
yellow wedge a log move.

71

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

Measuring Log Conformance Using Alignments. Alignments yield a straight-
forward measure for fitness: the number of log moves and model moves. In order to make
this measure comparable over models and traces, it is normalised to a number between 0
and 1, where 0 denotes the worst possible fitness and 1 that the trace is in the language
of the model. This makes measures of different models and event logs comparable, which
we add as a new requirement:

Requirement CR6. Both measures should be normalisable, i.e. a scaled version should
give a result between 0 and 1. Two models having nothing in common should result in a
recall and system precision of 0, while two equivalent models should result in a recall and
system precision of 1 (depending on the equivalence notion).

The normalisation is performed using a worst-case alignment in which each event of
the trace is a log move and each execution of an activity in the model is a model move. In
our example, Figure 3.18e shows such a worst-case alignment. Based on this worst-case
alignment, the fitness of t with respect to P is the fraction of log and model moves, i.e.
2
4
� 0.5. Fitness over the entire event log is then the average fitness over all traces of the

event log [19].
The most basic measure for log precision is to enumerate all traces of a model, and to

compute the fraction of traces that was seen in the event log [76]. However, this approach
fails for models which have infinitely many traces, e.g. models with loops. Another
approach to log precision is behavioural appropriateness [144] and footprint matrices [4,
Section 8.4], which compare directly and eventually follows graphs. However, obtaining
these graphs might require a full state-space exploration. In practice, state spaces can
be huge or unbounded, which makes many of these techniques slow (Requirement CR4).
Therefore, several log precision techniques have been proposed that avoid creating a full
state space of the model. For instance, instead of creating a full state space of the model,
the ETConformance [122] technique creates a state space of the event log and counts
the possibilities that are enabled in the model but not used in the event log. The initial
measure assumed that the event log was fitting; this assumption was dropped in [20, 21],
which uses alignments.

Finally, using an alignment, generalisation can be estimated, which aims to prevent
overfitting. Generalisation measures use the principle that if the model contains little-
used parts, it is likely that there are parts that are not seen yet and thus generalisation is
low, and if all parts of the model are frequently used, then probably all future behaviour
is captured and generalisation is high [36]. This principle is incorporated in the gener-
alisation measure of [36, p118], that works on process trees: the number of executions
of a node is divided by the total number of nodes. To counter the unwanted effect that
increasing the number of “useless” nodes increases the measure, executions of such useless
nodes are excluded. The measure described in [10] is similar, but uses either events or
the state space of a model.

Although generalisation is claimed to balance well against the competing measures
of fitness, log precision and simplicity ([36] and Section 3.2.3), in practice generalisation
measures tend to heavily skew towards the maximum value 1.0 [10, 36, 89]. Further
empirical and formal research needs to show the true predictive value of the concept of
generalisation and these measures, hence we cannot add it as a requirement yet. Nev-
ertheless, as discussed using Figure 3.12, besides fitness, log precision and simplicity,
a fourth measure is necessary to avoid some trivial useless models. When comparing
discovery algorithms (instead of logs & models), we would suggest to use different ap-
proaches to measure/avoid over-fitting, such as k-fold cross validation [10, 36, 99]. In the
evaluation of this thesis, i.e. Chapter 8, we decided to use k-fold cross validation.

72

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

Other Approaches

A basic approach is the parsing measure [165]. This measure denotes the part of the
traces in the log that are expressed by the model. Although such checks can be fast, it
is obviously a too coarse measure: a minor local deviation in the model can have a large
impact on this measure, and correctly captured behaviour in the model is unaccounted
for if a trace encounters even a single deviation [74].

In the token-based replay technique, a trace is replayed on the model (in this case,
a Petri net). In case there are not enough tokens available to replay an event, this is
recorded as a missing token and the event/transition is executed anyway. At the end
of the trace, tokens remaining in the net are recorded as well [143]. The distribution
of missing and remaining tokens provides normalised (Requirement CR6) measures of
fitness and log precision. This provides insights into where the model deviates from
the log [112], and it could provide insights in where the log deviates from the model,
thus the three levels of Requirement CR5 are all present. However, this method has
difficulties handling ambiguity such as invisible transitions and duplicate activities, and
it does not take a final marking into account. Therefore, not all Petri nets are supported
by token replay (Requirement CR1). These difficulties can be partially solved, at the
cost of speed [19]. If negative events are present, a closely related technique provides
fitness, log-precision and generalisation measures [34, 74].

Another approach to find the path through a model that a trace took is to convert
this problem into a hidden Markov model [141], from which well established algorithms
provide the most likely path [157]. However, this technique does not support concur-
rency [19] and requires the model to be annotated with probabilities, which restricts its
use as a conformance checking technique on general Petri nets.

For more examples of techniques to measure fitness, log precision and generalisation,
please refer to [161].

3.4.2 System Conformance Checking

In typical explorative process mining projects [94], as described in Section 3.1, the sys-
tem is typically not known. However, in some cases the system is known, for example in
the form of another process model, therefore we coin the term model-model comparison.
For instance, when evaluating process discovery algorithms, it can be insightful to take
a known system, generate an event log from it, run a discovery algorithm and compare
the discovered model to the system (see Chapter 8). Moreover, model-model comparison
methods are useful for efficient retrieval of relevant process models from model reposi-
tories [57], and two models describing the process in two different periods, e.g. summer
and winter, could be compared to detect and explain concept drift [32].

A pre-processing step that might be necessary is to find matching activities between
the two process models. For instance, one model might be more abstract than the other
or the activities might have slightly different names such as “payment received” and
“receive payment”. For this problem, many techniques have been proposed [64, 162]. In
this thesis, we assume that this step has already been performed and that equivalent
activities have equivalent names.

In case the two models are both process trees, a tree-based edit-distance measure
can be applied to measure the distance between the trees. For instance, in [29], this
problem is characterised as the minimum number of insertion, deletion and renaming
steps required to transform one tree into the other. Such measures have been defined on
both ordered, i.e. trees in which the order of the children of a node is important [102],

73

3

P
ro
ce
ss

M
in
in
g

3.4 Conformance Checking

and unordered trees [22]. For ordered trees, computing edit-distance is polynomial, while
for unordered trees, this is NP-complete and a PTAS cannot exist [102]. These methods
are not directly applicable to process trees, as the trees used in this thesis combine
orderedness and unorderedness in a single formalism: for some operators (�, ^,Ø, _ and
non-first children of) the children are unordered, while forÑ and the first child of 	, the
children must be ordered. A larger drawback is that these methods compare process trees
by syntax rather than by semantics. For instance, the tree Ñpa, aq does not have a zero
edit-distance to ^pa, aq, even though these trees are language equivalent. In Chapter 5 we
introduce a set of reduction rules to equate syntax and semantics. These rules guarantee
that two trees with a different syntax also have different semantics. However, this holds
only for a subclass process trees, so further research would be necessary to enable the
use of process-tree edit-distance techniques for model-model conformance checking.

Similarly, Petri nets can be compared using graph edit distance [71] and in [117]
similarity is measured using graph edit-distance. A general downside of graph-based
techniques is that they depend on the structure of the graph, which consequently has
to be language unique, i.e. if there are two such graphs with a different language, two
language-equivalent models might be considered non-similar. In Chapter 5, we will study
the language uniqueness property in detail. However, similar syntax vs semantics issues
arise, especially for Petri nets with silent and duplicate transitions.

Another approach is to convert the process models to a graph of the process be-
haviour, and applying edit-distance techniques to these graphs [53]. Such graphs have
been constructed from BPMN models and EPCs. A lot of complexity of this technique is
caused by the need to match the activity names of both process models; we assume this
mapping is already present. In [64], a graph of the process behaviour is generated. The
similarity of two models is then determined using the context of elements in this graph.

In [98], an edit distance between two process models is computed and the edit steps
(change patterns) are reported; the edit distance is normalised to a similarity measure.
However, this method is limited to sound block-structured process models without loops,
and its underlying problem is NP-hard [98] (Requirement CR1). [103] measures similarity
using features of the process models. [106] works on graphs, assigns similarity measures
to elements of the graphs and performs a fixpoint computation, which in each iteration
adjusts the similarities of elements using the similarities of nearby elements. However,
the formalism and structures of the two models must match.

Another approach is to compute the α-relations on both models and to compare
these relations. For each pair of activities, an α-relation is determined, which yields a
matrix for each model. The similarity between two models is that a normalised value
describing on how many pairs of activities the models ‘agree’. Such relations can be
efficiently computed on a subset of the sound free-choice workflow nets, however for
arbitrary workflow nets this requires a full state-space exploration [163].

The difference or similarity between two models can be expressed in several ways:
some techniques provide a single similarity or distance measure [48, 158]. However,
given the focus of this thesis on languages and as is common in the data mining field,
we propose the use of two measures: recall expresses the part of the behaviour of the
system that is represented in the model, and system precision expresses the part of the
behaviour of the model that is in the system. These measures are of course similar to
the log conformance measures fitness and log precision. Generalisation is absent as the
notion of future behaviour is captured by recall.

Ideally, both measures should correlate with at least language inclusion, which should
follow directly from a measure being perfect. Consequently, the combination of perfect
recall and system precision should bi-imply language equivalence. Using such a property,

74

3

P
ro
ce
ss

M
in
in
g

these measures can be used to quantify language-rediscovery: given a system, it can be
tested how close a discovery algorithm got to rediscovering the language, up to a perfect
score, from which rediscovery can be concluded (Requirement CR3).

In [13], several recall and system precision measures are proposed. A basic method
is to generate all traces of one model and replay them on the other model, yielding sym-
metric recall and system precision measures. When comparing models, an asymmetric
recall and precision measure makes little sense, i.e. we argue that swapping the models
should not change the measure. Therefore, we add a new requirement:

Requirement CR7. Model-model measures should be symmetrical, i.e. for two models
a and b, recall(a, b) = system precision(b, a), and reflexive, i.e. recall(a, a) = 1 [64].

A problem arises with iterative behaviour (loops), which allows for an unlimited
number of traces. In [13], this problem is circumvented by assuming/generating an event
log. However, this poses assumptions on loop behaviour and might be prohibitively
expensive on complex models (Requirement CR4).

In [158], similarity between process models is measured using principal transition
sequences, i.e. traces in which loops are unfolded a fixed number of times. Similarity
is defined for two such transition sequences, and the similarity between two models is
obtained by averaging maximally-similar pairs of sequences. Obviously, this measure is
quadratic in the number of possible traces in the models, and therefore infeasible for
models containing many activities (Requirement CR4).

[125, 177] quantify similarity on state machines, i.e. models without concurrency:
[125] focuses on hierarchical state machines and bi-similarity, while [177] constructs an
abstraction of the languages of the state machines and compares these.

As noted in [52], many model-model comparison techniques suffer from exponential
complexity due to concurrency and loops in the models. To overcome this problem, sev-
eral techniques apply an abstraction, for instance using causal footprints [57], weak order
relations [179] or behavioural profiles [85, 164]. A downside of using an abstraction is
that the comparison inherits the limitations of the abstraction, as an abstraction inher-
ently contains less information than the model itself. Another technique to reduce the
state space is to consider parts of the model separately [85]. Even though this technique
reduces state space and hence run time, the parts cannot be arbitrarily chosen, and not
all models can be divided into parts. Furthermore, the technique only works on Petri
nets (Requirement CR1).

3.4.3 An Ideal Conformance Checking Technique (2)
Based on our analysis of existing algorithms we collected additional requirements that
extend the list composed in Section 3.2.4:

CR4 The algorithm should work fast on real-life models and event logs.

CR5 Log-conformance techniques should provide insights at three levels: summar-
ative numbers, projections on models and projections on event logs. Similarly,
system conformance techniques should provide two levels: summarative num-
bers and projections on models.

CR6 Both measures should be normalisable, i.e. a scaled version should give a
result between 0 and 1. Two models having nothing in common should result
in a recall and system precision of 0, while two equivalent models should result
in a recall and system precision of 1 (depending on the equivalence notion).

75

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

CR7 Model-model measures should be symmetrical, i.e. for two models a and b,
recall(a, b) = system precision(b, a), and reflexive, i.e. recall(a, a) = 1 [64].

Techniques that tend to construct or traverse the state space of a model tend to be
slower (Requirement CR4). Especially if the technique (needs to) construct the state
space in memory, then the technique is bound to run out of memory when facing larger
event logs and models, i.e. is less robust to large inputs. Options to counter this are to
use an abstraction or to decompose the problem and compute measures on smaller state
spaces.

Requirement CR5 is satisfied by the alignment-based techniques and by token-based
replay techniques. Techniques that use an abstraction or decompose the problem tend to
have difficulties supporting the third level, i.e. projecting their measures on event logs.

Most techniques we discussed seem to support Requirement CR6, even though e.g.
alignment seem to be approach a fitness or log precision of 0 only in the limit.

Most techniques we discussed satisfy the second part of Requirement CR7, i.e. com-
paring a model with itself will yield a measure of 1. As most techniques do not use two
measures, we did not encounter a technique that satisfies the symmetry part.

Up till now, we did not encounter a conformance checking technique that satisfies all
of these requirements. We would prioritise speed (Requirement CR4) and measures on
three levels of detail (Requirement CR5), as we argue that these are the most useful in
practise. However, in order to evaluate process discovery algorithms, needed to assess
the discovery techniques in this thesis (Chapter 8), it is necessary that the conformance
checking technique handles unsound or weakly sound models well (Requirement CR1),
and that the measures are symmetric and reflexive (Requirement CR7).

In the evaluation for this thesis, we applied conformance checking techniques to thou-
sands of event logs and models. Therefore, the conformance checking approach presented
in this thesis focuses on speed (Requirement CR4). We combine the idea of using an ab-
straction with the idea of decomposing the problem, which substantially reduces the state
space that has to be traversed.

3.5 Enhancement & Tool Support

As discussed in the previous parts of this chapter, often a single model serving all process
mining goals does not exist. Therefore, process mining projects tend to be highly iter-
ative, thus easy-to-use software is necessary to support analysts in performing process
discovery and conformance checking. Furthermore, process discovery and conformance
checking techniques introduced before concern only the control-flow perspective, i.e. the
ordering and occurrence of activities, as they assume that the event log contains only
information on the order of activities that were executed. However, if the events are an-
notated with more information, different perspectives can be explored for more insights
into the process, which make process mining tools (much) more useful. In Section 1.4, we
discussed four types of enhancements: frequencies, performance, deviations and anima-
tion. In this section, we first elaborate on these enhancements from the log perspective,
i.e. we describe what information in the log is necessary and how the measures corre-
sponding to these enhancements are computed, and we gather requirements. Second, we
discuss existing process mining tools, elaborate on how they satisfy the requirements,
and devise new ones.

76

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

enqueued started completed
enqueue start complete

Figure 3.21: The life cycle model used in this thesis.

3.5.1 Enhancements
In Section 1.4, we introduced four enhancements: frequencies, performance, deviations
and animation. In this section, we discuss three types of data in event logs that enable
these enhancements: life cycle, time, and resources and other data, and discuss the
enhancements in more detail. Furthermore, we describe challenges in case of missing
information.

Life Cycle

The life cycle perspective assumes that each execution of an activity is represented by
several events, that together describe the life cycle of that activity instance, i.e. activity
execution. For instance, one event denotes the start of an activity instance, while another
event denotes its completion. Several life cycle models have been proposed, such as in the
XES standard[77] and in [4], and ideally, techniques handle arbitrary life cycle models.
However, in order to draw conclusions from arbitrary life cycle models, these models need
to have semantics.

In this thesis, we define semantics of and use the life cycle model denoted in Fig-
ure 3.21 [93]: this model uses three states and three life-cycle transitions: enqueue, start
and complete. The enqueue transition denotes that the execution of an activity is added
to a queue of work items, e.g. a new call in call centre is added to the call queue of a
group of employees, or in a hospital a patient enters a queue of patients queueing to see a
doctor [93]. The start transition denotes that the activity instance starts processing, e.g.
the patient is called in or the customer is answered by an agent. Finally, the complete
transition denotes that the activity instance finishes, e.g. the patient leaves the room or
the customer call ends. An enqueue event of activity a is denoted with ae, a start event
with as and a complete event with ac.

In Section 5.7, we describe the influence of events of the start transition on process
models. In Section 6.6, we introduce an algorithm that uses these events. In this thesis,
we will not address the usage of enqueue events for process discovery.

The process discovery and conformance checking techniques in this thesis could easily
be adapted to use arbitrary life cycle models, i.e. with proper semantics a process model
with a life cycle model still describes a language. Defining semantics in a uniform and
computer-interpretable way remains part of future research.

Future work 3.1: Investigate semantics for arbitrary life cycle models.

Time

A second perspective is the time perspective. This perspective can be considered if (some
of) the events carry a timestamp. Analysing the time perspective might give insight
into bottlenecks, i.e. parts of the process with undercapacity, and other time-related
aspects [4].

77

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

enqueue

ae

start

as

complete

ac

enqueue

be

start

bs

complete

bc

enqueue

ce

start

cs

complete

cc

Figure 3.22: A graphical representation of the trace xae, as, ac, be, bs, bcy.

The available time measures depend on the life cycle model, as if for instance the
enqueue life-cycle transition is missing, there is no information available when a trace
entered a queue. In this section, we assume the life cycle model of Figure 3.21; other
life cycle models might have comparable measures. Consider the trace xae, ce, cs, as, ac,
be, bs, cc, bcy: Figure 3.22 shows a graphical representation of t. It is obvious that c is
concurrent to a and b, as it is executed at the same time. Furthermore, assume that a
and b are sequential. Then, the sojourn time of b is the time between completes, i.e. ac
and bc. Intuitively, the sojourn time of b is the time from the moment that the process
allowed b to be executed till the moment it finished. The waiting time of b is the time
between ac and bs, i.e. the time between the enabling of b and its start. The queueing
time of b is the time between be and bs, i.e. the time spent in queue. The service time of
b is the time between bs and bc, i.e. the time spent on actually executing b [93, 19].

Waiting and sojourn time depend on the moment that the process allowed the activity
to be started. Thus, for such time measures, it is important to take a process model into
account. For instance, consider the sojourn time of activity instance e in the trace

xae, as, ac, be, bs, bc, ce, cs, cc, de, ds, dc, ee, es, ecy

In the model of Figure 3.23a, the sojourn time of e is the time between dc and ec: from
the moment d completed, e could start according to the model. However, in the model
of Figure 3.23b, e does not depend on d but on c, and therefore the sojourn time of e is
the time between cc and ec [93, 144]. Therefore, such performance measures should take
a process model into account, which we add as a new requirement:

Requirement ER1. The tool should provide several performance measures, based on
timestamps of the event log, using life cycle semantics. Furthermore, the tool should take
a process model into account.

Similar situations occur when computing the other measures, such as waiting time.
Notice that these measures do not require all timestamps and life-cycle transitions, e.g.
the sojourn time computation of our example does not need the enqueue event or its
timestamp.

Another powerful feature that is enabled by the presence of timestamps is animation:
using log animation, a user can inspect this time perspective. The event log is visually
replayed on the map by tokens flowing over the process model, and each activity that
is encountered is executed. This reveals frequent paths and bottlenecks over time, and
makes concept drift explicit. For instance, the animation could highlight that a part of

78

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

a b c d e

(a) A sequential system.

a

b

c

d

e

(b) A concurrent system.

Figure 3.23: Two systems that could produce the trace xa, b, c, d, ey. The
sojourn time of e depends on the previously executed non-concurrent activity:
either d or c.

a model is little used in the beginning of the time period that is represented in the event
log, but later becomes heavily used. If an animation can be paused, it gives a frozen view
of the map with the traces that were in the process at a particular point in time [91].
Furthermore, in our experience, animation increases the confidence of process owners and
other stakeholders in the discovered model and increases understandability of the model.
This yields a new requirement:

Requirement ER2. The tool should animate the event log on a process model.

Resources and Other Data

If each event in an event log is enriched with which person, machine or other resource
executed the event, the flow of information through an organisation can be visualised.
This may lead to more insights in the social aspects of a process, e.g. by showing how
cases flow through an organisation. Studies in this field of sociometry [159] become much
easier by the data mining techniques as described in this thesis [4]. In this thesis, we
do not cover resources in detail; please refer to [4] for more information. However, using
XES classifiers [77], one can discover a model from a log where activities are not derived
from the activity names of events, but rather the values of the resource attribute, thereby
transforming the techniques in this thesis to discover social process models.

Many other types of data attached to events can be used using such classifiers. More-
over, any data type can be used to enrich a process model with choice information, i.e.
for each moment of choice in a process model, a decision model can be discovered based
on the event data at that point in the process [95]. In this thesis, we do not cover other
data types in detail; please refer to [4] for more information.

Missing Information

A challenge common to these perspectives is that they take the event log into account, and
therefore the similarity of the event log and process model becomes relevant. Obviously,
if the log and model are completely different, few of these perspectives make sense. In
many use cases however, log and model can be related, but the model might not represent

79

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

the event log completely (i.e. is not perfectly fitting). Furthermore, timestamps might
be missing from some events, leading to incomplete information. As the event logs we
have encountered rarely contained all information, enhancements and measures need to
be robust to such inconsistencies between log and model and missing information, which
yields a new requirement:

Requirement ER3. The tool should be robust to missing information and to mismatches
between log and model.

We argue for a pragmatic approach for each type of enhancement. For instance,
animation only makes sense if the information is complete: if an event is recorded without
a timestamp in a trace, the animation of that trace has to estimate when that event
happened in order to keep the animation smooth. However, performance measures might
become unreliable with the introduction of estimated information, so we argue that
incomplete measures are best omitted.

Finally, as process discovery techniques might exclude behaviour of the event log from
the model or include behaviour in the model that is not observed in the event log, the
model should be evaluated using a conformance checking technique (see Section 3.4.2).
Ideally, the process mining tool should integrate such a technique:

Requirement ER4. The tool should provide a way to evaluate the discovered process
model.

3.5.2 Process Mining Tools
In this section, we consider several existing process mining tools: we address whether
and how these tools satisfy the gathered requirements, and we devise new requirements
relevant for such tools. We consider two commercial tools: Fluxicon Disco (FD, [79],
version 1.9.7) and Celonis Process Mining (CPM, version 4.0.1, web-based [47], accessed
6-1-2017).

Fluxicon Disco

Fluxicon Disco (FD) [79]) is a commercial process mining tool developed by Fluxicon
(http://www.fluxicon.com/). In Section 3.3.2, we considered the process discovery
of FD, however in this section we focus on features and on usability aspects. After
importing an event log, the user interface of FD consists of several views, which are
shown in Figure 3.24. The first view (Figure 3.24a) shows the process model. In this
view, the process model is visualised, as well as controls to influence the model. That is,
the two sliders in the dashed ellipses control the number of activities and the complexity
of the discovered model. If the user changes such a slider, a new model is computed
automatically, and this is done fast, which allows for quick and iterative process discovery.
As described in Section 3.1, filtering the event log allows analysts to drill down and focus
on several parts of the event log. FD contains an extensive set of stackable filters, which
are applied consistently through the user interface (see Figure 3.24b). That is, a filter is
applied once and affects all views on the data. This yields the following requirement:

Requirement ER5. The tool should allow for quick iterative exploration and log filter-
ing.

The process model visualisation is enhanced with frequency information, e.g. the
activities and edges are annotated with how often they have been executed. Furthermore,

80

http://www.fluxicon.com/

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

(a) Process model view with frequencies.

(b) Filters.

(c) Enhanced process model.

Figure 3.24: Screenshots of Fluxicon Disco, showing several enhancements.

81

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

(d) Statistics view.

(e) Trace view.

(f) Animation.

Figure 3.24: Screenshots of Fluxicon Disco, showing several enhancements.

82

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

the activity colouring and edge thickness are adjusted accordingly to highlight the often-
used parts of the process. This yields a new requirement:

Requirement ER6. The tool should be able to visualise frequencies on the model.

This process model can be enhanced with several performance measures, such as
the total duration that an activity took and the total time that was spent between the
execution of activities (Figure 3.24c). In Section 1, we showed that a process model is
necessary to obtain reliable performance measures. As discussed in Section 3.3.2, the
semantics of FD models might be ambiguous, thus the performance measures of FD
should be used with care (Requirement ER1).

The second view in FD is the statistics view, which is shown in Figure 3.24d. In this
view, several global statistics are available, such as a histogram showing the number of
events being executed over time (as denoted by the dotted ellipse). Several groupings are
available, such as by activity, resource and by trace information. For instance, choosing
resources provides a graph of the number of events each resource executed. This yields
a new requirement:

Requirement ER7. The tool should provide frequency statistics over the entire event
log (e.g. histograms) and over sub-groupings of the event log.

The third view in FD is the traces view (see Figure 3.24e), which enables analysts
to study traces in detail. Studying individual traces might be useful at later stages of
process mining, i.e. once areas of interest are identified, analysts could drill down to cases
that are involved in this area of interest, identify these traces in the trace view and verify
the drawn conclusions in the system. Therefore, we add a new requirement:

Requirement ER8. The tool should provide a visualisation of individual traces.

The final view of FD that we consider is the animation view, which is shown in
Figure 3.24f. In this view, tokens (yellow red-bordered circles) represent traces (Require-
ment ER2).

We consider the main drawback of FD to be the unclear semantics of the discov-
ered process models, and the lack of guarantees and possibilities to evaluate the models
(Requirement ER4). Therefore, all model-related enhancements such as performance
measures and animation should be interpreted with care.

Celonis Process Mining

Celonis Process Mining (CPM) [47] is a web-based process mining toolkit developed by
Celonis (http://celonis/com). The user interface of CPM has a high customisability,
as graphs, statistics and other overview elements can be arranged in dashboards and
customised, which might make CPM useful in Business Intelligence [160] settings as well
(Requirement ER6).

Figure 3.25a shows the process model component of CPM. In this component, there
are two sliders that influence discovery of the model: one that controls the fraction
activities that is included and one that controls the connections. Using these sliders
changes the model immediately. Furthermore, CPM offers extensive filtering options,
e.g. one can click on an edge or activity to filter the event log, such that the log only
contains cases that use the edge or activity (Requirement ER5).

Even though we believe that CPM and FD should be able to discover similar models,
there is a notable difference in the model of CPM and FD (Figure 3.24f): both screen-
shots were obtained at their default settings and on the same event log. FD shows the

83

http://celonis/com

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

(a) Model with frequencies. (b) Performance.

(c) Animation. (d) Trace view.

Figure 3.25: Screenshots of Celonis Process Mining showing several supported
enhancements.

84

3

P
ro
ce
ss

M
in
in
g

3.5 Enhancement & Tool Support

(e) Filters. (f) Custom enhancements.

Figure 3.25: Screenshots of Celonis Process Mining showing several supported
enhancements.

85

3

P
ro
ce
ss

M
in
in
g

entire process, and consequently the animation clearly suggests a bottleneck where the
concentration of tokens is high. In contrast, CPM seems to show the most-occurring path
through the process, thereby ignoring the remainder of the process. Both approaches may
be useful in different use cases: this event log was recorded in a loan-application process
of a Dutch financial institution [56]. The traces contained in the model of CPM are
probably the least interesting, as they are automatically rejected before any employee
gets involved (hence the short time between activities). However, a good second step in
the analysis would be to filter these traces and repeat the analysis.

The performance measures computed by CPM are illustrated by Figure 3.25b (Re-
quirement ER1). CPM supports animation (Requirement ER2): Figure 3.25c shows a
screenshot (we’ve circled the tokens in the screenshot, these tokens are pink). The an-
imation of CPM seems to round the timestamps to seconds, which seems the cause of
the tokens being grouped, making the animation far less useful in such a short process.
Figure 3.25d shows the trace view of CPM (Requirement ER8), and Figure 3.25e one of
the filters of CPM.

Unlike FD that does not provide any way to evaluate the model, CPM shows some
basic measures, i.e. the percentage of included activities and edges between activities.
Unfortunately, there is no link to the included or excluded behaviour of the event log
(Requirement ER4).

We finish this discussion of Celonis Process Mining with a feature not found in FD:
the ability to add custom enhancements. That is, by typing a formula, any derived piece
of data can be visualised on the edges and/or the activities: Figure 3.25f shows the user
interface. We add this as a new requirement:

Requirement ER9. The tool should be extensible with custom enhancements.

3.5.3 Requirements for Tool Support Beyond Process Dis-
covery and Conformance Checking

To summarise the previous sections, an ideal process mining tool with enhancements
supports the following:

ER1 The tool should provide several performance measures, based on timestamps
of the event log, using life cycle semantics. Furthermore, the tool should take
a process model into account.

ER2 The tool should animate the event log on a process model.

ER3 The tool should be robust to missing information and to mismatches between
log and model.

ER4 The tool should provide a way to evaluate the discovered process model.

ER5 The tool should allow for quick iterative exploration and log filtering.

ER6 The tool should be able to visualise frequencies on the model.

ER7 The tool should provide frequency statistics over the entire event log (e.g.
histograms) and over sub-groupings of the event log.

ER8 The tool should provide a visualisation of individual traces.

ER9 The tool should be extensible with custom enhancements.

86

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

3.6 Our Approach

The approach presented in this thesis consists of three parts: (1) a framework and algo-
rithms for process discovery, (2) a framework and algorithms for conformance checking
and (3) a process mining software tool. For each part, we first describe our approach,
after which we discuss how it addresses the identified requirements.

3.6.1 A Process Discovery Framework

From the list of requirements on process discovery, it is clear that a perfect process dis-
covery algorithm cannot exist. Therefore, we introduce a modular and flexible approach,
that always guarantees soundness and optionally guarantees fitness and log precision.
Our approach contains a framework, the Inductive Miner framework (IM framework),
that builds process trees constructively. The framework, like CCM, determines the most
important behaviour in an event log, i.e. the root operator of the process tree. However,
instead of splitting an abstraction, the entire event log is split by the IM framework. The
IM framework uses both horizontal and vertical partitioning, and thus combines [113]
and [45].

As guarantees are the focus of this thesis, we first study three guarantees that can
be provided by algorithms that implement the IM framework: rediscoverability, perfect
fitness and perfect log precision. To ease formal proofs for these guarantees and to avoid
duplicate work later on in this thesis, we express these guarantees in terms of the IM
framework. That is, we introduce formal frameworks for them. In the proof framework
for rediscoverability, the language abstractions used by most process discovery algorithms
play a major role. Therefore, we perform a systematic study into the expressive power
of these abstractions, i.e. we study classes of models that can be uniquely represented
by several abstractions, such that no two models with different languages have the same
abstraction. Using this systematic study and the formal frameworks, we prove rediscov-
erability for all algorithms and perfect fitness for some algorithms (see Table 1.1).

The framework is instantiated in several algorithms, each focusing on a different
aspect: we’ll introduce a rediscoverability-focused version, a deviating- and infrequent-
behaviour-filtering focused version and an incompleteness-handling focused version. These
three algorithms each strike a particular balance, but a big advantage of the IM frame-
work is that this balance can be easily customised by replacing particular interchangeable
steps. Thus, an algorithm developer might adjust an algorithm without losing any guar-
antees given by the framework. Furthermore, we introduce sets of algorithms to handle
non-atomic event logs, to handle more process tree operators, and to provide an even
better scalability, i.e. handle event logs with thousands of activities and billions of events.

The IM framework and the algorithms introduced in this thesis have been imple-
mented as part of the ProM framework. Figure 3.26 shows the user interface, in which
users can choose a discovery algorithm and, if applicable, a deviating behaviour filtering
threshold.

Of the identified requirements for discovery algorithms, the IM framework, by its use
of process trees, guarantees sound models with clear semantics (Requirement DR1). Re-
discoverability (Requirement DR2) depends on the particular discovery algorithm, so the
IM framework cannot provide rediscoverability guarantees by itself. However, we provide
proof obligations in a formal framework for the algorithms that implement the IM frame-
work, and use this formal framework to prove that every discovery algorithm introduced
in this thesis guarantees rediscoverability. The IM framework provides the flexibility for

87

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

Figure 3.26: User interface of the IM framework.

88

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

particular algorithms to focus on distinguishing deviating, infrequent and incomplete be-
haviour (Requirement DR3), as we will show in our evaluation. Similarly, algorithms can
focus on different balances in log-conformance measures (Requirement DR4). The IM
framework aids algorithms to guarantee fitness and log precision, and several algorithms
introduced in this thesis guarantee to return a perfectly fitting model.

Requirement DR5 entails that a discovery technique should work fast on real-life event
logs and systems. The IM framework enables fast discovery algorithms: we introduce
algorithms that are faster than existing discovery algorithms and that work on real-life
event logs. However, the speed depends on the specific algorithms: some introduced
algorithms apply exponential steps and become intractable on large real-life event logs
containing hundreds of activities. The IM framework in itself only prevents rediscovery
of some non-free-choice constructs by the choice for process trees (a part of Require-
ment DR6), all other problematic constructs could in principle be handled, even though
we do not have algorithms for all of them at the time of writing (requirements DR6, DR7
and DR8). Similarly, milestones and other more advanced workflow patterns could in
principle be handled in specific cases (Requirement DR9). For instance, the Ø contains
a critical section.

The final Requirement DR10 entails that the balance of log-conformance criteria
should be influenceable by a user. The user can influence the IM framework by choos-
ing its modules (or a combination of modules, i.e. an algorithm), which allows users to
select the focus. This has not been implemented yet in a user-accessible way. However,
the algorithms themselves might have several parameters, such as deviating and infre-
quent behaviour thresholds, that allow the user to easily influence certain aspects of the
discovery.

The IM framework is described in more detail in Chapter 4, as well as the formal
framework for rediscoverability. The algorithms that instantiate the IM framework are
introduced in Chapter 6 and are evaluated in Chapter 8.

3.6.2 A Conformance Checking Framework
Alignments are the current state-of-art for log conformance checking: an alignment pro-
vides a decision about which events in an event log were executed “in reality” and which
events are deviations, and alignments enable log-conformance techniques to ignore non-
fitting behaviour. However, alignment computations can be too lengthy and memory-
consuming in practise and are not applicable to model-model settings.

Therefore, we introduce a single framework for both model-conformance and log-
conformance checking. This framework, the Projected Conformance Checking framework
(PCC framework), approximates recall, system precision, fitness and log precision by
projecting the behaviour of a system/log/model on all subsets of k activities (for a given
k). For each such k-subset, a deterministic finite automaton is constructed from both the
system/log and the model, the requested measure is computed, and this is repeated for
and averaged over all such k-subsets. The PCC framework resembles many techniques
that use language abstractions, e.g. has similarities with [177, 163], but abstracts from
activities instead of from types of behaviour.

Due to its projections on subsets of activities, the PCC framework can give clues
about where in a process model deviations occur. Figure 3.27 shows an example, in
which each activity (the boxes) is enriched with fitness and log-precision information.
Furthermore, the activities are coloured: the more problematic, the more red the activi-
ties are visualised.

The properties of the PCC framework are immediately clear: any log can be handled,

89

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

Figure 3.27: Result of the PCC framework projected on a process model.

as well as any model with a finite state space. Furthermore, due to the projection,
it’s an approximation. We propose “hacks” for weakly unsound models, however we do
not understand them well enough yet to implement them and to consider them to be
part of the PCC framework. Nevertheless, we prove that for a certain class of systems
(rediscoverable by the IM framework) and k � 2, recall/fitness and model/log precision
are 1 if and only if system and model are language-equivalent.

Of the identified requirements for conformance checking techniques, the PCC frame-
work handles any weakly unsound model, thus the PCC framework satisfies Require-
ment CR1. The language-equivalence proofs show that the PCC framework satisfies
requirements CR2 and CR3. The main advantage of the projection steps is a much
lower complexity than alignments: instead of traversing the complete state space, only
the much smaller projected state spaces are to be traversed. In our evaluation, we show
that not only the PCC framework is faster than alignments, but it is able to handle
much larger real-life event logs and models (Requirement CR4) as well. Alignments have
been made faster using divide-and-conquer as well. For instance using passages [5, 6]
or single-entry-single-exit decompositions [123]. The PCC framework can be seen as a
generalisation of these techniques, that takes the context of decomposed nets into ac-
count. In the future, it might be interesting to extend the PCC framework to measure
stronger equivalence notions, such as bisimilarity. For the log model part, this is of course
impossible without further information in the event log.

Requirement CR5 entails that conformance techniques provide insights on two (model-
model conformance checking) or three (log-model conformance checking) levels. The
PCC framework provides insights on most of these levels: summarative measures are
available, as well as a projection on process models (see Figure 3.27). The measures of
the PCC framework are all numbers between 0 and 1, and the model-model measures
are symmetrical and reflexive, which satisfies requirements CR6 and CR7.

The PCC framework is introduced in Chapter 7 and is evaluated in Chapter 8.

90

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

3.6.3 Enhancement & Tool Support

To support analysts in process mining projects, we developed a tool Inductive visual
Miner (IvM) that makes iteration easy: it takes an event log as input and performs sev-
eral steps automatically: it discovers a model, computes an alignment on the discovered
model and the log, animates the log on top of the model, and computes performance. In-
termediate results are shown and the user can interact with the tool at all times, e.g. if the
user changes a discovery parameter, computations are restarted automatically. Further-
more, the event log can be filtered, which makes iteration seamless. Figure 3.28a shows a
screenshot of the user interface. IvM supports and shows deviations (Figure 3.28b) and
performance measures (Figure 3.28c). To solve inconsistencies between log and model,
IvM uses alignments, as they provide a convenient conceptual abstraction layer: each
event is classified as fitting (synchronous move), non-fitting in the log (model move) or
non-fitting in the model (log move). Due to this classification, deviations, frequencies,
animation and performance enhancements do not have to deal with non-fitting behaviour.
Finally, IvM provides histograms of all traces in the system (Figure 3.29a) and of the
executions of activities (Figure 3.29b), and provides a deviation-showing trace view (Fig-
ure 3.29c).

Next, we consider the identified requirements for enhancements and process mining
tools. Corresponding to Requirement ER1, IvM provides several performance measure-
ments, and takes both the discovered process model and life-cycle information into ac-
count while computing them. Furthermore, IvM supports animation (Requirement ER2).

Due to the use of alignments IvM is robust against missing information and inconsis-
tencies between log and model (Requirement ER3). Furthermore, due to the deviation
enhancements, users can evaluate the discovered model in detail. Enabling evaluation of
models brings IvM beyond the commercial tools.

Iteration is quick using the two sliders that immediately update the model (Require-
ment ER5), and several filters are provided. The provided filters of IvM are not as
extensive as those in FD and CPM, however IvM is open source and additional log fil-
ters can easily be added. Requirement ER6 entails that frequency information can be
projected on the event log. Even though IvM provides further frequency information in
log and activity histograms (Requirement ER7), this is not comparable to the plethora
of options offered by CPM and FD.

Finally, IvM contains a view of traces like CPM and FD, such that the traces that
remain after filtering can be traced back to the system for verification and further analy-
sis (Requirement ER8). However, in the trace view of IvM, each event is enhanced with
deviation information, i.e. if the event log deviates from the discovered process model, it
is coloured red. Notice that the current implementation of alignments offers a similar fea-
ture (see Figure 3.20 [19]. As IvM is open source, custom enhancements could be added
by developers, however this will not be easier than CPM, which allows enhancements to
be added by end users.

In Chapter 9, we discuss the concepts of enhancements and IvM in more detail. In
the next chapter, we introduce our process discovery framework, i.e. the IM framework.

3.6.4 Future Work

In Section 3.2.1, we limited the scope of this thesis to languages, as event logs typically do
not contain information about choices. However, in future research, meta-information or
richer event logs could be used to enable process mining techniques to consider stronger

91

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

(a) Screenshot of the user interface of IvM. The yellow dots flowing over the model
visualise the traces with animation, and the model is enhanced with frequency infor-
mation.

(b) Deviations: the red-dashed edges denote points in the model where the log and
the model disagree.

(c) Performance: the digits in the activities denote the average duration of that activity.
For instance, A_DECLINED took on average 37 seconds and 999 milliseconds.

Figure 3.28: The Inductive visual Miner (IvM).

92

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

(a) Frequency statistics: when the user puts the mouse pointer on the animation
controls, a histogram of traces in the system appears.

(b) Frequency statistics: when the user puts the mouse pointer on an activity, a pop-up
appears that shows performance measures and a histogram of the number of executions
for that activity.

(c) A view of the traces of the event log: each line is one trace (one trace is shown here),
each wedge is an event, and red-coloured events deviate from the discovered process
model.

Figure 3.29: Features of IvM.

93

3

P
ro
ce
ss

M
in
in
g

3.6 Our Approach

notions than language equivalence.

Future work 3.2: Use other information next to event logs in process discovery and
conformance checking, and apply ideas of PCC framework to similarity measures stronger
than language-equivalence.

The PCC framework does not provide information on the log level currently, which
remains future work:

Future work 3.3: Investigate whether it’s possible to extend the PCC framework to
provide information on the log level (Requirement CR5).

The IvM uses alignments, which might take a long time to compute on larger and
more complex real-life event logs. We would like to use techniques like the PCC frame-
work without the presence of alignments.

Future work 3.4: Obtain and visualise deviations and performance measures without
alignments.

In this thesis, we will not address the usage of enqueue events for process discovery,
this remains part of future work:

Future work 3.5: Study what enqueue events can contribute to process discovery.

94

4Recursive Process Discovery

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

In the previous chapters, we introduced the input and outputs of process mining tech-
niques, and described challenges of process discovery techniques in Section 3.3.3. Due to
the trade offs identified in these challenges, we argued that different algorithms might
be necessary in different use cases. Therefore, in Chapter 6, we introduce a family of
process discovery techniques to handle different situations. For instance, we introduce an
algorithm handling deviating behaviour and an algorithm handling missing information.

All these algorithms need to be robust, e.g. handle real-life logs with ease, and pro-
vide several guarantees, such as soundness, rediscoverability, and in some cases fitness
and log precision. Proving these guarantees, especially rediscoverability and fitness, can
be tedious. Therefore, to enable reuse of code and formal results, in this chapter, we in-
troduce a novel process discovery framework, called the Inductive Miner framework (IM
framework), which provides some guarantees by itself (e.g. soundness). Furthermore, the
IM framework aids algorithms in guaranteeing fitness, log precision, rediscoverability,
and a polynomial run time, as we express these properties in terms of the framework,
which makes them easier to prove.

The IM framework is abstract, i.e., it does not define a complete algorithm. We
will illustrate through a number of examples how the framework can be instantiated to
yield different kinds of discovery algorithms. As we introduce the framework, we will
already point to the elements in the framework that allow to ensure soundness, fitness,
log precision and balancing log criteria. In contrast, rediscoverability will be less easy
to ensure. Therefore, in Section 4.2, we specifically consider which aspects of models,
logs and discovery algorithms contribute to rediscoverability. In the same section, we
establish a number of sufficient conditions for rediscovering the original model based on
behavioural abstractions. We will investigate these behavioural abstractions in detail in
Chapter 5. In Chapter 6, we introduce concrete algorithms that use the IM framework
and the behavioural abstractions of Chapter 5, and we prove rediscoverability using the
sufficient conditions of Section 4.2.

4.1 Recursive Process Discovery

The main idea of the IM framework is to construct a process tree recursively in a top-down
fashion, i.e. it starts with the entire event log and splits it into smaller parts, on which
the framework recurses, thereby building up a process tree. In this way, any algorithm
using the framework will only return process trees, which are sound by construction
(Requirement CR1).

We first introduce the framework using an example in Section 4.1.1. Second, in
Section 4.1.2 we introduce the framework formally, and in Section 4.1.4, we discuss the
guarantees provided by the framework. In Chapter 5, we strengthen the formal founda-
tions of the framework by studying abstractions in more detail, while in Chapter 6, we
instantiate the framework by providing several concrete discovery algorithms.

4.1.1 An Example of Recursive Process Discovery
In this section, we provide an intuitive introduction to the framework using the example
event log shown in Figure 4.1a.

On this event log L3, the IM framework performs several steps, of which the first
one is to identify the “most important” behaviour of the event log, i.e. the root of the
corresponding process tree, and to divide the activities of the event log into smaller

96

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

L3 � rxa, by

xa, by

xa, cys

(a) Initial log. The red dashed line denotes
the cut pÑ, tau, tb, cuq.

L4 � rxay

xay

xays

(b) Sublog after log splitting. This
is a base case.

L5 � rxby

xby

xcys

(c) Sublog after log splitting. The
red dashed line denotes the cut
p�, tbu, tcuq

L6 � rxby

xbys

(d) Sublog after log splitting (2).
This is a base case.

L7 � rxcys

(e) Sublog after log splitting (2).
This is a base case.

Figure 4.1: Example run of the IM framework.

subsets. We refer to the combination of a root operator and a partition of activities as a
cut . In Figure 4.1a, a cut has been highlighted with a red dashed line. Intuitively, this
cut denotes that in every trace, first something with activity a happens, and afterwards
something with activities b and c, which can be described as a sequence between a left
subprocess involving a and a right subprocess involving b and c. We denote this cut with
pÑ, tau, tb, cuq, and the first step of the IM framework is to identify such a cut (we will
introduce cut detection in detail in chapters 5 and 6). After detection of the cut, the
root operator, i.e. Ñ in our example, is noted.

Second, the IM framework splits the event log according to this cut. In our example,
splitting log L3 leads to the logs L4 � rxay, xay, xays and L5 � rxby, xby, xcys, as shown
in figures 4.1b and 4.1c. The process tree discovered up till this point is Ñ

“L5”“L4”

, and

the IM framework still needs to process L4 and L5. Therefore, as the third step, the IM
framework recurses, say on L4.

In L4, only an activity a is present, i.e. there cannot be any cut, thus the IM frame-
work hits a base case of the recursion. The process tree discovered up till now is Ñ

“L5”a

,

and the IM framework still needs to process L5.
Then, the IM framework recurses on L5, which is shown in Figure 4.1c. In L5, the

cut t�, tbu, tcuq can be found, as each trace has either activity b or activity c, but never

97

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

both. Therefore, the IM framework splits L5 into sublogs L6 � rxby, xbys and L7 � rxcys.
The process tree discovered up till now is Ñ

�

“L7”“L6”

a

, and the IM framework still needs

to process L6 and L7.
Finally, at recursion of L6 and L7, the IM framework will discover both of them to

be base cases of the recursion, and return the process tree Ñ

�

cb

a

.

4.1.2 The IM framework
In this section, we define the framework formally, give another example and briefly discuss
its implementation.

To summarise, the IM framework defines four steps: first, a cut is detected, second,
the event log is split into smaller sublogs and third, the IM framework recurses on these
sublogs until a base case is encountered. Fourth, if no cut can be found, a fall through
is returned, i.e. a process tree is discovered such that recursion can continue (this was
not shown in the example). These four steps are parameters of the IM framework and
have to be provided as plug-ins by a process discovery algorithm: each algorithm that
implements the IM framework should provide each of these four functions. That is, for
a log L:

• The parameter function baseCase detects base cases of the recursion: baseCasepLq
takes a log L, and if L contains a base case returns a process tree that represents
this base case.

• The parameter function findCut searches for a cut c, consisting of a process tree
operator and an activity partition i.e. findCutpLq searches for a cut in log L and
returns that cut if it exists.

• The parameter function splitLog splits the log into smaller sublogs.
splitLogpL, cq splits log L according to cut c and returns the remaining sublogs.

• The parameter function fallThroughpLq returns a fall through for L, i.e. a pro-
cess tree that describes L. This function must not fail and always return a process
tree. Notice that this function will only be invoked if neither a base case nor a cut
can be found.

From the viewpoint of the framework, these functions are independent, e.g. it is pos-
sible to interchange findCut functions of different algorithms. Nevertheless, algorithms
might pose restrictions on this interchangeability, e.g. for some algorithms introduced in
Chapter 6, the splitLog function assumes certain properties on the cuts returned by
findCut.

Formally, given four functions baseCase, findCut, splitLog and fallThrough,
the Inductive Miner framework (IM framework) has the type IMframework : E Ñ T
and is defined as follows, using that l denotes “nothing”:
function IM frameworkbaseCase,findCut,splitLog,fallThrough(L)

bcÐ baseCasepLq
if bc � l then

98

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

a
b

c

d

e

(a) � of L8.

b

c

d

e

(b) � of L10.

c

d

e

(c) � of L12.

Figure 4.2: Directly follows graphs of logs used in the recursion. The dashed
red curves denote cuts. No cut can be found for L12.

return bc
end if
p`,Σ1, . . . ,Σnq Ð findCutpLq
if p`,Σ1, . . . ,Σnq � l then

L1 . . . Ln Ð splitLogpL, p`,Σ1, . . . ,Σnqq
return `pIMframeworkpL1q, . . . , IMframeworkpLnqq

else
return fallThroughpLq

end if
end function
In the remainder of this thesis, for conciseness, we might omit the parameter functions

from IM framework if they are clear from the context. We continue this section with
examples of several algorithms that instantiate the IM framework. We will not give
definitions or code here, but this will illustrate the flexibility of the framework.

4.1.3 More Technical Examples
In this section, we show examples for three algorithms: one using the best case, i.e. if
all information that an algorithm needs is present in the event log, and two to illustrate
challenges of rediscoverability, i.e. incompleteness and deviating behaviour.

To illustrate the functions of the IM framework, we discuss a second example using
a basic algorithm called Inductive Miner (IM). For this example, consider the event log

L8 � rxa, b, c, d, ey, xa, d, b, ey, xa, e, by, xa, c, by, xa, b, d, e, cys

The baseCase function of IM does not detect a base case in L8, as multiple activ-
ities are present. The findCut function considers the directly follows graph of L8 (see
Figure 6.1a) and searches for characteristic footprints of process tree operators, returning
the first footprint found. In this graph, the cut c1 � pÑ, tau, tb, c, d, euq is present, as
all edges cross this line in one direction (hence, the sequence). Then, splitLogpL8, c1q
splits the log in sublogs L9 and L10:

L9 � rxay
5s

L10 � rxb, c, d, ey, xd, b, ey, xe, by, xc, by, xb, d, e, cys

99

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

Furthermore, IM records the choice and recurses, i.e. IMpL8q �ÑpIMpL9q, IMpL10qq.
We first consider the recursive step on L9, for which baseCasepL9q returns a base case,
supposedly being the process tree a:

baseCasepL9q � a

Next, we give the computation steps taken and the results of the recursive calls:

IMpL9q � a

baseCasepL10q � l

findCutpL10q � c3 � p^, tbu, tc, d, euq, see Figure 6.1b
splitLogpL10, c3q � L11, L12

L11 � rxby
5s

L12 � rxc, d, ey, xd, ey, xey, xcy, xd, e, cys

IMpL10q � ^pIMpL11q, IMpL12qq

baseCasepL11q � b

IMpL11q � b

baseCasepL12q � l

findCutpL12q � l, see Figure 6.1c
fallThroughpL12q � 	pτ, c, d, eq

IMpL12q � 	pτ, c, d, eq

Combining all intermediate steps, IM will discover the process tree M13 � Ñ

^

	

edcτ

b

a

.

In our next example, we will show how rediscoverability can be challenged by in-
completeness and deviating behaviour. For these examples, we assume that the system
model from which the event log was derived is indeed M13.

For the incompleteness example, we remove the trace xa, c, by from L8, i.e.

L14 � rxa, b, c, d, ey, xa, d, b, ey, xa, e, by, xa, b, d, e, cys

The first cut pÑ, tau, tb, c, d, euq is still present in the directly follows graph of L14, so
recursion continues as in the previous example, and the following sublog is obtained:

L15 � rxb, c, d, ey, xd, b, ey, xe, by, xb, d, e, cys

Figure 4.3a shows the directly follows graph of L15. In this graph, there is no cut
p^, tbu, tc, d, euq, as the edge c� b is missing. Therefore, the basic algorithm IM would
not detect a cut, and instead return the tree Ñ

	

edcbτ

a

, hence would not rediscover

the system M13. In Section 6.3, we will introduce an algorithm that is able to handle

100

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

b

c

d

e

(a) � of L15.

a
b

c

d

e

21

10
11010

10

10

10
10

10

1020

10

50

1

21

10

20

(b) � of L16.

Figure 4.3: Directly follows graphs of logs used in the recursion. The dashed
red curves are not cuts here.

this incompleteness in the directly follows graph and discover the correct cut despite the
missing edge, by searching for a likely cut instead of a perfect cut. The algorithm thus
derives the presence of the missing edge and continues discovery as IM, and rediscovers
M13.

For the deviating behaviour example, we duplicate the event log 10 times, and add a
deviating trace xc, a, by.

L16 � rxa, b, c, d, ey
10, xa, d, b, ey10, xa, e, by10, xa, b, d, e, cy10, xc, a, bys

Figure 4.3b shows the directly follows graph of L16. In this figure, we added the frequen-
cies on the directly follows edges. In the directly follows graph, the deviating trace adds,
amongst other things, the edge c� a, and therefore the dashed line is not a sequence
cut, as the edge c� a crosses it in the “wrong” direction. Therefore, the basic algorithm
IM would not detect a cut, and instead return the tree 	

edcbaτ

, hence would not re-

discover the system M13. In Section 6.2, we will introduce an algorithm that spots that
of all outgoing edges of c, the edge a� c is 10 times less frequent than the other edges.
The algorithm then filters this edge out and continues discovery as IM, and rediscovers
M13.

In these examples, we illustrated how the IM framework and the directly follows
abstraction can be used to (re)discover process trees. We showed a best case, i.e. when
the directly follows abstraction is correct and complete, we showed an example in which
the abstraction was incomplete, and we showed an example in which the abstraction was
erroneous (i.e. the log contained information that did not correspond to the system).
In the remainder of this section, we discuss guarantees that IM framework can provide,
regardless of the abstraction, correctness notion and incompleteness notion of the specific
algorithm.

101

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.1 Recursive Process Discovery

4.1.4 Guarantees
In the previous sections, we introduced the IM framework as our solution for process
discovery. In this section, we address several guarantees that can be provided by the IM
framework, possibly requiring some proof obligations on the concrete functions defined
by an algorithm, i.e. we address termination, fitness and log precision. Rediscoverability
is discussed in Section 4.2.

Termination

The IM framework guarantees termination based on the given parameter functions:
findCut and splitLog together must guarantee that the size of the event log decreases.
In case baseCase and fallThrough make a recursive call to the IM framework them-
selves, the event logs on which these calls are made must be strictly smaller in size than
the original log. With these guarantees, IM framework obviously guarantees termination.

Fitness & Log Precision

The IM framework is able to provide several guarantees, two of which are perfect fitness
and log precision. In this section, we study the conditions under which these guarantees
hold. Using the recursive nature of the IM framework, we introduce two local properties.
The first property expresses that a step of the framework can never exclude traces from
consideration, i.e. locally, fitness is preserved. The second property expresses the reverse,
i.e. the model does not represent any trace that was not in the log. Both use a language
combining function `L that combines several languages using its corresponding process
tree operator ` definition, i.e. Lp`pK1, . . .Kkqq � `LpLpK1q, . . .LpKkqq.

Definition 4.1 (Local fitness & log precision preservation). For all event logs L,

• a combination of a cut detection function findCut and a log splitting function
splitLog is locally fitness preserving if

setpLq � `LpsplitLogpL, findCutpLqqq

in which `L is the language combination function corresponding to the operator
selected by findCutpLq (if findCut returns a cut);

• a base case function baseCase is locally fitness preserving if

setpLq � LpbaseCasepLqq

(if baseCasepLq � l, i.e. it applies to L);

• a fall through function fallThrough is locally fitness preserving if

setpLq � LpfallThroughpLqq

For log precision, the definition is similar, using:

`LpL1, . . . Lnq � L

LpbaseCasepLqq � L

LpfallThroughpLqq � L

Given this definition, it is not hard to reason that if all steps applied by the IM
framework are locally fitness preserving, then the overall result will be perfectly fitting
and similarly for log precision. Formally:

102

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

system

system model

log discovered model

implementation

execution discovery

language equivalence

Figure 4.4: Rediscoverability: rediscover the language of the system model.

Corollary 4.2. Let ♦ : EÑ T be a discovery technique using the IM framework in which
all parameter functions are locally fitness preserving. Then, for every log L it holds that
♦pLq fits L, i.e. setpLq � Lp♦pLqq. If all parameter functions are locally log-precision
preserving, then ♦pLq is log precise to L, i.e. Lp♦pLqq � setpLq.

If the locality is clear from the context, we will omit the word ’local’. This corollary
illustrates the modularity of the IM framework: given the use case at hand, one can
choose a custom set of operators, cut detection algorithms, base cases and fall throughs.
As long as all choices are locally fitness/log precision preserving, the end result will be
guaranteed accordingly.

In Chapter 6, we will show local fitness and log precision preservation while intro-
ducing concrete functions. Here, we illustrate these concepts using some examples. An
example of a fall through is the flower model. A flower model function takes an al-
phabet ΣpLq and returns a model that can generate any behaviour of the alphabet, i.e.
	pτ, a1, . . . anq where ta1, . . . anu � ΣpLq. This fall through is fitness preserving, as the
resulting model allows for any behaviour. However, it is not log precision preserving,
as L is bounded, and the model allows for unbounded traces. This argument holds for
all 	s, i.e. any function that returns a model that contains a 	 cannot be log precision
preserving.

An example of a log precision preserving function is the fall through that returns
a trace model, i.e. a choice between all traces in the event log. For instance, let L �
txa, by, xa, cyu be an event log. Then, �pÑpa, bq,Ñpa, cqq is a trace model of L. Obviously,
such a trace model is both fitness and log precision preserving. However, the model is
not generalising and merely enumerates the log.

4.2 Rediscoverability

As introduced in Section 2, the property rediscoverability entails that a discovery algo-
rithm is able to discover a model that is language equivalent to the system that underlies
the given event log. Figure 4.4 illustrates rediscoverability: a system model is imple-
mented by a system, the system executes and of this execution an event log is recorded,
and from the event log a model is discovered.

The system model is rediscovered if it has the same language as the discovered model
(as the discovered model is derived from an event log and an event log only contains
information about a language, process discovery algorithms cannot rediscover stronger
notions of equivalence). An algorithm that guarantees rediscovery possesses rediscover-
ability . Formally:

103

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

Definition 4.3 (rediscoverability). Let SM be a system model, S be a system that imple-
ments SM and let L be an event log generated from S. Furthermore, let M be a process
model that is discovered by a process discovery algorithm. Then, the process discovery
algorithm provides rediscoverability for SM for L if and only if LpSMq � LpMq.

Typically, in order to prove rediscoverability for a specific discovery technique, one
needs to make assumptions on the system S and the event log L. Obviously, rediscov-
erability is then only proven for cases in which these assumptions hold. For instance,
for the α algorithm, if the system can be represented by an unlabelled sound free-choice
workflow net without short loops and without implicit places (see Section 3.3) and the
directly follows graph of the event log is equivalent to the directly follows graph of the
system, then the discovered model is isomorphic to the system [17, 25]. The restriction on
implicit places is necessary for isomorphic rediscovery because these places do not change
the language of the system, i.e. removing them preserves language and hence, the α algo-
rithm has no way to discover them. Therefore, allowing implicit places straightforwardly
still guarantees language rediscovery.

In this section, we consider how rediscoverability can be achieved in a practical process
discovery setting where only partial knowledge about system behaviour (an event log) is
available, and we ease the proofs using the abstractions that are used by many process
discovery techniques: we introduce a framework that uses these abstractions and makes
some assumptions (Section 4.2.1). Furthermore, we discuss how the framework and the
IM framework can be combined to prove rediscoverability for actual discovery algorithms
in Section 4.2.2.

4.2.1 Rediscoverability using Abstractions
In this framework, let A denote an abstraction function over languages, and let C denote
a class of models. For instance, in case of the α algorithm, the abstraction A is a function
that takes a language and returns a directly follows graph of the language, and the class of
models C is the set of all models that can be represented by unlabelled sound free-choice
workflow nets without short loops.

The key of the framework is a property of the combination of the abstraction A and
the class of models C: there must not be two models with different languages in C that
have the same abstraction. We refer to this property as language uniqueness. Formally:

Definition 4.4 (language uniqueness). A class of models C and a language abstraction
A : T Y E Ñ A are language unique if and only if each two models of C with different
languages have different abstractions:

@K,MPC LpKq � LpMq ô ApKq � ApMq

If language uniqueness is proven, then the discovery technique only needs to guarantee
to discover a model with the same abstraction as the system, instead of a model with
the same language (as in Definition 4.2). The framework is shown in Figure 4.5. We
explain the assumptions and proof obligations, in which RF stands for Rediscoverability
Framework:

RF.1 The system model is language equivalent to the system, i.e. the system model is
implemented correctly by the system. Although a plethora of issues might challenge
the correctness of an implementation of a system model, these issues are outside the
scope of this thesis, and therefore we assume that the system model and the running
system have the same language. Notice that this assumption has little practical

104

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

SM

S

L

M

language
equivalent RF.1

abstraction equivalent RF.2

C and A language unique RF.3
^ SM P C RF.4
^M P C RF.5
ñ language equivalent RF.6

Figure 4.5: Formal framework for rediscoverability using abstractions: if the
system model is of the class C and is language equivalent to the system, the
system has the same abstraction A as the discovered model, the discovered
model is of class C, and language uniqueness holds for class C and abstraction
A, then the system model and the discovered model are language equivalent.

influence, as both system model and system are unknown in typical process mining
projects.

RF.2 The abstraction of the system is equivalent to the abstraction of the discovered
model. This is a proof obligation by the discovery algorithm.
We refer to this property as abstraction rediscovery, i.e. the abstraction of the dis-
covered model is equivalent to the abstraction of the system. A process discovery
algorithm that guarantees abstraction rediscovery possesses abstraction rediscov-
erability :
Definition 4.5 (abstraction rediscoverability). Let A : T Y E Ñ A be a language
abstraction and let C be a class of models. Then, a process discovery algorithm
provides abstraction rediscoverability for A and C if for each system S P C, the
model M that is discovered by the algorithm has the same abstraction as S, i.e.
ApSq � ApMq.

A typical proof strategy of discovery algorithms would be to (1) make an assump-
tion on the completeness and correctness of the event log L, e.g. that ApSq � ApLq,
and (2) prove that the discovered model has the same abstraction as the event log:
ApLq � ApMq. We chose not to put this assumption in Definition 4.5, as discov-
ery techniques can make arbitrary assumptions on the event log. For instance, the
abstraction in the event log may be incomplete or contain erroneous information;
in such cases, the assumption ApSq � ApLq could be weakened. Notice that the
weaker these assumptions, the more powerful the discovery technique, and more
event logs can be handled.

RF.3 The abstraction A and the class of models C are language unique (Definition 4.4).
This is a proof obligation that comes with the discovery technique. However, as

105

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

a property of the abstraction and a class of languages, it is independent of the
technique itself and can therefore be reused by several techniques. In this thesis,
we will prove this property for several classes of languages and abstractions in
Chapter 5.

RF.4 The system model is of class C. This is an assumption on the class of the system
model, and restricts rediscoverability accordingly.

RF.5 The discovered model is of class C. This is a proof obligation of the discovery
technique: if a technique discovers a model outside the class of C, then language
uniqueness should be proven for this model, otherwise the framework does not
apply.

From these assumptions and proof obligations, language equivalence between the
discovered model and the system model (RF.6) follows directly:

Theorem 4.6 (rediscoverability using abstractions). Let C be a class of models, let
A : TY EÑ A be a language abstraction, and let SM , S and M be models. Then, if all

• LpSMq � LpSq (RF.1)
• ApSq � ApMq (RF.2)

• the combination of C and A is language unique (RF.2)

• SM P C (RF.4)

• M P C (RF.5)

then LpSMq � LpMq (RF.6).

Examples. Rediscoverability has been proven for several discovery algorithms, e.g.
α [25, 17, 4] and IM [88]. In both of these proofs, the class of models is limited: a subset
of process trees for IM, and a subset of free-choice workflow nets for α, and it is assumed
that the event log is directly follows complete and noise free with respect to the system.
In terms of the abstraction rediscoverability framework, this assumption means that the
event log and the system have the same abstraction (see Figure 4.6).

Formally, this assumption can be mapped onto the abstraction rediscoverability
framework:

Corollary 4.7. Let C be a class of models, let A : TYEÑ A be a language abstraction,
and let S, L and M be models. Then, if all

• ApSq � ApLq (typical assumption)

• ApLq � ApMq (typical proof obligation)

then ApSq � ApMq RF.2.

We finish this chapter with a translation of the identified assumptions and proof
obligations to the IM framework.

4.2.2 Rediscoverability and the IM framework
In the IM framework, a divide-and-conquer strategy is applied to discover a process tree
recursively. In this section, we study the influence of the requirements of abstraction
rediscoverability on the IM framework, i.e. we show how discovery algorithms that im-
plement the IM framework can be proven to rediscover the system model. In this proof
strategy, we will use four elements.

106

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

SM

S

L

M

assume:
language equivalent

assume:
abstraction equivalent

prove:
abstraction equivalent

then:
language equivalent

Figure 4.6: A typical rediscoverability proof mapped onto the abstraction
rediscoverability framework.

• First, we use a class of process trees C.

• Second, we use a language abstraction function A that takes an event log or a
process tree and returns the abstraction of type A.

• Third, we use a log-assumptions function LA that takes a process model and
returns the set of all logs that adhere to the assumptions made by the algorithm.
For instance, for the α algorithm, this log-assumptions function would return all
event logs that have the same directly follows graph as the model).

• Fourth, we use the algorithm ♦ itself, which implements the IM framework, using
the four parameter functions baseCase♦, findCut♦, splitLog♦ and
fallThrough♦.

Similar assumptions have been made in rediscoverability proofs. For instance, for e.g. the
α algorithm [27], rediscoverability could be proven using C as the class of all unlabelled
free-choice Petri nets without short loops, A as the directly follows graph and LA would
entail that the log has the same directly follows relation as the system model (although
the α algorithm does not consider process trees).

We first introduce a property, i.e. a set of requirements, that expresses the require-
ments of abstraction rediscoverability using the four parameter functions of the IM frame-
work, i.e. for an actual discovery algorithm, this property should be proven, which we
will do in Chapter 6. Second, in Lemma 4.9, we prove that this property is a sufficient
condition for abstraction rediscoverability (Definition 4.5). Third, we express RF.5 in
terms of C, A and LA (Definition 4.10). Fourth, we prove that these properties are
sufficient to conclude rediscoverability.

Definition 4.8 (abstraction preservation). Let C be a class of process trees, let A : EY
T Ñ A be a language abstraction, let LA : C Ñ 2E be a log assumption function, and
let ♦ � IM framework be a discovery algorithm implementing the IM framework with
baseCase♦, findCut♦, splitLog♦ and fallThrough♦, i.e. ♦ : E Ñ T. Then, ♦ is
abstraction preserving if for every tree S P C under abstraction A and for any log L P
LApSq:

107

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

AP.1 The abstraction of an activity is preserved: for all systems a P C such that a is an
activity, and for all logs L P LApaq, it holds that ApbaseCase♦pLqq � Apaq.

AP.2 The abstraction of a τ step is preserved: for the system τ P C and for all logs
L P LApτq, it holds that ApbaseCase♦pLqq � Apτq.

AP.3 If the algorithm applies a base case, the abstraction is preserved. Let S P C be a
system such that S � `pS1, . . . Snq, and let L P LApSq be a log adhering to the
log-assumptions. Then ApbaseCase♦pLqq � ApSq (if baseCase♦pLq applies).
To ease proofs later on in this thesis, we weaken this requirement using the as-
sumption that it holds for all smaller systems: assume that for all S1 such that
|S1| ¤ |S| and L1 P LApS1q, it holds that ApbaseCase♦pL1qq � ApS1q.

AP.4 If the algorithm detects a cut, then this cut conforms to the system: for all sys-
tems S � `pS1, . . . Snq with S P C and for all logs L P LApSq holds and for
which baseCase♦pLq does not apply, it holds that findCut♦pLq conforms to S
(Definition 5.16).

AP.5 If a conforming cut is found, then the log assumptions hold for the sublogs (for
the next recursive step). Let S � `pS1, . . . Snq be a system with S P C, let c �
pb,Σ1, . . .Σmq be a cut that conforms to S (Definition 5.16), and let L1 . . . Lm �
splitLogpL, cq, then there exist trees M1 . . .Mm such that Ap`pM1, . . .Mmqq �
ApSq, and @1¤i¤m Li P LApMiq.

AP.6 If the algorithm uses a fall through, the abstraction is preserved: let S P C be
a system such that S � `pS1, . . . Snq, and let L P LApSq be a log, but neither
baseCase♦pLq nor findCut♦pLq applies. Assume that for all S1 such that |S1| ¤
|S| and L1 P LApS1q, it holds that Ap♦pL1qq � ApS1q. Then, ApfallThrough♦pLqq
� ApSq.

In the following, we prove that any algorithm that implements the IM framework
and satisfies Definition 4.8 will have rediscoverability (according to Definition 4.3). For
this, we first prove that any such algorithm will rediscover the abstraction of the system
(Lemma 4.9). Then, under the assumption that the algorithm preserves the class of
its input (i.e., Requirement RF.5), we will be able to conclude that the algorithm also
rediscovers the system (Theorem 4.11).

Lemma 4.9 (Abstraction rediscoverability of the IM framework). Let C be a class of
process trees, A be a language abstraction, LA be a log assumption function, and let
♦ � IM frameworkbaseCase♦,findCut♦,splitLog♦,fallThrough♦ , such that ♦ is abstraction
preserving (Definition 4.8). Then, for all systems S P C and logs L P LApSq, it holds
that Ap♦pLqqApSq.

Proof. We prove the theorem by induction on process tree sizes, being |S|.

• Base case: S � a, with a P Σ. By Requirement AP.1, ApbaseCase♦pLqq � ApSq.

• Base case: S � τ . By Requirement AP.2, ApbaseCase♦pLqq � ApSq.

• Induction step: assume S � `pS1, . . . Snq and that the theorem holds for all models
smaller than S. By code inspection, three cases apply:

– baseCase♦ applies. By Requirement AP.3, ApbaseCase♦pLqq � ApSq.

– baseCase♦ does not apply, then by Requirement AP.4, the cut c � p`,Σ1,Σ2q
such that c � findCut♦pLq conforms to S. Let L1 . . . Lm be the sublogs re-
turned by splitLog♦pL, cq. By Requirement AP.5, there exist treesM1, . . .Mm

108

4

R
ec
u
rs
iv
e
P
ro
ce
ss

D
is
co
ve
ry

4.2 Rediscoverability

such that Ap`pM1, . . .Mmqq � ApSq, and @1¤i¤m Li P LApMiq. By the in-
duction hypothesis, Ap`p♦pL1q, . . .♦pLmqqq � Ap`pM1, . . .Mmqq � ApMq.
Hence, Ap♦pLqq � ApSq.

– If neither a base case baseCase♦ nor a cut findCut♦ applies, then by Re-
quirement AP.6, ApfallThrough♦pLqq � Ap♦pLqq � ApSq.

Hence, Ap♦pLqq � ApSq (Definition 4.5).

As a final requirement, we define Requirement RF.5 of Section 4.2.1, i.e. that the
discovered model should be of class C, in terms of C and LA:

Definition 4.10 (language-class preservation). A combination of a class of process trees
C, a log assumption function LA and an algorithm ♦ is language-class preserving if and
only if for all systems S P C and logs L P LApSq, it holds that ♦pLq P C.

Finally, we prove the main theorem, i.e. an algorithm that is abstraction preserving
and language-class preserving has rediscoverability:

Theorem 4.11. Let C be a class of process trees, A : T Y E Ñ A be a language ab-
straction, LA be a log assumption function, and let ♦ � IM framework be a discovery
algorithm implementing the IM framework with baseCase♦, findCut♦, splitLog♦ and
fallThrough♦, such that the combination of C, A, LA and ♦ is abstraction preserving
(Definition 4.8), such that the combination of C, LA and ♦ is language-class preserving
(Definition 4.10), and such that the combination of A and the set of languages represented
by C is language unique (Definition 4.4).

Let SM and S be process trees such that LpSMq � LpSq, SM P C and S P C.
Then, ♦ has rediscoverability (Definition 4.3): for each log L P LApSq, it holds that
LpSMq � Lp♦pLqq.

Proof. We discuss each of the requirements of Theorem 4.6: by assumption, LpSMq �
LpSq (RF.1). By Lemma 4.9, ApSq � ApMq (RF.2). By assumption, the combination of
C and A is language unique (RF.3). By assumption, SM P C (RF.4). By Definition 4.10,
♦pLq P C (RF.5). Then, by Theorem 4.6, LpSMq � Lp♦pLqq.

In the remainder of this thesis, we will use the abstraction rediscoverability framework
and IM framework to introduce several discovery algorithms. In Chapter 5, we analyse
language uniqueness for several combinations of abstractions and classes of process trees,
after which we introduce several process discovery algorithms and prove rediscoverability
for them in Chapter 6.

109

110

5Abstractions

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

5

A
b
st
ra
ct
io
n
s

In process discovery, it is typically assumed that not all possible behaviour is actually
present in the event log. Therefore, most process discovery algorithms do not use an event
log directly, but use an intermediate step, i.e. an abstraction, and instead of assuming
that the entire behaviour is present in the event log, it is assumed that the “entire”
abstraction has been seen. For instance, the abstraction that the α algorithm uses is the
directly follows relation.

In the previous chapter, we introduced the IM framework to discover process models
from event logs. Furthermore, we showed how the IM framework aids in guaranteeing
rediscoverability, i.e. we introduced a proof framework that poses proof obligations for
concrete discovery algorithms. In Chapter 6, we will introduce concrete algorithms that
use this framework, and that provide several guarantees.

Abstractions pose limitations to discovery algorithms: if two models have the same
abstraction, the discovery algorithm cannot distinguish the models. Therefore, one of
the proof obligations of the proof framework in Section 4.2.1 entails that for a class of
models, the uniqueness of the abstraction needs to be proven, i.e. the combination of
an abstraction and the class of models needs to be language unique: all models from
this class with different languages should have different abstractions (Definition 4.4).
Language uniqueness of an abstraction and a class of models provides a formal basis for
discovery algorithms: the discovery algorithm can simply discover a model with the same
abstraction to provide rediscoverability.

In this chapter, we systematically study abstractions in combination with process
trees, by, for each abstraction, studying the models and languages it can distinguish, and
which classes of process trees correspond to these languages. In Chapter 6, we will use
these results to prove rediscoverability for the algorithms defined therein.

A challenge to proving language uniqueness is the loose relation between a language
and the set of process trees that can represent it, i.e. between semantics and syntax,
thereby forbidding reasoning on the structure of process trees directly. For instance,
the trees ^

cba

, ^

^

cb

a

and ^

c�

Ñ

ab

Ñ

ba

have the same language, and therefore proving two

process trees language equivalent has to be performed on behaviour rather than structure,
which complicates the language-uniqueness proofs. To address this, we first introduce
structural reduction rules on process trees that preserve the language of a tree, and we
show that repeated application of these rules leads to a syntactic unique normal form,
i.e. the normal form is canonic.

Second, using the set of reduction rules, we show the language uniqueness of several
abstractions. For each abstraction, the proof strategy is to show that the abstraction of
each process tree in normal form is different from the abstractions of all other process
trees in normal form in the class of process trees considered (and due to the normal
form, we only need to consider syntactically equivalent trees). As all abstractions used
in this thesis are language based, different abstractions imply different languages. The
reduction rules therefore establish a one to one relationship between semantics and syntax
of process trees, within the classes considered.

The first abstraction we consider is the directly follows graph, in combination with a
simple class of trees, i.e. without duplicate activities and only using four basic operators
(�, Ñ, ^ and). We show that with some restrictions on the nesting of operators,

112

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

the abstraction of the tree onto its directly follows graph suffices to uniquely identify
the language of the process tree, and distinguish it from other trees both semantically
and syntactically. We study this class of process trees separately as it is similar to
a representational bias used in many process discovery algorithms, such as α and its
derivatives, Heuristic Miner (HM) and Fodina (FO). Furthermore, we show that different
classes of process trees, i.e. having less restrictions, τ steps to allow for skips and other
operators such as the inclusive choice, cannot be distinguished by the directly follows
graph. In a later section, we show language uniqueness of directly follows graphs and a
larger class of process trees, i.e. including Ø.

In Section 5.1, we introduce the normal form and prove that it is canonical. Second,
in each of several sections, we introduce a new abstraction, a class of process trees and
prove language uniqueness for this combination. The abstractions covered in this thesis
are directly follows graphs (Section 5.2), activity relations (Section 5.3), minimum self-
distance (Section 5.5) and concurrent-optional-or relations (Section 5.6).

A limitation of the languages and concepts used before is that all activities are atomic
and therefore are limited in their expression of concurrency, and therefore lack an im-
portant process modelling feature. Furthermore, it is challenging to measure time and
performance on such models, as will be shown in Chapter 9. Therefore, in Section 5.7,
the study is repeated on models with non-atomic activities: a different set of reduction
rules is introduced, and the directly follows graph is proven to distinguish languages of
another class of process trees.

In Section 5.8, we revisit the classes of process trees and compare them to other
formalisms and to rediscoverability classes of other algorithms.

5.1 A Canonical Normal Form for Process Trees

There might be multiple process trees with the same language. For instance, the tree
Ñpa,Ñpb, cqq has the same language asÑpÑpa, bq, cq. In this thesis, we are not interested
in the structural difference between these trees, as their behaviour is the same. Therefore,
we introduce structural reduction rules on process trees that preserve the language of a
tree, and we show that repeated application of these rules leads to a syntactic unique
normal form, i.e. for each language, there is at most one process tree in normal form.
In our example, the normal form would be Ñpa, b, cq. Furthermore, we prove that the
repeated application of reduction rules always terminates in finitely many steps.

We first give the rules in Section 5.1.1, after which we prove that their repeated appli-
cation terminates and that they can be applied in any order (canonicity) in Section 5.1.2.

5.1.1 Reduction Rules
A reduction rule applies to a subtree of a process tree and transforms it into another
subtree. For instance, the rule Ñp. . .1 ,Ñp. . .2q, . . .3q Ñ Ñp. . .1 , . . .2 , . . .3q transforms
trees to remove nested sequence operators. The left hand side denotes that it applies
to any sequence operator that is a child of a sequence operator, and the right hand side
denotes that after application of the rule, all children of the nested sequence operator
are now children of the topmost operator. If this rule would be applied to Ñpa,Ñpb, cqq,
the tree Ñpa, b, cq would result.

We identified four categories of reduction rules: the singularity rule, associativity
rules, τ reduction rules and ^ relation rules. We first give the rules, after which we
explain each category and discuss some properties of reduced trees.

113

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

Most of these rules apply to a certain patterns of process tree operators, however
some rules have additional restrictions. For instance, the trees S1 . . . Sn ensure that the
length of each trace in the language of each Si has only traces of at most one event. After
the definition, we will elaborate more on the rules and these restrictions.

Definition 5.1 (Reduction rules). Let M , P , Q, Q1, Q2 and S1 . . . Sn be process trees,
and let . . . be any number of process trees (possibly 0). Then, the reduction rules are as
follows:

singularity rule
pSq `pMq ñM with ` P t�,Ñ,^,Ø,_u

associativity reduction rules
pA�q �p. . .1 ,�p. . .2qq ñ �p. . .1 , . . .2q

pAÑq Ñp. . .1 ,Ñp. . .2q, . . .3q ñ Ñp. . .1 , . . .2 , . . .3q

pA^q ^p. . .1 ,^p. . .2qq ñ ^p. . .1 , . . .2q

pA_q _p. . .1 ,_p. . .2qq ñ _p. . .1 , . . .2q

pA	 bq 	p	pM, . . .1q, . . .2q ñ 	pM, . . .1 , . . .2q

pA	 rq 	pM, . . .1 ,�p. . .2qq ñ 	pM, . . .1 , . . .2q

τ -reduction rules
pT�q �p. . . , Q, τq ñ �p. . . , Qq with ε P LpQq
pTÑq Ñp. . . ,M, τq ñ Ñp. . . ,Mq

pT^q ^p. . . ,M, τq ñ ^p. . . ,Mq

pTØq Øp. . . ,M, τq ñ Øp. . . ,Mq

pT_q _p. . . ,M, τq ñ �pτ,_p. . . ,Mqq

pT_,�q _p. . .1 ,�p. . .2 ,M, τqq ñ �pτ,_p. . .1 ,�p. . .2 ,Mqqq

pT	 bq 	pτ, . . . , P q ñ �pτ,	p�p. . . , P q, τqq with LpP q � tεu
pT	 rq 	pM, . . . , Q, τq ñ 	pM, . . . , Qq with ε P LpQq
pT	 brq 	pτ, τq ñ τ

^-relation rules
pCØq ØpS1, . . . Snq ñ ^pS1, . . . Snq with @1¤i¤n,tPLpSiq |t| ¤ 1

pC_q ^p. . . , Q1, Q2q ñ ^p. . . ,_pQ1, Q2qq with ε P LpQ1q X LpQ2q

Notice that none of the rules introduces an operator without children, and a loop
operator always keeps at least two children. A process tree to which no rule can be
applied is in normal form. For simplicity, we will refer to such a tree as a reduced process
tree. Later, we will prove that this normal form is unique for several classes of process
trees.

Notice that we defined the order of children for commutative process tree operators
to be irrelevant, e.g. �pa, bq � �pb, aq and 	pa, b, cq � 	pa, c, bq � 	pb, a, cq, and thus
rules equalising such process trees are not necessary.

Singularity Rule. The singularity rule (S) applies to all operators except 	, as a
	-node always has at least two children. By definition of the process tree operators
(Definition 2.6), a node with these operators with a single child has the same behaviour
as the child itself.

114

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

Associativity Rules. For all operators, we identified one associativity rule, except
for the loop operator which requires two associativity rules due to its asymmetric defini-
tion: one for the loop body (A	 b) and one for the redo parts (A	 r), and except for the
Ø operator, which is not associative.

We briefly discuss why some seemingly obvious associativity rules are missing from
Definition 5.1. An absent and invalid rule would be a rule that reduces nested loops in
redo parts, i.e.

	pM, . . .1 ,	p. . .2qq��ñ 	pM, . . .1 , . . .2q

This rule would not preserve language, e.g. the following example shows two trees with
a different language, as witnessed by two example traces:

M17 � 	pa, b, cq ((((
((((

(
xa, b, c, b, ay P LpM17q xa, c, ay P LpM17q

M18 � 	pa,	pb, cqq xa, b, c, b, ay P LpM18q ((((
((((xa, c, ay P LpM18q

Furthermore, the associativity rules do not apply to the Ø operator, i.e.

Øp. . .1Øp. . .2qq��ñØp. . .1 , . . .2q

as witnessed by the following counterexample:

M19 � ØpØpa, bq, cq ((((
((((xa, c, by P LpM19q xb, a, cy P LpM19q

M20 � Øpa,Øpb, cq xa, c, by P LpM20q (((
((((

(
xb, a, cy P LpM20q

M21 � Øpa, b, cq xa, c, by P LpM21q xb, a, cy P LpM21q

τ-Reduction Rules. Given the unobservable nature of the τ , we identified several
reduction rules targeting this construct. For instance, a τ as a child of an � is redundant
if another child of the � can already produce the empty trace (rule T�). Under Ñ, ^
and Ø-operators, τ leafs do not change the language (rules TÑ, T^, TØ). A τ as a
child of an _-node enables the _-node to produce the empty trace, which we reduce to
�pτ,_p. . .qq (T_, T_,�). These two rules illustrate the aim of our τ -reduction rules:
to minimise the number of τ leafs in a tree and to make the empty trace explicit. For
instance, we consider �pτ,_pa, bqq to be more elegant than _p�pτ, aq,�pτ, bqq. In specific
discovery algorithms, which will be described in Chapter 6, τ leafs will be detected using a
base case (as introduced in Chapter 4). Denoting empty traces explicitly allows discovery
algorithms to do this. Furthermore, our conformance checking framework, which will be
described in Chapter 7, will use these rules to achieve a speedup.

We identified three 	 reduction rules to deal with τ leafs: the first one (T	 b) re-
moves τ children from the loop body. This makes the empty trace explicit, which eases
rediscovery and ensures discovery does not have to consider 	pτ, . . .q. The P in this rule
(such that LpP q � tεu) ensures termination in combination with rules S and T�:

	pτ, τq��
�T	 b

ùùùñ �pτ,	p�pτq, τqq S
ùñ �pτ,	pτ, τqq

T�
ùùñ 	pτ, τq

As the redo-parts of a loop are defined using �-semantics, the T	 r rule corresponds to
the T� rule. Finally, T	 br covers the base case 	pτ, τq which has the same language as
τ .

115

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

^-Relation Rules. The final set of reduction rules establishes the connection be-
tween the concurrent-like operators ^,Ø and _. Rule CØ establishes that if all children
have languages of at most one event, executing them concurrently or interleaved does
not matter. (In Section 5.7, we will explore alternative semantics in which execution of
activities take time, thus invalidating this rule.) Rule C_ establishes the relation between
_ and ^: _ expresses that at least one of its children must be executed. Therefore, if
two children of a ^-node can be skipped, we consider them to be in an _-relation that
can be skipped. For instance:

^p�pτ, aq,�pτ, bqq
rule C_
ùùùùùñ^p_p�pτ, aq,�pτ, bqqq

rule S
ùùùñ_p�pτ, aq,�pτ, bqq

rule T_,� 2 times
ùùùùùùùùùùùñ�pτ,�pτ,_p�paq,�pbqqqq

rule T�
ùùùùùñ�pτ,�p_p�paq,�pbqqqq

rule S 3 times
ùùùùùùùùñ�pτ,_pa, bqq

Wrap up. In the remainder of this thesis, we will often use some properties of reduced
process trees, that directly follow from exhaustively applying the reduction rules:

Corollary 5.2 (Properties of reduced trees). For all subtrees `pM1, . . . ,Mnq in a reduced
tree, it holds that

• n ¥ 2;

• If ` P t�,Ñ,^,_u, then no direct child is of the same operator: @1¤i¤n Mi �
`p. . .q;

• If ` � 	, then M1 is not a 	 and any non-first child is not an �: @2¤i¤n Mi �
�p. . .q.

• If ` � Ø, then for at least one Mi, it holds that DtPLpMiq |t| ¡ 1.

• τ leafs appear only as children of �-nodes or as non-first children of 	-nodes.

The aim of this set of reduction rules is twofold: it should establish a one to one
relationship between syntax and semantics of process trees in normal form, i.e. any two
different process trees in normal form have different languages (the process trees are
language unique). Furthermore, it should establish the same one to one relation between
languages/process trees and behavioural abstractions. Then, discovery algorithms can
use these behavioural abstractions and provide guarantees.

In the remainder of this chapter, we will first prove that the set of reduction rules
always leads to a normal form. Second, we will study several abstractions and show for
which classes of process trees they provide language uniqueness.

The current set of reduction rules does not fulfill this aim completely, i.e. the rules
are too weak to reduce all language equivalent trees completely. For instance, for the
following pairs of trees, both trees have the same language (same semantics), are both in

116

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

M

MA MB

M 1

A B

Figure 5.1: Local confluency: if from a treeM two reduction rules are possible
(A and B), then there are sequences of reduction rules possible that converge
into an M 1.

normal form but are not equivalent (same semantics, different syntax):

	pÑp�pτ, aq,	pb, τqq, τq future work
ðùùùùùñ 	pÑp�pτ, aq, bq, τq

^pa, aq
future work
ðùùùùùñ Ñpa, aq

�pa, aq
future work
ðùùùùùñ a

�pÑpa, bq,Ñpb, aqq
future work
ðùùùùùñ ^pa, bq

The core challenge of the first pair of trees is that a loop has a τ as a non-first child, while
in the second and third pair the challenge is that an activity appears more than once.
There might be further reduction rules to equalise these trees, however such rules would
need to target several layers deep, or instead of structural use language-based left-hand
sides. For now, this remains future work.

Future work 5.3: Extend reduction rules to reduce trees with τ leafs as non-first
children and duplicate activities.

5.1.2 Canonicity of the Reduction Rules
Using these structural reduction rules for process trees, we show that the repeated ap-
plication results in a process tree that is unique, i.e. the order in which the rules are
applied is irrelevant (canonicity). We do this by first showing that for every process tree,
the repeated application of these rules is terminating, i.e. at some point no further rules
can be applied (Lemma 5.4). Second, in Lemma 5.5 we show that if two rules (A and
B) both apply to a process tree M and yield two different trees (MA and MB), then
there is a sequence of reduction rules to make them equal again, i.e. that the rules are
locally confluent. Figure 5.1 illustrates local confluency. From these two properties and
Newman’s Lemma [126], canonicity follows. In the sections thereafter, we consider to
what extent this normal form can be used to distinguish the languages of process trees.

Lemma 5.4 (Termination of repeated reduction rules application). Repeated application
of the reduction rules of Definition 5.1 is terminating.

117

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

Proof. We prove termination by first defining a set of functions that count certain re-
dundancies in a process tree M . The weighted combination of these functions yields
an expression that evaluates to a natural number for each process tree. The weighing
depends on the process tree at hand, as a rule application might decrease some functions,
but increase others. Second, we show that for each process tree there exists a weighing
that decreases monotonically with each rule application. From this, termination of rule
applications follows.

• Let LBEpMq be the number of 	 nodes M 1 of M such that the loop body of M 1

can produce the empty trace:

LBE � |	pM1, . . .q such that ε P LpM1q|

An upper bound for LBE is the number of nodes in the tree.

• Let D`pMq denote the number of times a node M 1 � `p. . .q has a direct parent
`. For instance, D�p�p�p�paqqqq is 2. An upper bound for D` regardless of ` is
the number of nodes in the tree.

• Let T_pMq denote the number of times a child M 1 � _ has an (in)direct τ child,
e.g. T_p_p_pτ, τqqq is 4. An upper bound for T_ is n2, in which n is the number
of nodes in the tree.

• Finally, let N denote the number of nodes in a process tree.

Table 5.1 shows how applying each reduction rule influences these functions. Notice that
not all functions are monotonically decreasing with each rule application, however the
function LBEpMq�k5�D^pMq�k

4�D_pMq�k
3�T_pMq�k�NpMq is for a sufficiently

high k, i.e. such that in each rule application, k ¥ NpMq. Therefore, for each process
tree there exists a function that decreases with each application of a rule. Hence, the
reduction rules are terminating.

Lemma 5.5 (Reduction rules are locally confluent). The reduction rules of Definition 5.1
are locally confluent.

Proof. We prove local confluency for each pair of rules of which the left sides overlap, i.e.
we prove that after applying one of the rules, the effect can be made equal to applying
the other. Table 5.2 shows the left sides of which rules overlap.

Many pairs of rules of which the left sides overlap can be applied independently, i.e.
if rule a was applicable before applying b, it is still applicable after applying b (and the
other way around). These rule pairs have been denoted in Table 5.2 with I. Left to prove:
the remaining rule pairs (+ in the table) are locally confluent.

S Rule S and T_,� overlap if . . .1 in Rule T_,� is empty. If Rule T_,� is applied
first, then the result of Rule S can be reached by applying rules S and A�. A
similar argument holds for Rule CØ, which overlaps if n � 1.

A� This rule overlaps with Rule A	 r if . . .2 contains an �. In case Rule A	 r is
applied first, Rule A	 r should be applied a second time to obtain the same effect
as applying Rule A�.

A_ This rule overlaps with Rule T_,�, if either . . .1 in the left hand side of A_ is the
left hand side of T_,�, or the other way round. Both rule applications let the
�pτ, . . .q appear in a different position. Applying rules T�, S and T_,� repeatedly
yields an equivalent result. A similar argument holds for Rule T_.

118

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

Table 5.1: Termination of reduction rules. A row denotes, for a reduction
rule, the changes in the values of the functions used in the proof of Lemma 5.4
when applying the rule. n is bounded by the number of nodes in the tree.

LBE DØ D^ D_ T_ N
S � �1{ � �1{ � �1{ � � �1
A� � � � � � �1
AÑ � � � � � �1
A^ � � �1 � � �1
A_ � � � �1 �n �1
A	 b � � � � � �1
A	 r � � � � � �1
T_ � � � �1 �1 �1
T_,� � � � � �1 �1
T	 b �1 � � � �n{ � �3
T	 r � � � � �1{ � �1
T	 br �1 � � � �1{ � �2
CØ � �n �n � � �
C_ � � �1 �2 �n �1

A	 r This rule overlaps with Rule T	 b, if . . . of the latter contains an � child. Applying
Rule T	 b followed by Rule A� yields the same result as first applying Rule A	 r

followed by Rule T	 b.

T� This rule overlaps with Rule T_,� if . . .2 of the latter contains a Q. Applying T�

yields the same results as applying rules T_,�, T� and S.

T^ This rule overlaps with Rule C_ if one of the Q’s is a τ . Applying rules C_, T_

and S yields the same result as applying Rule T^.

TØ This rule overlaps with Rule CØ. However, Rule T^ provides local confluence in
a single step.

T	 b This rule overlaps with Rule T	 r. However, Rule T� provides local confluence in
a single step.

C_ This rule overlaps with itself, but Rule A_ provides local confluence.

Hence, the reduction rules of Definition 5.1 are locally confluent.

Newman’s Lemma [126] states that a set of reduction rules (a system of rewriting
rules) that is locally confluent and terminating is confluent, thus our reduction rules are
confluent and thus canonical.

Corollary 5.6 (Normal form is canonical). By Lemma 5.5, Lemma 5.4 and Newman’s
Lemma [126], the reduction rules of Definition 5.1 are confluent. Therefore, the normal
form is canonical.

This means that the end result of applying the reduction rules exhaustively does not
depend on the order in which these rules are applied, i.e. the same end result (normal
form) will be reached. In the next sections, we will prove that this normal form is

119

5

A
b
st
ra
ct
io
n
s

5.1 A Canonical Normal Form for Process Trees

Table 5.2: Overlapping rules. - denotes that the two rules cannot be applied
to the same nodes in any tree; I denotes that the left sides might overlap, but
execution is independent; + denotes that the rules might apply to the same
nodes.

SA�AÑA^A_A	 bA	 r T�TÑT^TØT_T_,�T	 bT	 rT	 br CØC_

S - I I I I - I - - - - - + - - - + -
A� I - - - - + I - - - - I - - - - -
AÑ I - - - - - I - - - - - - - - -
A^ I - - - - - I - - - - - - - I
A_ I - - - - - - + + - - - - -
A	 b I - - - - - - - - I - - -
A	 r - - - - - - - + I - - -
T� I - - - - + - - - - -
TÑ I - - - - - - - - -
T^ I - - - - - - - +
TØ I - - - - - + -
T_ I + - - - - -
T_,� I - - - - -
T	 b I + - - -
T	 r I - - -
T	 br - - -
CØ - -
C_ +

120

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

language unique, i.e. each process tree in normal form has a unique language, for several
classes of process trees. Language uniqueness will be proven by taking an abstraction,
e.g. directly follows graphs, and proving that the abstraction is unique for each normal
form.

5.2 Language Uniqueness with Directly Follows
Graphs

A first abstraction that we discuss is the directly follows graph, which was introduced in
Section 2.4, and which is used by many process discovery algorithms [167, 79, 134]. A
directly follows graph is an abstraction of a language, and thus also an abstraction of the
behaviour of a process tree.

In this section, we study the expressive power of directly follows graphs to represent
the behaviour of process trees, with the aim of showing that a different structure (in
normal form) implies different behaviour. Studying this property clarifies the boundary
of directly follows based discovery algorithms: if we cannot distinguish the language of
two process trees via their directly follows graphs, then no directly follows based algorithm
can be expected to discover the correct model of these two.

Therefore, we first introduce a basic class of process trees (Cb) that, as we will prove
later, can be uniquely identified by directly follows graphs. We characterise this class by
limiting certain nestings of operators, and illustrate the need for these limitations using
some counterexamples: trees with different languages but equivalent directly follows
graphs. In this section, we limit ourselves to process tree structures that correspond to
free choice structures, as these are supported by many discovery algorithms, such as α
and its derivatives, Heuristic Miner (HM) and Fodina (FO). In later sections, we will
weaken some requirements further.

The class of process trees is described in Section 5.2.1. Second, the footprints of
process tree operators in directly follows graphs are discussed in Section 5.2.2. Finally,
in Section 5.2.3 we prove that these footprints are distinctive enough to distinguish all
language-different trees of Cb.

5.2.1 A Class of Trees: Cb

The class of process trees for which we will prove language uniqueness is given below.
After the class, we illustrate the necessity of the requirements with some counterexamples.

Definition 5.7 (Class Cb). Let M be a process tree. Then M belongs to Cb if for each
reduced (sub)tree M 1 of M , it holds that

Cb.1 The subtree is not a silent activity:
M 1 � τ

Cb.2 No activity appears in two children of the subtree:
M 1 � `pM 1

1, . . .M
1
nq : @1¤i j¤n ΣpM 1

iq X ΣpM 1
jq � H

with ` P t�,Ñ,^,_,	,Øu
Cb.3 The body of a loop has disjoint start and end activities:

M 1 � 	pM 1
1, . . .M

1
nq : StartpM 1

1q X EndpM 1
1q � H

Cb.4 The subtree is not interleaved:
M 1 � Øp. . .q

121

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

M22 � 	pa, aq
M23 � Ñpa, aq

(a) Language-different process trees.

a

(b) �pM22q ��pM23q

Figure 5.2: A counterexample for duplicate activities.

Cb.5 The subtree is not an inclusive choice:
M 1 � _p. . .q

Next, we illustrate each requirement by giving some weaker constraints and coun-
terexamples why those weaker constraints do not suffice. Notice that in later sections,
we will show that some requirements can be relaxed, but in this section, we limit our-
selves to the process tree operators that correspond to free-choice structures, which form
the boundary of many discovery algorithms.

• Requirement Cb.1: no silent activities. Silent activities, i.e. τ leafs, are invisible to
execution: they bring the system in a new state without directly visible effects. A
counterexample are the trees ^

ba

and ^

�

bτ

a

, which have the same directly follows

graph but not the same language: a b . We will study the influence of τ
on directly follows graphs in more detail and we will increase the class of trees that
can be identified in Section 5.6. We added this requirement here as most directly
follows based algorithms do not support the τ .

• Requirement Cb.2: no duplicate activities. This restriction follows directly from
the use of directly follows graphs: each activity is represented by one node in
the graph. For instance, Figure 5.2 shows two trees that do not have the same
language, but for which the directly follows graphs are identical.

• Requirement Cb.3: disjoint start and end activities for loops. Figure 5.3 shows
a counterexample, i.e. the two trees do not have the same language, both violate
Requirement Cb.3 and have the same directly follows graph. Therefore, directly
follows-based algorithms will not be able to distinguish these trees. This overlap
is caused by the presence of loops of which the start and end activities overlap:
StartpM24q � EndpM24q � StartpM25q � EndpM25q � ta, cu. This requirement
has some similarity with the so-called short loops of the α algorithm [4].
A weaker constraint one could consider is that at least one child of the loop should
have disjoint start and end activities: M 1 � 	pM 1

1, . . .M
1
nq : D1¤i¤n StartpM 1

iq X
EndpM 1

iq � H. This constraint would allow both M26 and M27 (see Figure 5.4),
i.e. c can be in the redo of the inner or outer 	-node. These trees have the same
directly follows graph and both adhere to the weaker constraint. However, they do
not have the same language (e.g. xa, b, c, a, b, dy is in LpM26q but not in LpM27q),
thus the weaker constraint is not strong enough.

122

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

M24 � ^

	

dc

	

ba

M25 � 	

^

db

^

ca

(a) Language-different process trees.

a b

c d

(b) �pM24q ��pM25q

Figure 5.3: A counterexample for 	 having overlapping start and end activi-
ties.

M26 � 	

Ñ

fe

^

d	

cÑ

ba

M27 � 	

cÑ

fe

^

dÑ

ba

(a) Language-different process trees.

a b

c

de

f

(b) �pM26q ��pM27q

Figure 5.4: A counterexample that a weaker constraint could not replace
Requirement Cb.3.

123

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

M28 � Ø

Ñ

dc

ba

M29 � Ø

Ø

Ñ

dc

b

a

(a) Language-different process trees.

a
b

c
d

(b) �pM28q ��pM29q

Figure 5.5: A counterexample for interleaved operators.

M30 � _

cba

M31 � ^

cba

(a) Language-different process trees.

a

b

c

(b) �pM30q ��pM31q

Figure 5.6: Counterexample for inclusive choice operators.

• Requirement Cb.4: no interleaved operators. Figure 5.5 contains a counterexample:
the two trees in normal form do not have the same language, e.g. xb, a, c, dy is in
LpM28q but not in LpM29q, but have the same directly follows graph.
A property of the interleaved operator is that its children can be executed only
once. Furthermore, it describes that the execution of its children cannot overlap.
Both of these properties cannot be verified using a directly follows graph: executing
a child a second time will not add edges to the graph, neither as executing a nested
child in between (as in Figure 5.5).
In Section 5.4, we study this operator in more detail, weaken this requirement and
prove that the directly follows graph can distinguish some interleaved operators.
However, the interleaved operator brings process trees outside the class of free
choice Petri nets, thus in the remainder of this section, we do not consider it.

• Requirement Cb.5: no inclusive choice operators. Figure 5.6 shows a directly
follows graph of _pa, b, cq. However, the tree ^pa, b, cq has the same directly follows
graph, just as _pa,^pb, cqq, ^pa,_pa, bqq and so on. In Section 5.6 we discuss this
in more detail.

Even though the requirements might seem rather restrictive, they describe a lower
bound, i.e. there might be more process trees which normal form can be uniquely iden-
tified by its directly follows graph. For instance, the process tree 	pa, bq has a directly
follows graph that uniquely identifies it. However, we chose to limit ourselves to process
trees that can be arbitrarily nested: the tree 	pa, bq in isolation has a directly follows
graph that is unique to it, but this does not hold if this tree is nested, e.g. ^p	pa, bq, cq

124

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

has the same directly follows graph as ^p	pc, bq, aq but not the same language. In future
research, we intend to study such non-arbitrarily nestable trees and extend the classes of
process trees for which the directly follows graph is distinguishable to include them.

Future work 5.8: Extend Cb with non-arbitrarily nestable trees.

In the next sections, we prove that the directly follows graph uniquely determines
the normal form for process trees of Cb.

5.2.2 Footprints
In the previous sections, we introduced a set of reduction rules and proved that these
lead to a single normal form, and we introduced a class of process trees. We will prove
that the directly follows graph can distinguish all languages that can be represented by
this class of process trees. This proof will be given in Section 5.2.3 and will use a set of
characteristics (footprints) for each process tree operator. In this section, we introduce
these footprints.

Earlier, we defined the language of a process tree as the language defined by its root
operator applied to the languages of its children. Here, we follow the same structure to
investigate the influence of the root operator on the directly follows graph. The footprints
introduced here are also a key part of the cut detection in the discovery algorithms that
will be presented in Chapter 6. That is, these algorithms will search for these footprints
in the directly follows graph of an event log.

A tuple p`,Σ1, . . .Σmq that adheres to the `-footprint is an `-cut, for instance
p�,ΣpM1q, . . .ΣpMmqq is an exclusive choice cut. In a non-trivial cut, m ¡ 1 and no
Σi is empty. We first define the footprints as patterns in directly follows relations, after
which we establish their relationship with the process tree operators.

Definition 5.9 (directly follows footprints). Let� be a directly follows relation, let Start
be the start activities of�, let End be the end activities of� and let c � p`,Σ1, . . .Σnq be
a cut, consisting of a process tree operator ` P t�,Ñ,^,	u and a partition of activities
with parts Σ1 . . .Σn such that Σp�q �

�
1¤i¤n Σi and @1¤i j¤n Σi X Σj � H.

• Exclusive choice: c is an exclusive choice cut if ` � � and

�.1 No part is connected to any other part:
@1¤i¤n,1¤j¤n,i�j @aPΣi,bPΣj a �� b^ b �� a

Σ1 Σ2
. . . Σn

• Sequential. c is a sequence cut if ` � Ñ and

Ñ.1 Each node in a part is indirectly and only connected to all nodes in the parts
“after" it:
@1¤i j¤n @aPΣi,bPΣj a��b^ b ���a

Σ1 Σ2
. . . Σn

125

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

• Concurrent. c is a concurrent cut if ` � ^ and

^.1 Each part contains a start and an end activity:
@1¤i¤n StartXΣi � H^ EndXΣi � H

^.2 All parts are fully interconnected:
@1¤i n,1¤j¤n,i�j @aPΣi,bPΣj a� b^ b� a

Σ1

Σ2

. . . Σn

• Loop. c is a loop cut if ` � 	 and

	.1 All start and end activities are in the body (i.e. the first) part:
StartYEnd � Σ1

	.2 Only start/end activities in the body part have connections from/to other parts:
@2¤j¤n @aPΣ1,bPΣj a� bñ a P End
@2¤j¤n @aPΣ1,bPΣj b� añ a P Start

	.3 Redo parts have no connections to other redo parts:
@2¤i¤n,2¤j¤n,i�j @aPΣi,bPΣj a �� b^ b �� a

	.4 If an activity from a redo part has a connection to/from the body part, then it
has connections to/from all start/end activities:
@2¤i¤n @aPStart,bPΣi b� aô @cPStart b� c
@2¤i¤n @aPEnd,bPΣi a� bô @cPEnd c� b

Σ1

Σ2

. . .

Σn

An inspection of the semantics of the process tree operators (Definition 2.6) reveals
that these footprints are indeed present in directly follows graphs of process trees.

Lemma 5.10 (Directly follows footprints). Let M � `pM1, . . .Mmq be a process tree
without duplicate activities (Requirement Cb.2), with ` P t�,Ñ,^,	u. Then, the foot-
prints of Definition 5.9 hold, i.e. �pMq contains the footprint of the cut p`, ΣpM1q,
. . .ΣpMnqq.

126

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

5.2.3 Language Uniqueness
Using the reduction rules and the restrictions mentioned earlier, we prove that no two
reduced trees have equal languages, unless they are syntactically equal (notice that we
do not consider the order of children of commutative operators for equivalence). We do
this by proving that if there is a syntactical difference somewhere in the trees, then their
directly follows graphs must differ, and consequently their language. For readability, the
proof is split in three parts: we first prove this for operators, then for activity partitions
(i.e. the division of activities over children), and finally prove the main result.

Lemma 5.11 (Operators are mutually exclusive). Take two reduced process trees of Cb

K � `pK1, . . .Knq and M � bpM1, . . .Mmq such that ` � b. Then LpKq � LpMq.

Proof. Towards contradiction, assume that LpKq � LpMq. Then, �pKq � �pMq.
By Corollary 5.2, n ¥ 2 and m ¥ 2. Perform case distinction on ` to prove that
�pKq ��pMq or LpKq � LpMq.

` � � By semantics of the � operator and the reduction rules, there exist at least n
unconnected parts in �pKq (see Lemma 5.10). As b � � and by the semantics of
the other operators, �pMq is connected, so �pKq ��pMq.

` � Ñ By semantics of the the Ñ operator, �pKq is a chain of at least n clusters (see
Lemma 5.10). As b � Ñ and by the semantics of the other operators, �pMq is
not a chain, so �pKq ��pMq.

` � ^ By semantics of the ^ operator, �pKq consists of at least n fully interconnected
clusters (see Lemma 5.10). Perform case distinction on the (due to symmetry)
remaining cases of b:

b � 	 We try to construct a concurrent cut p^,Σ1, . . .Σpq forM . Take an activity
a P StartpM1q. By Requirement Cb.3, a R EndpM1q. Take an activity b P
ΣpMqzΣpM1q. Then, by semantics of 	, a �� b and by Requirement ^.2, a and
b are part of the same Σ in the cut we are constructing, e.g. Σ1. This holds
for all a and b, thus ΣpMq � Σ1. Hence, there is no non-trivial concurrent
cut, and �pKq ��pMq.

Obviously, these arguments are symmetric in ` and b, so we conclude that �pKq �
�pMq. As directly follows graphs are defined based on languages, one language obviously
has one directly follows graph. Hence, LpKq � LpMq, which is a contradiction.

To provide some intuition about the interplay of the reduction rules and the restric-
tions imposed by Cb, consider the process trees denoted in Figure 5.7. Trees M33 and
M34 have the same language, and indeed,M34 can be reduced toM33 using the reduction
rules of Definition 5.1. However, even though the language of M33 and M34 differs from
the language of M32, all three process trees have the same directly follows graph (Fig-
ure 5.7). Hence, no directly follows based algorithm can distinguish them: for the IM
framework, it is not decidable whether the root operator should be ^ or 	. This issue
is (formally) solved by Cb, which puts these trees outside the scope being considered. In
Section 5.5, we will show what information could be used to discriminate these trees.

Lemma 5.12 (Partitions are mutually exclusive). Take two reduced process trees of Cb

K � `pK1 . . .Knq and M � `pM1 . . .Mmq such that their activity partition is different,
i.e. there is a w such that 1 ¤ w ¤ minpn,mq and ΣpKwq � ΣpMwq. Then, LpKq �
LpMq.

127

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

M32 � ^

	

dc

	

ba

M33 � 	

^

db

^

ca

M34 � 	

Ø

db

Ø

ca

(a) Language-different process trees.

a b

c d

(b) �pM32q ��pM33q ��pM35q

M35 � 	

d^

Ñ

cb

a

M36 � ^

	

dÑ

cb

a

(c) Language-different process trees.

a b

c d

(d) �pM35q ��pM36q

Figure 5.7: Counterexamples for Lemma 5.11 on trees not in Cb.

Proof. Without loss of generality, we assume that children of the commutative operators
(Ñ,) have a fixed order. Towards contradiction, assume that�pKq ��pMq. Perform
case distinction on ` (the case for K and M swapped is symmetric):

` � � Take a pair of activities a, b such that a P ΣpKxq, a P ΣpMyq, b P ΣpKxq and
b R ΣpMyq (choose x and y as desired). Obviously, if the activity partitions of K
and M are different such a pair exists. By Corollary 5.2, no child K1 . . .Kn is an
exclusive-choice subtree itself, and by semantics of the other operators there is an
undirected path in�pKq, i.e. a! b in�pKq. However, as a P ΣpMyq^b R ΣpMyq,
a �! b in �pMq. Hence, �pKq ��pMq.

` � Ñ Take a P ΣpKiq and b P ΣpKjq such that i j. Then by the Ñ-cut, a��b ^
b ���a. By Corollary 5.2, all children of K and M are not Ñ-nodes themselves,
thus, by the semantics of the other operators (� is unconnected, ^ and 	 are
strongly connected), either a �� b or b��a. Then, a P ΣpMxq ^ b P ΣpMyq with
x y. This holds for all such a and b, hence @1¤i¤n�m ΣpKiq � ΣpMiq, which
contradicts the initial assumption.

` � ^ To prove the equality of the activity partitions, we consider two symmetrical
directions: a) if two activities are in the same Σi in K, then they are in the same
Σi in M . b) if two activities are in the same Σi in M , then they are in the same
Σi in K.
Consider a child Mx. Perform case distinction on the structure of Mx:

Mx � a A single activity cannot be split. Therefore, ΣpKxq �
ΣpMxq.

Mx � �pMx1 , . . .Mxpq Take two activities a P ΣpMx1q and b P ΣpMx2q. By
semantics of �, a �� b. Thus, in a concurrent cut, a and b should be part
of the same Σ. This holds for all such activities of all children of Mx, thus
ΣpKxq � ΣpMxq.

128

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

Mx � ÑpMx1 , . . .Mxpq Similar, using that either a �� b or b �� a.

Mx � ^pMx1 , . . .Mxpq Excluded by the reduction rules.

Mx � 	pMx1 , . . .Mxpq By Cb, there is at least one childMxi such that StartpMxiq
X EndpMxiq � H. Take such a Mxi and an a from ΣpMxiq. Furthermore,
take b from any other child. There are three cases for a: a R StartpMxiq,
a R EndpMxiq or both. For all these three cases, a �� b _ b �� a. Thus, by
argumentation similar to the � case, ΣpKxq � ΣpMxq.

Hence, ΣpKxq � ΣpMxq. This holds for all ΣpMxq and by symmetry for all ΣpKxq.
Hence, @1¤i¤n ΣpKiq � ΣpMiq, which contradicts the initial assumption.

` � 	 Consider ΣpKiq for some 2 ¤ i ¤ n. By Corollary 5.2, Ki is of the form �p. . .q.
By semantics of the other operators, for all a, b P ΣpKiq, there exists an undirected
path a! b in �pKq, such that all activities on this undirected path are in Ki.
Between all the activities on this path, there exists a connection in �pKiq, and
none of the activities on this path is in StartpKq or EndpKq. By Lemma 5.10, in
a non-trivial loop cut, (without loss of generality) ΣpKiq � ΣpMiq.
Let K1 � bpK11 , . . .K1pq. Perform case distinction on b:

b � � Take a child K1i . By the reduction rules, this child is not an �. For all
activities a P StartpK1iq, b P EndpK1iq, there exist a directed path a��b,
such that this path is completely in ΣpK1iq. Furthermore, take an activity
c P EndpK1j�iq. By semantics of �, c has no directly follows connection to
any node on the path. Towards contradiction, assume there’s a first node d
on the path R ΣpM1q. Then, by semantics of 	, there should be a connection
c� d. This holds for all activities d and children i, so ΣpK1q � ΣpM1q.

b � Ñ Similar to the �-case.

b � ^ StartpKq Y EndpKq � ΣpM1q, thus we only need to consider non-start
non-end activities. Take such an activity a in child K1i , and take an activity
b P EndpK1j�iq. By semantics of ^, a� b; by Cb, b R StartpK1q; thus by
Lemma 5.10, a P ΣpM1q. This holds for all a, so ΣpK1q � ΣpM1q.

b � 	 Excluded by the reduction rules.

By contradiction, we conclude LpKq � LpMq.

Additional examples showing the necessity of the restrictions of Cb are given in
Figure 5.8, e.g. treesM37 andM38 do not have the same language, but share their directly
follows graph. In this example, IM cannot decide between the cuts p^, ta, bu, tcuq (blue
dotted line) and p^, tb, cu, tauq (red dashed line). In Section 5.5, we will show what
information could be used to discriminate these trees.

Lemma 5.13 (Language uniqueness for Cb). For trees of class Cb, the normal form of
Definition 5.1 is language unique.

Proof. Towards contradiction, assume that there exist two reduced process trees K and
M , both of Cb, such that LpKq � LpMq, but K �M . Then there exist topmost subtrees
K 1 in K and M 1 in M such that LpK 1q � LpM 1q and such that K 1, M 1 are structurally
different in their activity, operator or activity partition, i.e. either

• K 1 or M 1 is a τ while the other is not. Then obviously their language cannot be
equivalent.

129

5

A
b
st
ra
ct
io
n
s

5.2 Language Uniqueness with Directly Follows Graphs

M37 � ^

c	

ba

M38 � ^

a	

bc

(a) Language-different process trees.

a

b

c

(b) �pM37q ��pM38q.

M39 � Ø

Ñ

dc

^

ba

M40 � Ø

Ñ

dc

ba

(c) Language-different process trees.

a b

cd

(d) �pM39q ��pM40q.

M41 � ^

Ø

^

Ñ

ed

c

b

a

M42 � ^

Ø

Ñ

ed

b

ca

(e) Language-different process trees.

a
b

c

d

e

(f) �pM41q ��pM42q.

Figure 5.8: Examples showing that Lemma 5.12 might not hold for trees not
in Cb: these trees have different languages but the same directly follows graph.

130

5

A
b
st
ra
ct
io
n
s

5.3 Language Uniqueness with Activity Relations

• K 1 or M 1 is a single activity while the other is not. Then, by the restrictions of
Cb, their language cannot be equivalent.

• K 1 � bpK 1
1 . . .K

1
nq and M 1 � `pM 1

1 . . .M
1
nq such that ` � b. By Lemma 5.11,

LpK 1q � LpM 1q.

• K 1 � `pK 1
1 . . .K

1
nq and M 1 � `pM 1

1 . . .M
1
nq such that the activity partition is

different, i.e. there is an i such that ΣpK 1
iq � ΣpM 1

iq. By Lemma 5.12, LpK 1q �
LpM 1q.

Hence, there cannot exists such K and M and therefore the reduction rules yield a
language unique normal form.

Lemmas 5.11, 5.12 and 5.13 were all proven using directly follows graphs as inter-
mediate steps, i.e. we proved that if there is a structural difference between two process
trees, then their directly follows graphs are different as well. Consequently, we concluded
that their languages must be different as well. However, from this intermediate result,
we derive:

Corollary 5.14 (Directly follows graph uniqueness). There are no two different reduced
process trees of Cb with equal directly follows graphs.

This result can easily be extended to other process tree operators, as witnessed by
the addition of the Ø operator, which was not present in [88] and which will be added
in Section 5.4.

5.3 Language Uniqueness with Activity Relations

The previous section studied the effect of process tree operators on the directly follows
graph globally. Besides global influence, the process tree operators have local influence
on pairs of activities as well. In this section, we study this influence and use it to define
relations between pairs of activities, and we also prove that this local information on
its own suffices to distinguish the same class of models (Cb) as the global footprints.
Later, we will exploit this fact when the information in an event log is not complete
and hence global information is incomplete (Section 6.3). There, we will see that we can
use some statistics on partially complete local information about behaviour to infer the
missing local information about the behaviour of a system. This will allow us to discover
complete models from event logs with very few traces.

The local information in this section is derived from the directly follows relation
�. Using this relation and its transitive closure ��, we first identify 9 cases (activity
relations) that correspond to the 4 basic process tree operators used in Section 5.2. The
combination of the activity relations between all pairs of activities in a language is an
abstraction. Second, we show that this abstraction is language unique for the class of
process trees Cb, i.e. two different reduced trees in Cb have different activity relations.

5.3.1 Activity Relations
The most basic behavioural information between two activities is given by the directly
follows relation� and its transitive closure��. � and�� can be combined in nine cases.
Notice that a� b implies a��b and therefore, three possibilities exist: pa� b^ a��bq,
pa �� b^a��bq and pa �� b^a ���bq. Figure 5.9 identifies these nine cases for two activities
a and b, and organises these cases in a lattice. The structure of the lattice follows from

131

5

A
b
st
ra
ct
io
n
s

5.3 Language Uniqueness with Activity Relations

a� b b� a
a��b b��a

a� b b �� a
a��b b��a

a �� b b� a
a��b b��a

a� b b �� a
a��b b ���a

a �� b b �� a
a��b b��a

a �� b b� a
a ���b b��a

a �� b b �� a
a��b b ���a

a �� b b �� a
a ���b b��a

a �� b b �� a
a ���b b ���a

^pa, bq
^pb, aq

	spa, bq

Ñpa, bq

Ñpa, bq

	spb, aq

Ñpb, aq

Ñpb, aq

	ipa, bq
	ipb, aq

�pa, bq
�pb, aq

Figure 5.9: Activity relations; the arrows define a lattice.

� and ��: an edge in the lattice corresponds to an extension of the � or ��-relation
with one pair of activities.

We group the nine cases of the lattice into five distinct activity relations: �, ^, 	i,
Ñ and 	s. For instance, if b� a and a ���b, thenÑpa, bq, and if a��b, b��a, a �� b and
b �� a, then 	ipa, bq. Informally, �pa, bq denotes that a and b are in an exclusive choice
relation, Ñpa, bq denotes that a and b are in a sequence relation, and ^pa, bq denotes
that a and b are in a concurrent relation. These are similar to the α-relations #W , ÑW

and ‖W [17]. Furthermore, both 	ipa, bq (loop indirect) and 	spa, bq (loop single) denote
that a and b are in a loop relation. We do not group these cases, as we will need them
to distinguish the loop body and redo parts. Using these five relations, all process trees
of Cb can be distinguished.

The activity relations in the centre of the lattice (�, 	i and ^) are associative.
Therefore, we consider associative cases, for instance ^pa, bq and ^pb, aq, to be equivalent.

These five relations correspond to local footprints of process tree operators. Say that
the process tree under consideration is M � `pM1, . . .Mnq, and a and b are activities
from different children Mi and Mj . Then, the relation between a and b is determined by
the root operator `. For readability, we denote the local activity relation between a and
b as `pa, bq. This correspondence between activity relations and process tree operators
only holds for root operators. For instance, in Ñpa, bq, it holds that Ñpa, bq. However,
in 	pÑpa, bq, cq, 	spa, bq holds.

Lemma 5.15 (Loop activity relations). Let M � `pM1, . . .Mmq be a process tree from
Cb, and let a, b be activities from different ΣpMiq and ΣpMjq. Then, a` b if ` P
t�,Ñ,^u. If ` � 	, then either 	spa, bq or 	ipa, bq.

Proof. The cases �, Ñ and ^ follow from the semantics of these operators. For 	,

132

5

A
b
st
ra
ct
io
n
s

5.3 Language Uniqueness with Activity Relations

obviously for all pairs of activities, a��b and b��a, therefore either 	ipa, bq, 	spa, bq,
	spb, aq or ^pa, bq. Consider a pair of activities pu, vq such that u and v are not in the
same ΣpMiq. By Requirement Cb.3, StartpM1q X EndpM1q � H. Then, by semantics of
	, u �� v or v ��u and hence �^ pa, bq. Therefore, either 	ipa, bq, 	spa, bq, 	spb, aq.

The 	s and 	i both correspond to the 	 operator. If we combined them into a
single relation, this single relation would not give sufficient information to partition the
activities. The two relations 	s and 	i, as given by the lattice, give enough information
as will be proven in Section 5.3.3.

Let �L combine all the activity relations for a language L, i.e. for each pair of
activities, �L denotes their relation. For instance, if �

L
pa, bq then �pa, bqL � �. If L

is clear from the context, we will omit this subscript.

5.3.2 Binary Trees
The normal form of Definition 5.1 contains associativity rules for all operators of Cb:
A�, AÑ, A^, A	 b and A	 r. Therefore, even though process trees can be n-ary trees,
all process trees in Cb have language equivalent binary trees. Such binary trees are not
in normal form, i.e. one might have to apply reduction rules backwards to obtain binary
trees, but this nevertheless allows us to limit our analysis to binary trees.

A binary tree conforms to an n-ary tree if reducing the binary tree using the reduction
rules A�, AÑ, A^, A	 b and A	 r would yield the n-ary tree. Similarly, a cut conforms
to an n-ary tree if the partition of the cut corresponds to the n-ary tree:

Definition 5.16 (cut conformance). Let c � p`,Σ1, . . .Σnq be a non-trivial cut and let
M � `pM1 . . .Mmq be a process tree in normal form. Then c conforms to M if no ΣpMiq
is partitioned: @1¤i¤m D1¤j¤n ΣpMiq � Σj. Furthermore,

• if ` � Ñ, then the order of subtrees is maintained, i.e. let f : t1 . . .mu Ñ t1 . . . nu
such that @1¤i m fpiq ¤ fpi� 1q, then @1¤i¤n Σi �

�
fpjq�i ΣpMjq;

• if ` � 	, the body is preserved: ΣpM1q � Σ1.

Discovery algorithms of the IM framework can discover the language of any tree
by searching for conforming binary cuts, i.e. a cut c conforms to M if selecting c does
not disable discovery of a process tree that is language equivalent to M . For example, if
M � ÑpA,B,Cq, it is perfectly fine to discover eitherÑpA,ÑpB,Cqq orÑpÑpA,Bq, Cq.

5.3.3 Language Uniqueness
In the previous parts of this section, we have introduced an abstraction of languages:
the activity relations. A desirable property of abstractions is whether they are unique
for a large class of languages, i.e. there are no two different languages of the class with
the same abstraction. If this language uniqueness property holds for an abstraction,
process discovery algorithms can use it to distinguish the languages in the class for which
language uniqueness was proven, and will it be guaranteed that no confusion can arise
from the abstraction. In this section, we prove this for the class of languages represented
by process trees of Cb.

In the main lemma of this section, we will use a very general property of partitions
(i.e. a proper division of activities over two or more sets): any two partitions share at
least one crossing pair of activities: a pair of activities will cross a cut if both activities
are not in the same Σ.

133

5

A
b
st
ra
ct
io
n
s

5.3 Language Uniqueness with Activity Relations

Lemma 5.17 (Two cuts share a crossing edge). Take two binary partitions Σ1,Σ2 and
Σ1

1,Σ
1
2, both of the same Σ. Then there is a pair of activities pa, bq that is partitioned by

both partitions: D1¤i¤2,1¤j¤2,i�j a P Σi, b P Σj, D1¤i¤2,1¤j¤2,i�j a P Σ1
i, b P Σ1

j.

Proof. Perform case distinction on whether |Σ1 X Σ2| � 2. If both Σ1 and Σ2 consist
of a single activity, there is one pair of activities that crosses Σ1,Σ2 and this pair also
crosses Σ1

1,Σ
1
2.

Otherwise, assume without loss of generality that |Σ1| ¥ 2. Towards contradiction,
assume there is no pair that is partitioned by both Σ1,Σ2 and Σ1

1,Σ
1
2. Then, take a1, a

1
1 P

Σ1, a2 P Σ2. Pairs pa1, a2q and pa11, a2q are partitioned by Σ1,Σ2, so by assumption they
are not partitioned by Σ1

1,Σ
1
2. Thus, there is an 1 ¤ i ¤ 2 such that a1, a

1
1, a2 P Σ1

i.
As we posed no restrictions on a1 and a11, for some 1 ¤ i ¤ 2, Σ1 � Σ1

i. By symmetry,
Σ2 � Σ1

i, so Σ1 Y Σ2 � Σ1
i. Therefore, Σ1

i � Σ and hence Σ1
1,Σ

1
2 is not a partition.

In Lemma 5.13, we established the language uniqueness of the reduction rules of
Definition 5.1 and Cb. Therefore, we only need to prove that each normal form of the
class Cb has a unique set of activity relations.

Lemma 5.18 (Language uniqueness with activity relations). Take two reduced process
trees K � `pK1, . . .Knq and M � bpM1, . . .Mmq of class Cb. Then, K � M if and
only if �LpKq ��LpMq.

Proof. If K � M , then as � is a language based relation, �LpKq ��LpMq. If K � M ,
then without loss of generality, assume that either ` � b or there is a child i such that
ΣpKiq � ΣpMiq.

We first prove the ` � b case. Consider a cut p`,Σ1,Σ2q conforming to K, and
consider a cut pb,Σ1

1,Σ
1
2q conforming to M . By Lemma 5.17, a pair of activities pa, bq

exists that crosses both cuts. Then, by Lemma 5.15,�LpKqpa, bq � ` � b ��LpMqpa, bq
(abusing notation a bit by combining 	s and 	i). Hence, �LpKq ��LpMq.

Second, we prove the ΣpKiq � ΣpMiq case by proving that there is a “misclassified”
activity relation. Perform case distinction on whether ` � 	:

` � 	 As K and M are reduced and structurally different, a cut c � p`,Σ1,Σ2q exists
such that c conforms to K but not to M . As c does not conform to M , there is a
ΣpMjq that is partitioned by c: Σ1XΣpMjq � H and Σ2XΣpMjq � H. Consider
this Mj � ap. . .q, then c1 � pa,ΣpMjq X Σ1,ΣpMjq X Σ2q is a cut of Mj . Take
an arbitrary cut c2 that conforms to Mj , then by Lemma 5.17 a pair of activities
pu, vq exists that crosses both c2 and c1. As c2 conforms to Mj and ` � 	, apu, vq
holds. However, in c1, `pu, vq holds, and as K and M are reduced, a � `.

` � 	 By Requirement 	.1, StartpKqYEndpKq �� Σ1 and StartpMqYEndpMq � Σ1.
Take an activity a P ΣpKiq but a R ΣpMiq and a R StartpMiqYEndpMiq. Without
loss of generality, assume that i � 1 (the case i ¡ 1 is similar). Then, there exists
a start activity s and an activity b such that there is a �-path s! a such that s
is the only start or end activity on the path, and the entire path is in ΣpM1q. Let b
the activity on this path just before a, i.e. b� a, and therefore 	spb, aq or ^pa, bq.
If a R ΣpK1q, then by semantics of process trees b �� a and a �� b, thus 	spa, bq or
	ipa, bq. Hence, ΣpK1q � ΣpM1q.

We conclude that �pKq ��pMq and hence, there cannot exist such K and M .

The influence of the silent activity τ and the operators Ø and _ on the activity
relations has not been studied in detail yet.

134

5

A
b
st
ra
ct
io
n
s

5.4 Language Uniqueness with Interleaving

If one would introduce theØ activity relation, corresponding to theØ operator, this
relation would overlap with 	i, 	s and ^:

Øpa, bq � 	spa, bq _	ipa, bq _	spb, aq _ ^pa, bq

Furthermore, the Ø-operator is not associative, thus its activity relations are inher-
ently ambiguous:

Øpa, b, cq Øpa, bq Øpb, cq Øpa, cq
Øpa,Øpb, cqq Øpa, bq Øpb, cq Øpa, cq
ØpØpa, bq, cq Øpa, bq Øpb, cq Øpa, cq
Øpb,Øpa, cqq Øpa, bq Øpb, cq Øpa, cq

Hence, the current activity relations cannot be used to discover interleaved behaviour.
Whether this is possible remains subject of further study.

Future work 5.19: Study the influence of τ , Ø and _ on activity relations.

5.4 Language Uniqueness with Interleaving

In the previous sections, we studied the four basic process tree operators �, Ñ, ^ and
	. When a process tree of these four operators is translated to a Petri net, that net is
free-choice, unlabelled (i.e. without duplicate activities/transitions), but might contain
silent transitions. Therefore, trees of Cb have some similarities with models that can be
discovered by algorithms such as α and HM.

In this section, we add the interleaved operator Ø to the considerations. The in-
terleaved operator is similar to the concurrent operator, i.e. all its children need to be
executed. However, the interleaved operator specifies that the executions of its children
cannot overlap. For instance, consider the tree ØpÑpa, bq, cq, then once execution of the
Ñpa, bq child begins, the c child cannot begin execution until b has finished. That is,
xa, c, by is not part of the language of this model.

In a Petri net, two ways to model interleaved behaviour are to model the interleaved
children concurrently and limiting execution to one branch at the same time using a so-
called critical section place, or to model the different possible sequences explicitly (thereby
duplicating activities). Figure 5.10 shows these two strategies applied to our example
tree. Both of these strategies result in either non-free choice (critical section place) Petri
nets or nets with unlabelled transitions(duplicate activities)1, which are outside the class
of trees that can be discovered by some process discovery algorithms.

In this section, we show that interleaved behaviour can however be identified using a
directly follows graph, and that language uniqueness holds for interleaved behaviour as
well. We start with the footprint of interleaved behaviour in directly follows graphs, after
which we introduce a new class of process trees, for which we prove language uniqueness,
thereby establishing the one to one mapping of semantics and syntax of process trees
with interleaved operators.

5.4.1 Footprint
Next, we characterise the footprint that theØ-operator leaves in a directly follows graphs,
and by which this operator can be identified.

1i.e. if l in Definition 2.2 is not bijective

135

5

A
b
st
ra
ct
io
n
s

5.4 Language Uniqueness with Interleaving

a b

c

(a) Using a critical section place (in the middle).

a b c

c a b

(b) Using duplicate activities.

Figure 5.10: A tree with interleaved behaviour ØpÑpa, bq, cq translated to a
Petri net.

Definition 5.20 (directly follows footprint (Ø)). Let � be a directly follows relation,
let Start be the start activities of �, let End be the end activities of � and let c �
pØ,Σ1 . . .Σnq be a cut, consisting of an interleaved operator and a partition of activities
with parts Σ1 . . .Σn such that Σp�q �

�
1¤i¤n Σi and @1¤i j¤n Σi X Σj � H.

c is an interleaved cut if

Ø.1 Between parts, all and only connections exist from an end to a start activity:
@1¤i¤n,1¤j¤n,i�j @aPΣi,bPΣj a� bô pa P End^b P Startq

Σ1 Σ2
. . . Σn

An inspection of the semantics of the interleaved operator (Definition 5.20) reveals
that this footprint is present in directly follows graphs of process trees:

Lemma 5.21 (Directly follows footprint (Ø)). Let M � `pM1, . . .Mmq be a process
tree without duplicate activities (Requirement Cb.2) with ` P t�,Ñ,Ø,^,	u. Then, the
footprints of definitions 5.9 and 5.20 hold, i.e. �pMq contains the footprint of the cut
p`,ΣpM1q, . . .ΣpMnqq.

5.4.2 A Class of Trees: Ci

We introduce the class of process trees for which we will later prove language uniqueness.
That is, for the following class of models, we will prove that no two different trees reduced
by the rules of Definition 5.1 have equal languages. Moreover, we will prove that no two
such trees have equal directly follows graphs. In this class, interleaved operators are
allowed, if they have at least one child with disjoint start and end activities. Certain
nestings of interleaved and concurrency are disallowed.

Definition 5.22 (Ci). Let M be a process tree, and let
À
� t�,Ñ,^,	,Øu. Then M

belongs to Ci if for each reduced (sub)tree M 1 at any position in M , it holds that

Ci.1 The subtree adheres to all restrictions of Cb, however Ø-operators are allowed (Re-
quirement Cb.4 is dropped).

136

5

A
b
st
ra
ct
io
n
s

5.4 Language Uniqueness with Interleaving

M43 � Ø

e�

^

dc

^

ba

M44 � ^

e�

^

dc

^

ba

(a) Language-different process trees.

a
b

c

d

e

(b) �pM43q ��pM44q

Figure 5.11: A counterexample forØ without disjoint start and end activities:
trees having different languages but the same directly follows graph.

Ci.2 An interleaving has at least one child with disjoint start and end activities:
M 1 � ØpM 1

1, . . .M
1
nq : D1¤i¤n StartpM 1

iq X EndpM 1
iq � H

Ci.3 An interleaving has no interleaved child:
M 1 � ØpM 1

1, . . .M
1
nq : @1¤i¤n M

1
i � Øp. . .q

Ci.4 A concurrent child of an interleaving has at least one child with disjoint start and
end activities:
M 1 � ØpM 1

1, . . .^pM
1
m1
, . . .M 1

mx
q, . . .M 1

nq : D1¤i¤x StartpM 1
mi
q XEndpM 1

mi
q � H

We explain each requirement that differs from Cb:

• Requirement Ci.2: disjoint start and end activities for interleaving. Figure 5.11
shows a counterexample: the trees M43 � Ø

e�

^

dc

^

ba

and M44 � ^

e�

^

dc

^

ba

have a

different root operator and language, but have the same directly follows graph.
Specifically, activity e can be both interleaved and concurrent to the other activi-
ties.

• Requirement Ci.3: no nested interleavings. Figure 5.12 shows a counterexample,
i.e. the four trees (in which Q, R and S can be any subtrees) do not have the
same activity partition and not the same language, but share their directly follows
graph. The difference between these trees are “semi-long-dependencies”, e.g. in
M45, S cannot be executed between Q and R, and such dependencies cannot be
captured by a directly follows relation. In contrast to the ^-operator, the Ø-
operator is not associative.

• Requirement Ci.4: ^ nested underØ has at least one child with disjoint start and
end activities. Figure 5.13 shows a counterexample in which activity e witnesses
ambiguity: e can be concurrent to �pc, dq (M49) or interleaved to the rest of the
tree (M50). That is, the directly follows graph does not give enough information
to determine the location of e in the tree. We consider this restriction rather

137

5

A
b
st
ra
ct
io
n
s

5.4 Language Uniqueness with Interleaving

M45 � ØpS,ØpQ,Rqq

M46 � ØpQ,ØpR,Sqq

M47 � ØpR,ØpQ,Sqq

M48 � ØpQ,R, Sq

(a) Language-different process trees.

P

Q

R

(b) �pM45q ��pM46q ��pM47q ��pM48q

Figure 5.12: A counterexample for nestedØ: trees having different languages
but the same directly follows graph.

M49 � Ø

^

e�

dc

Ñ

ba

M50 � Ø

e�

dc

Ñ

ba

(a) Language-different process trees.

a
b

c

d

e

(b) �pM49q ��pM50q

Figure 5.13: A counterexample for nested ^ under Ø: trees having different
languages but the same directly follows graph.

inelegant as it concerns three layers of process tree operators. However, we chose
this constraint over the stronger constraint stating that all children should have
disjoint start and end activities, as that would be more restricting.

5.4.3 Language Uniqueness
Using the footprint of Lemma 5.21, in this section we establish the link between syntax
and semantics of reduced process trees of Ci. That is, we prove that there are no two
different reduced process trees having the same directly follows graph, and hence no two
such trees having the same language. The proof strategy resembles that of Section 5.2.3:
we first prove that if the root operator of two trees differs, their language differs as
well (Lemma 5.23). Second, we prove that if the activity partitions, i.e. the division of
activities over children, of two trees differs, their language differs as well (Lemma 5.24).
Finally, language uniqueness follows directly from these two lemmas.

Lemma 5.23 (Operators are mutually exclusive (with Ø)). Take two reduced process
trees of Ci K � `pK1, . . .Knq and M � bpM1, . . .Mmq such that ` � b. Then LpKq �
LpMq.

We prove the lemma by showing for each operator that the footprint of the operator
in the directly follows graph is different from the footprints of all other operators.

138

5

A
b
st
ra
ct
io
n
s

5.4 Language Uniqueness with Interleaving

Proof. Towards contradiction, assume that LpKq � LpMq. Then, �pKq � �pMq.
By Corollary 5.2, n ¥ 2 and m ¥ 2. Perform case distinction on ` to prove that
�pKq � �pMq or LpKq � LpMq, thereby leaving out cases already discussed in the
proof of Lemma 5.11.

` � � The graph�pMq is a connected component, thus this case in Lemma 5.11 holds.

` � Ñ The graph �pMq is not a chain, thus this case in Lemma 5.11 holds.

` � ^ Perform case distinction on the remaining cases of b:

b � Ø By Cb, D1¤i¤n DaPΣpMiq a R StartpMiq _ a R EndpMiq. Take such an
Mi and a. As either a R StartpMiq or a R EndpMiq, there’s no connection
to/from a to any other subtree, i.e. @1¤j¤n,j�i @bPΣpMjq b �� a _ a �� b. If
we would construct a concurrent cut p^,Σ1 . . .Σpq, then both a and all such
b’s would be in the same Σ, e.g. tau Y pΣpKqzΣpMjquq � Σ1. This holds
for all activities of StartpMiq and EndpMiq. Hence, if we would construct a
concurrent cut, all StartpKq and EndpKq activities would be part of the same
Σ. Therefore, there cannot be a non-trivial concurrent cut for K and hence,
�pKq ��pMq.

` � 	 By semantics of the ^ operator, �pKq is a single strongly connected component
(see Lemma 5.10). Perform case distinction on the remaining case of b:

b � Ø We try to construct a loop cut p	,Σ1, . . .Σnq. Consider a child Mi, and
an activity s from the start activities of another child. Moreover, consider a
path a1� a2� . . . ap such that all activities on the path are in ΣpMiq, and
a1 P StartpMiq and ap P EndpMiq. By Lemma 5.10, a1 P Σ1 ^ ap P Σ1.
Consider activity a2. If a2 P StartpMiq, then a2 P Σ1. If a2 P EndpMiq, then
a2 P Σ1. If a2 R StartpMiq ^ a2 R EndpMiq, then by the semantics of Ø,
s �� a2. If a2 would be in Σ2, as it has a connection a1� a2, by the semantics
of 	 there should be a connection s� a2. Thus, a2 P Σ1. This argument
holds for the entire path, and by construction of �pMq each activity is on
such a path, thus ΣpMiq � Σ1. This holds for all childrenMi, so there cannot
be a non-trivial loop cut. Hence, �pKq ��pMq.

Obviously, these arguments are symmetric in ` and b, so we conclude that �pKq �
�pMq, which contradicts that LpKq � LpMq.

Lemma 5.24 (Partitions are mutually exclusive (with Ø)). Take two reduced process
trees of Ci K � `pK1 . . .Knq and M � `pM1 . . .Mmq such that their activity partition
is different, i.e. there is a w such that 1 ¤ w ¤ minpn,mq and ΣpKwq � ΣpMwq. Then,
LpKq � LpMq.

Proof. Without loss of generality, we assume that children of the commutative operators
(Ñ,) have a fixed order. Towards contradiction, assume that�pKq ��pMq. Perform
case distinction on ` (the case for K and M swapped is symmetric), thereby leaving out
cases already discussed in the proof of Lemma 5.12.

` � � For a subtree Ki with Ki � Øp. . .q, �pKiq is a connected component, so this
case in Lemma 5.12 holds.

` � Ñ All children of K and M that are Ø are strongly connected components, so this
case in Lemma 5.12 holds.

` � ^ Consider a child Mx. Perform case distinction on the structure of Mx:

139

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

Mx � ØpMx1 , . . .Mxpq Similar to the 	 case.

` � 	 Let K1 � bpK11 , . . .K1pq. Perform case distinction on b:

b � Ø Similar to the �-case.

` � Ø Take a w such that ΣpKwq � ΣpMwq and let Kw � bpKw1 . . .Kwpq. Perform
case distinction on b:

b � � By semantics of �, no end activity of Kw1 has a connection to any start
activity of any other Kwj . Thus, as M contains an interleaved activity par-
tition, ΣpKwq � ΣpMwq.

b � Ñ Similar to the � case.

b � ^ By Ci, at least one child of Kw has disjoint start and end activities.
Take such a child Kwy , and consider two activities: a R StartpKwy q and
b P ΣpKwqzKwy . By semantics of^, b� a. Then, by Lemma 5.10, a P ΣpMwq
and b P ΣpMwq. This holds for all b and by symmetry for StartpKwy q Y
EndpKwy q. By semantics of Ø, non-start non-end activities only have con-
nections with start/end activities of Kw. Therefore, ΣpKwqzpStartpKwq Y
EndpKwqq � ΣpMwq. Hence, ΣpKwq � ΣpMwq.

b � 	 By semantics ofØ, non-start non-end activities only have connections with
start/end activities of Kw. Therefore, ΣpKwqzpStartpKwq Y EndpKwqq �
ΣpMwq. All activities P StartpKwq Y EndpKwq have connections from/to
EndpKw2q Y StartpKw2q, thus StartpKwq Y EndpKwq � ΣpMwq. Hence,
ΣpKwq � ΣpMwq.

b � Ø Excluded by Ci.

By contradiction, we conclude LpKq � LpMq.

Lemma 5.25 (Language uniqueness for Ci). Take two different trees of class Ci in
normal form (of Definition 5.1). Then, the languages of these two trees are different.

The proof for this lemma is similar to the proof of Lemma 5.13, using lemmas 5.23
and 5.24.

In these proofs, showed that if there is a structural difference between two process
trees, then their directly follows graphs are different as well. Consequently, we concluded
that their languages must be different as well. However, from this intermediate result,
we derive:

Corollary 5.26 (Directly follows graph uniqueness withØ). There are no two different
reduced process trees of Ci with equal directly follows graphs.

5.5 Language Uniqueness with Minimum
Self-Distance

In previous sections, several examples were given of process trees with equivalent directly
follows graphs, e.g. in Figure 5.3, the following process trees were shown to have the same

140

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

directly follows graphs:

M24 � ^

	

dc

	

ba

M25 � 	

^

db

^

ca

In this section, we will introduce an abstraction that is able to distinguish such trees:
the minimum self-distance relation. Specifically, we attempt to drop Requirement Cb.3,
i.e. that a loop body should have disjoint start and end activities.

As in sections 5.2 and 5.3, the aim is to establish language uniqueness for the new
abstraction, such that discovery algorithms can use it to enhance discovery. We proceed
as follows: first we introduce the notion of minimum self-distance as an additional ab-
straction of process behaviour, and we characterise a class of process trees (Cm) that is
larger than Cb. Second, we consider which operators produce which characteristics in
this minimum self-distance abstraction, and finally show that in the larger class Cm, any
two trees in normal form can be distinguished based on their combination of directly
follows graph and minimum-self-distance abstraction.

5.5.1 Minimum Self-Distance

Two activities a and b are in a minimum self-distance relation if in order to execute a
twice with a minimum number of events in between, b might be executed in between
these two executions of a. Formally, we define the minimum self-distance relation üüon
a language L as follows:

Definition 5.27 (Minimum self-distance). Let L be a language, and let a, b P ΣpLq.
Then, the minimum self-distance of a is the minimum number of events in between two
executions of a:

mpaq �

"
minx...,a,...2,a,...yPL | . . .1 | if Dx...,a,...2,a,...yPL
8 otherwise

Then, b is a witness of this minimum self-distance of a, denoted by a üüb, if and only
if it can appear in between two minimum-distant executions of a:

a üüb � Dx...,a,...1,a,...yPL b P . . .1 ^ | . . .1 | � mpaq

For instance, figure 5.14d and 5.14e show two minimum self-distance graphs. In the
first graph, the trace xc, a, b, ay in the language of M51 witnesses that b can be executed
between two a’s (a üüb). Further inspection reveals that there is no way to reduce the
number of events in between the two as: at least one activity (a b) should be executed
between them. Therefore, a üüb holds, which is denoted with a double-bordered edge
from a to b in Figure 5.14d.

In the tree of the second graph, such a trace would be xc, a, b, d, a, cy, i.e. a üüb and
a üüd. Figure 5.14f shows another example (pa, b, cq): there is at least one event between
two executions of a and this one event can be either a b or a c, thus a üüb and a üüc.

141

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

M51 � ^

	

dc

	

ba

(a)

M52 � 	

^

db

^

ca

(b)

M53 � 	

cba

(c)

a b

c d

(d) üüpM51q

a b

c d

(e) üüpM52q

a

b

c

(f) üüpM53q

Figure 5.14: Examples of minimum self-distance graphs.

5.5.2 A Class of Trees: Cm

Previously, we identified that concurrency nested under loop in some cases has the same
directly follows footprint as loop under concurrency. In this section, we drop this restric-
tion by introducing a new class of process trees Cm. In the remainder of this section, we
will introduce footprints and prove language uniqueness for trees of Cm.

Using Definition 5.27, we extend the class of process trees for which the normal forms
are language unique:

Definition 5.28 (Class Cm). Let M be a process tree. Then, M belongs to Cm if all
requirements of Cb hold for all reduced subtrees of M , except Requirement Cb.3, i.e. the
loop body is not required to have disjoint start and end activities.

5.5.3 Footprints
In the previous sections, we showed that a directly follows graph does not identify process
trees with concurrency nested under loop uniquely, i.e. there might be process trees with
different languages but equal directly follows graphs. Therefore, we introduced the new
minimum self-distance abstraction. In this section, we first illustrate when minimum
self-distance edges appear, after which we give footprints of process tree operators in the
minimum self-distance graphs. In the next section, we prove language uniqueness.

For the loop operator, let b be an activity in the redo of its lowest loop ancestor X,
i.e. X � 	pX1, . . . Xnq such that for an i, b P ΣpXiq such that b has no loop ancestor
in Xi. Then, because the tree is of Cm, Requirement Cb.1 holds, so X1 cannot produce
the empty trace. Therefore, b should have a minimum self-distance connection with
at least one activity a P ΣpX1q. Moreover, b cannot have any minimum self-distance
connection to any activity outside ΣpXq. For instance, Figure 5.15 shows the üü-graph
of M54 � 	p^p	pa, bq, cq, dq. In this üü-graph, b is in the redo of its lowest loop ancestor
	pa, bq. Thus, b üüa but b / üüc, b / üüd.

Using these observations, we extend the definition of concurrent and interleaved foot-
prints to use both the directly follows graph and the minimum self-distance graph. Notice

142

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

M55 � 	

d^

c	

ba

(a)

ab

c d

(b) üüpM55q

Figure 5.15: A process tree and its minimum self-distance graph.

that we do not need to extend the footprints of � and Ñ, as these are not influenced by
the removal of Requirement Cb.3.

Definition 5.29 (minimum self-distance footprints). Let üübe a minimum self-distance
relation and let c � p`,Σ1, . . .Σnq be a cut, consisting of a process tree operator ` P
t�,Ñ,Ø,^,	u and a partition of activities with parts Σ1 . . .Σn such that Σp üüq ��

1¤i¤n Σi and @1¤i j¤n Σi X Σj � H.

• Concurrent and interleaved. If ` � ^ or ` � Ø, then in üü:

^Ø.1 There are no üüconnections between parts:
@1¤i¤n,1¤j¤n,i�j @aPΣi,bPΣj a / üüb

Σ1 Σ2
. . . Σn

• Loop. If ` � 	 then in üü:

	.1 Each activity has an outgoing edge:
@
aPΣp üüq DbPΣp üüq,b�a a

üüb

	.2 All redo activities that have a connection to a body activity, have connections
to the same body activities:

@2¤i¤n,2¤j¤n @aPΣi,bPΣj tc | a üücu X Σ1 � H_

tc | b üücu X Σ1 � H_

tc | a üücu X Σ1 � tc | b üücu X Σ1

	.3 All body activities that have a connection to a redo activity, have connections
to the same redo activities:

@a,bPΣ1 tc | a üücu X
¤

2¤i¤n

Σi � H_

tc | b üücu X
¤

2¤i¤n

Σi � H_

tc | a üücu X
¤

2¤i¤n

Σi � tc | b üücu X
¤

2¤i¤n

Σi

143

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

	.4 No two activities from different redo children have an üü-connection:
@2¤i j¤n @aPΣi,bPΣj a / üüb^ b / üüa

We illustrate these properties:

^Ø.1 For instance, in our example tree M51 � ^p	pa, bq,	pc, dqq, consider a and c.
Notice that in order to execute a twice, it is not necessary to enter 	pc, dq in
between these executions of a, as the ^ operator does not enforce execution of the
	pc, dq child at any particular moment. As a shorter trace is available that avoids
c, a / üüc. This holds for all operators that do not enforce a particular sequence
of executions, i.e. ^ and Ø. Therefore, any two activities with a lowest common
ancestor being ^ or Ø cannot be in a minimum self-distance relation.

	.1 Each activity that has a 	 ancestor can be executed multiple times in a trace.
Therefore, there must be at least one trace in which the activity occurs twice with
a minimal number of events in between. Hence, the activity must have an outgoing
üüedge.

	.2 Consider an activity r in a redo child ΣpMi¡1q, such that r has an outgoing
üü-connection to activities b1 . . . bx in the body ΣpM1q, and there is a trace t �

x. . . r . . . b1 . . . bx . . . r . . .y such that the number of events between the two r’s is
minimal. Then, the subtrace xb1 . . . bxy is a shortest path through M1. Obviously,
any other activity r1 in any redo child ΣpMj¡1q that has an outgoing üü-connection
to any body activity has üü-connections to all activities b1 . . . bx on the shortest
path.

	.3 Similar to Requirement 	.2.
	.4 Take two activities from different redo children a and b. If a üüb, then the shortest

path between a and a would pass through the body of the loop twice. Therefore,
this cannot be a shortest path and thus a / üüb.

Finally, using the semantics of the process tree operators (Definition 2.6), we derive
that these footprints are present in minimum self-distance graphs of process trees.

Lemma 5.30 (Minimum self-distance footprints). Let M � `pM1, . . .Mmq be a process
tree without duplicate activities (Requirement Cb.2), with ` being a process tree operator
P t�,Ñ,Ø,^,	u. Then, the footprints of Definition 5.29 hold, i.e. üüpMq contains the
footprint of the cut p`,ΣpM1q, . . .ΣpMnqq.

5.5.4 LC-Property
For some classes of process trees, the footprints of Lemma 5.30 do not suffice to conclude
language uniqueness. That is, there are process trees of Cm that have a different normal
form, and have different languages and üürelations, but cannot be distinguished by these
footprints.

For instance, M56 � 	

d^

c	

ba

and M57 � 	

b^

c	

da

are such trees: they are both in Cm

and have different languages. These trees have an equivalent �-graph, which is shown
in Figure 5.16b. Figures 5.16c and 5.16d show their üü-graphs.

144

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

M56 � 	

d^

c	

ba

M57 � 	

b^

c	

da

(a) Two process trees.

a b

c d

(b) �pM56q ��pM57q

a b

c d

(c) üüpM56q

a b

c d

(d) üüpM57q

Figure 5.16: A counterexample for language uniqueness using üüfootprints:
M56 andM57 have a different language and üü-relations, but this doesn’t become
apparent in the üü-footprint.

These üü-graphs are clearly different, so these trees are not a counterexample to
language uniqueness, i.e. one could still distinguish them by their üü-graphs. However,
the footprint described in Definition 5.29 applies to both graphs, i.e. the requirements
hold for üüpM56q using Σ1 � ta, b, du, Σ2 � tbu, which corresponds to üüpM57q. This
implies that a discovery algorithm using the footprints cannot distinguish these two trees.

This problem occurs in certain nestings of loops and concurrent operators. The cur-
rent footprints (Definition 5.29) are not strong enough to distinguish these trees: we did
not find an üü-footprint property to distinguish such trees, but we also did not find a
counterexample that disproves language uniqueness. Therefore, the proof of language
uniqueness further on in this section (Lemma 5.33) will contain a gap. Therefore, we
first characterise the process trees of Cm for which we did not identify a footprint by
introducing the loop-concurrent-property (LC-property), which is a footprint of the iden-
tified trees in the üü-graph. If such a property exists, then language uniqueness holds.
Second, we conjecture that such a property exists.

Definition 5.31 (LC-property). Let K and M be process trees in normal form such
that K � 	

Kn. . .K2K1 � ^

K1,p. . .K1,1

, M � 	

Mn. . .M2M1 � ^

M1,q. . .M1,1

, M,K P Cm, and

�pKq � �pMq. Then, an LC-property LC is a function that distinguishes the cuts of
K and M in their minimum self-distance graphs, i.e. LCp üüpKqq ^ LCp üüpMqq if and
only if the cut p	,ΣpK1q, . . .ΣpKnqq conforms to both K and M .

We believe that there exists such a property that is able to distinguish process trees
of class Cm. However, finding one remains future work.

Conjecture 5.32 (LC-property). There exists an LC-property (Definition 5.31).

5.5.5 Language Uniqueness
In this chapter, we study abstractions from languages to establish a one to one link
between syntax and semantics of process trees. We do this by introducing a set of

145

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

reduction rules, such that footprints in abstractions can distinguish all languages of
particular classes of process trees. These footprints will be used by process discovery
algorithms in Chapter 6. In this section (5.5), we have introduced the minimum self-
distance abstraction, footprints using this abstraction, and a larger class of process trees
(Cm). Furthermore, we described the unknown LC-property: a footprint property that
is currently missing. In this section, we first prove language uniqueness, i.e. that there
are no two process trees of Cm with the same abstraction but a different language. This
proof will assume that the LC-property exists. Second, we discuss this property and its
implications further.

Lemma 5.33 (Language uniqueness for Cm). Assume that there exists an LC-property.
Take two reduced process trees of class Cm: K � `pK1, . . .Knq and M � bpM1, . . .Mmq.
Then, K �M if and only if �pKq ��pMq and üüpKq � üüpMq.

Proof. The proof strategy is to first show that if either the operators ` and b differ,
or the activity partitions differ, then �pKq � �pMq or üüpKq � üüpMq. The lemma
follows from these properties, similarly to Lemma 5.13. Both properties are proven
by contradiction, i.e. two structurally different but language equivalent process trees
are assumed and a contradiction is shown. We do not replicate the entire proof of
Lemma 5.13, but limit ourselves to the cases in its proof in which the dropped restriction
is involved.

The first property corresponds to Lemma 5.11, i.e. towards contradiction, assume
` � b and LpKq � LpMq. Then, �pKq ��pMq and üüpKq � üüpMq.

` � ^ and b � 	. We try to construct a concurrent cut Σ1 . . .Σq for M . By Require-
ment ^.1, every such Σi must have a start and an end activity. Thus, we only
need to prove that StartpM1q Y EndpM1q � Σ1. Perform case distinction on M1:

M1 � �pM11 , . . .M1pq Each a P ΣpM1iq has no �-connection to any activity in
ΣpMj�iq. Therefore, StartpM1q Y EndpM1q � Σ1.

M1 � ÑpM11 , . . .M1pq Each a P ΣpM1iq has no �-connection to any activity in
ΣpMj iq. Therefore, StartpM1q Y EndpM1q � Σ1.

M1 � ^p. . .q Consider three cases:

• If any of the M2¤i¤p contains a 	, consider an activity a in the redo of
that 	. By semantics of 	, there is no �-connection between a and any
activity in ΣpM1q. Therefore, StartpM1q Y EndpM1q � Σ1.

• If none of theM2¤i¤p contains a 	 andM1 does not contain a 	, then the
üü-graph is connected and therefore by Requirement ^Ø.1, ΣpMq � Σ1.

• If none of theM2¤i¤p contains a 	 andM1 contains a 	, then consider an
activity a under a redo of any such 	, and any activity b P ΣpM2¤i¤mq.
By semantics of 	, a �� b and b �� a, thus a and b must be in the same Σ1.
All activities StartpM1q Y EndpM1q have at least an üü-connection with
at least some activity in the redo of a 	. Thus, by Requirement ^Ø.1,
StartpM1q Y EndpM1q � Σ1.

M1 � 	p. . .q Excluded by Cm.

M1 � Øp. . .q By Cm, there exists a child M1i such that StartpM1iq X
EndpM1iq � H. Thus, all activities in EndpM1j�iq have no �-connection to
EndpM1iq, and similarly for the activities of StartpM1j q. Therefore, StartpM1qY
EndpM1q � Σ1.

146

5

A
b
st
ra
ct
io
n
s

5.5 Language Uniqueness with Minimum Self-Distance

Hence, there is no concurrent cut in M and therefore �pKq ��pMq.
` � 	 and b � Ø. No change necessary.

The second property corresponds to Lemma 5.12, i.e. towards contradiction, assume that
` � b and that there is a w such that ΣpKwq � ΣpMwq and LpKq � LpMq. Then,
�pKq ��pMq and üüpKq � üüpMq.

` � ^ and Mx � 	pMx1 , . . .Mxpq. Try to construct a ^-cut and prove that ΣpMxq �
Σx. Consider three cases:

• If any of the Mx2¤i¤p contains a 	, consider an activity a in the redo of that
	. By semantics of 	, there is no �-connection between a and any activity
in ΣpMx1q. Therefore, ΣpMx1q � Σx. This holds for all such a, thus all such
redo-activities are in Σx. Consider all remaining activities, i.e. b P ΣpMxj�iq
such that b is in no other 	-redo than Mx. For each of these activities b,
there is a üü-relation with an activity in Σx1 or an activity such as a. Thus,
ΣpMxq � Σx.

• If none of the Mx2¤i¤p contains a 	 and Mx1 does not contain a 	, then the
üü-graph is connected and therefore ΣpMxq � Σx.

• If none of the Mx2¤i¤p contains a 	 and Mx1 contains a 	, then consider
an activity a under a redo of any such 	, and any activity b P ΣpMx2¤i¤mq.
By semantics of 	, a �� b and b �� a, thus a and b must be in the same Σx.
All activities in ΣpMx1q have at least an üü-connection with at least some
activity in the redo of a 	, Thus, ΣpMxq � Σx.

` � 	 and K1 � ^pK1,1, . . .K1,pq. Try to construct a 	-cut and prove that ΣpK1q �
Σ1. By semantics of 	, StartpK1q Y EndpK1q � Σ1. Take an activity a P ΣpK1q,
such that a R StartpK1q YEndpK1q, and take another b P

�
1¤i¤n ΣpKiq such that

b P StartpK1q Y EndpK1q. Then, b P Σ1. Perform case distinction on b:

b R EndpK1q Then, b� a and thus a P Σ1.

b R StartpK1q Then, a� b and thus a P Σ1.

b P StartpK1q X EndpK1q Then, as there exists an LC-property (Conjecture 5.32),
a P Σ1.

Corollary 5.34 (Minimum self-distance uniqueness). If a LC-property exists, then for
all reduced process trees K �M of Cm, �pKq ��pMq or üüpKq � üüpMq.

From the proof of this lemma it follows that the footprint of Lemma 5.30 suffices
to distinguish concurrency from loop behaviour. However, the unknown LC-property is
used in the proof of one particular case: a loop with concurrency as its body, in which
there are activities that are both start and end, i.e. M � 	p^pK1,1, . . .K1,pq, . . .q. This
characterises the class LC, and an example of such trees was given in Figure 5.16.

Notice that this class LC resembles Requirement 	.1 of Cb i.e. that the start and end
activities of a loop are disjoint. This requirement served two purposes: (1) distinguish
concurrent and loop behaviour, and (2) distinguish loop body from loop redo behaviour.
We showed that concurrent and loop behaviour can be distinguished using the üü-relation,
what remains to be shown is that loop body and loop redo behaviour can be distinguished
as well. We did not find an extension of the footprint properties, however we also did

147

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

not find a counterexample. Therefore, it remains unknown whether such an LC-property
exists.

Future work 5.35: Find or disprove a footprint LC-property of üü-graphs to distinguish
all trees of Cm.

5.6 Language Uniqueness with Optionality & In-
clusive Choice

In the previous sections, several abstractions and footprints of process tree operators
in these abstractions were identified. Using these footprints, we proved that a set of
reduction rules (Definition 5.1) provides language uniqueness, i.e. there are no two process
trees in normal form that have an equal language. From these sections, two process tree
constructs were left out: the inclusive choice _ and the invisible activity τ . In this
section, we address these constructs: we focus on _ nodes and �pτ, .q constructs.

We first introduce the �pτ, .q construct and introduce optionality, which denotes that
a process tree is not necessarily executed. Second, we study the influence of optionality
on directly follows graphs. Third, we study the influence of inclusive choice on directly
follows graphs, and note that many reduced process trees have the same directly fol-
lows graph. In the previous sections, in case two reduced process trees had the same
abstraction, we chose to limit the class of process trees for which we proved language
uniqueness. For the inclusive choice however, we do not pose such requirements, but
instead investigate which abstraction suffices to distinguish all process trees. Fourth, we
introduce this abstraction, the concurrent-optional-or relations. The abstraction will be
used by our discovery algorithms to discover inclusive choice behaviour, as we will show
in Chapter 6. In this section, we lay the formal foundation by proving that no two process
trees of a certain class (which we introduce in Section 5.6.3) have the same combination
of coo-relations and directly follows graph, and hence no two such trees have the same
language (they are language unique).

5.6.1 Optionality

A tau (τ) denotes the silent activity, i.e. executing τ will change the state of a system,
but will not generate an event. From the reduction rules (Corollary 5.2), it follows that τ
leafs are only relevant in two constructs: 	

. . .τ. . .

and �

. . .τ

, i.e. as a redo part (non-first

child) of 	 or as a child of �. In this chapter, we focus on τ leafs that are children of �
nodes; τ ’s as children of 	 nodes will be discussed at the end of this chapter.

The �pτ, .q construct explicitly adds the empty trace to the language of nodes.
The empty trace might propagate to nodes higher up in the tree, e.g. the language
of ^p�pτ, aq,�pτ, bqq contains the empty trace (semantically) without the root being a
(structural) �pτ, .q construct. We refer to a process tree whose language contains the
empty trace as a tree with optionality.

Definition 5.36 (optionality). A process tree is optional (?) if its language contains the
empty trace:

?pMq � ε P LpMq

148

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

M58 � ^

�

^

cb

τ

a

M59 � ^

�

cτ

�

bτ

a

(a) Language-different process trees.

a

b

c

(b) �pM58q ��pM59q.

Figure 5.17: The �pτ, .q construct might not be captured by �-footprints.

5.6.2 Optionality in the Directly Follows Graph
Optionality is difficult or impossible to discover for directly follows based algorithms, as
it might leave footprints that are indistinguishable from other process tree constructs.
For instance, Figure 5.17 shows two process trees having a different language. These
trees differ in the subtrees that can be skipped: in M58, b and c can only be skipped
together, while in M59, they can be skipped independently. Their directly follows graphs
are the same, thus no directly follows based algorithm can distinguish these trees.

In this section, we study the influence of optionality on directly follows graphs when
abstracting behaviour and recognising operators in abstractions. First, we introduce
the footprint of the �pτ, .q construct. Second, we observe that this construct might
have influence on the footprints of nodes higher in the tree, and that the footprint is
not a sufficient condition to conclude the �pτ, .q construct and analyse this influence in
more detail. We perform this analysis in two steps: the influence of the operator, and
the influence of the activity partition. From the analysis, it follows that two types of
constructs, i.e. nested sequences and nested concurrency/inclusive choice, need a stricter
footprint and a new abstraction, which will be introduced in the next sections. In the
remaining part of this section, we introduce a class of process trees for which we prove
that the stricter footprint and the new abstraction provide language uniqueness.

Footprint of Optionality

We first define the footprint of the �pτ, .q construct: the �pτ, .q construct will manifest
in the directly follows relation as an edge from start to end:

Lemma 5.37 (�pτ, .q footprint). Let M � �pτ,M1q be a process tree. Then, the follow-
ing property holds in �pMq:
�pτq.1 There is a connection from start straight to end:

J�K

This footprint does not suffice to conclude the �pτ, .q construct however: for instance,
the reduced tree ^p�pτ, aq,�pτ, bqq has the empty trace in its language and hence J�K
in its directly follows graph, however its root is not the �pτ, .q construct. Although the
footprint is not sufficient to conclude the �pτ, .q construct, we will nevertheless use it
later on to discover an over-approximation of structural �pτ, .q constructs, which are in
a second step removed by applying Reduction Rule T� of Definition 5.1.

149

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

�

τP � `

. . .Qi � b

. . .Rj � a

.

(a)

P � `

. . .�

τQi � b

. . .Rj � a

.

(b)

P � `

. . .Qi � b

. . .�

τRj � a

.

(c)

Figure 5.18: Process trees with optionality at different levels.

The Influence of Optionality on Operators

The process tree ^p�pτ, aq,�pτ, bqq illustrates that the influence of �pτ, .q constructs is
not limited to their level in the process tree: even though the root is a concurrent oper-
ator, it can still produce the empty trace. Therefore, we analyse the influence of �pτ, .q
constructs on several levels below the root. Consider a process tree P � `pQ1, . . . , Qlq,
Qi � bpR1, . . . Rmq and Rj � ap. . .q (Figure 5.18), with arbitrary operators `, b and
a. For this tree, we discuss what happens to the root level behaviour and directly follows
graph if an optional operator is added at several levels:

• If we make P optional by adding the�pτ, .q construct above the root (Figure 5.18a),
then we add an explicit empty trace to the language of the model, and the J�K
edge manifests itself in the directly follows relation. Obviously, this addition has
no further influence on the footprint of ` as defined in definitions 5.9 and 5.20.
Therefore, in this section, we may limit ourselves to discussing non-optional root
nodes.

• How a subtree �pτ,Qiq manifests itself in the footprint of the directly follows graph
of P (Figure 5.18b) depends on the root operator `:

– If ` � �, the entire tree is optional if at least one child of the root is optional.
In the directly follows relation, the edge J�K appears, i.e. the footprint of
the �pτ, .q construct. No further edges are added or removed, so the footprint
of Lemma 5.10 is preserved.

– If ` � Ñ, then the entire tree is optional if all children of the root are
optional. In that case, J�K is part of the directly follows graph.
Furthermore, in the directly follows graph, edges are introduced that bypass
the optional child. For instance, the directly follows graph of Ñpa, b, cq is

a b c , and the directly follows graph of Ñpa,�pτ, bq,�pτ, cqq
is a b c . All bypassing edges go in the same direction as
edges due to visible steps. Therefore, Requirement Ñ.1, i.e. that there are
no “backwards” edges, remains satisfied.

– If ` P t_,Ø,^u, then the entire tree is optional if all children of the root are
optional. In that case, J�K is part of the directly follows relation. However,

150

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

a

b

c

(a) � of 	pÑpa, bq, cq.

a

b

c

(b) � of 	pÑpa, bq, c, τq.

a

b

c

ε

(c) � of 	p�pτ,Ñpa, bqq, cq.

Figure 5.19: The influence of τ on the directly follows graph of 	.

there are no further changes in the directly follows relation of the tree caused
by the addition of the �pτ, .q construct. For instance, the directly follows
graphs of ^pa, bq and of ^pa,�pτ, bqq are equivalent: a b . Hence,
the footprints of lemmas 5.10 and 5.21 remain distinguishable (we will discuss
_ in more detail in Section 5.6.5).

– If ` � 	, then the entire tree is optional if and only if the body child (i.e. the
first child) of the root is optional (notice that by Corollary 5.2, in a reduced
tree the body of a loop cannot be τ). We give an example to illustrate
the influence of optionality on the loop: consider the trees 	

cÑ

ba

, 	

τcÑ

ba

and 	

c�

Ñ

ba

τ

. Their directly follows graphs are shown in Figure 5.19. In the

second tree, τ has been added as a redo child (or, equivalently, c has been
made optional). In the directly follows graph of this tree, the edge b� a has
been added and the footprint of the 	-operator is still present. In the third
tree, the body child has been made optional using a �pτ, .q construct. In the
directly follows graph, this adds the empty trace (J�K), and the addition
of c as a start and end activity. This violates the footprint: Requirement 	.1
states that all start and end activities should be in the loop body, and c is
both.
In the remainder of this section, we will not consider loop nodes of which any
child is optional, and assume that such nodes are not present. Thus, we do
not consider the trees shown in figures 5.19b and 5.19c. We discuss 	 nodes
with optional children at the end of the section.

• Assume that Qi is not optional (otherwise, see the previous case). If we add
an �pτ, .q construct at the bottom level (just above Rj) (Figure 5.18c), then the
influence on the � graph of P depends on the operator b:

– If b � �, then Qi must be optional, which was excluded by the assumption
of the Qi-case.

151

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

– If b � Ñ, then not all children of Rj are optional. As added edges only
strengthen the footprint of theÑ of�pQiq, the footprint of ` will be present
in �pP q.

– If b P t_,Ø,^u, then, as argued before, the directly follows graph does not
change. Therefore, the footprint of ` will be present in �pP q.

– The b � 	 case is excluded.

The Influence of Optionality on Activity Partitions

In the previous section, we addressed the influence of �pτ, .q constructs at various levels in
the process tree, and found that for all operators except 	, the footprint of the operator
was preserved in the directly follows relation. In this section, we consider the influence
of the �pτ, .q construct on activity partitions.

For most operators, Definition 5.1 provides a reduction rule that uses associativity,
e.g. Ñ

cÑ

ba

would be reduced to Ñ

cba

. Therefore, in previous parts of this chapter, we could

assume that an operator had no child of the same operator, and therefore its children
had a distinct footprint. The �pτ, .q construct disables this property: now, children
of an operator can have the same footprint as the operator. For instance, Ñ

c�

Ñ

ba

τ

is

in normal form and cannot be reduced further, but still exhibits the footprint of the
cut pÑ, tau, tbu, tcuq: the �-subtree has a sequential footprint but not a sequential root
operator. Therefore, the abstractions used by process discovery algorithms need to be
able to distinguish such trees from similar “flattened” trees.

We study the influence of this property using a process tree P � `pP1, . . . Pmq, in
which one such Pi is �pτ,`pQ1, . . . Qlq. We perform this analysis for each operator `:

` � � By Corollary 5.2, no child Pi can be a �pτ, .q construct, as this would imply that
three �-operators are directly nested, and these would vanish in reduction.

` � Ñ Optionality poses a challenge in combination with sequential trees, as the se-
quential footprint (Lemma 5.10) applies to nested sequential subtrees as well.
For instance, consider the trees M60 and M61. Both trees are in normal form
and have a different language. Figure 5.20 shows their directly follows graphs,
which are different. However, for both, the footprint of Lemma 5.10 yields a cut
pÑ, tau, tbu, tcu, tdu, teuq. This cut does not conform to M61, as tb, c, du (the ac-
tivities of the middle child) are partitioned. Therefore, the sequence footprint does
not suffice to distinguish process trees in normal form when τ is involved.
In Section 5.6.4, we study this in more detail, and introduce a stricter footprint of
the directly follows graph to distinguish such trees.

` � Ø As discussed with Requirement Ci.3, nested interleaved operators cannot be
distinguished by directly follows graphs.

152

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

M60 � Ñ

�

eτ

�

dτ

c�

bτ

�

aτ

(a)

M61 � Ñ

�

eτ

�

Ñ

�

dτ

c�

bτ

τ

�

aτ

(b)

a
b

c

d

e

(c) �pM60q

a
b

c

d

e

(d) �pM61q

Figure 5.20: Two process trees with optionality in different places and their
directly follows graphs.

For instance, the trees Ø

cba

and Ø

cØ

ba

do not have the same language, but have

the same directly follows graph (a clique), hence a discovery algorithm using the
directly follows abstraction cannot distinguish these trees. As the addition of a
�pτ, .q construct does not change the directly follows graph, this argument holds for
the Øp�pτ,Øp. . .qqq case as well. For instance, Ø

cba

and Ø

c�

Ø

ba

τ

have a different

language, but the same directly follows graph.

` � ^ Concurrency suffers from the same issue as Ø: the directly follows graph of
concurrency nested with optionality and concurrency. For instance, ^

cba

and

153

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

^

c�

^

ba

τ

have a different language but equivalent directly follows graph.

In Section 5.6.5, we introduce a new abstraction that solves this problem.

` � _ The _ operator suffers from the same issue as ^ and Ø case. Moreover, the
directly follows footprint of _ is equivalent to the footprint of ^. For instance, ^

ba

and _

ba

have the same directly follows graph: a b .

In Section 5.6.5, we introduce a new abstraction that solves this problem.

` � 	 As discussed in the previous section, we do not consider loop nodes with optional
children in this section.

Using these observations, we introduce the class of process trees for this section.

5.6.3 A Class of Trees: Ccoo

In the previous section, we studied the influence of �pτ, .q constructs on directly follows
graphs. Furthermore, we showed that ^ and _ have equal footprints in directly follows
graphs. Therefore, later on in this section, we will introduce a new abstraction (the
concurrent-optional-or (coo) abstraction) that is able to distinguish ^ and _. However,
even with this new abstraction, not all process trees can be distinguished, so we introduce
a new class of process trees. For this class, we will prove that the directly follows graph
and the new coo abstraction yield language uniqueness. The class introduced here (Ccoo)
is the largest class of process trees that will be discussed in this thesis: it allows for
inclusive choice and τ nodes. However, �pτ, .q constructs necessitate new (but smaller)
requirements for 	 and Ø. We first give the class definition, after which we explain its
requirements.

Definition 5.38 (Ccoo). Let M be a reduced process tree. Then M belongs to Ccoo if
for each reduced (sub)tree M 1 at any position in M , it holds that

Ccoo.1 The subtree adheres to all restrictions of Cb and Ci, however Ø-operators are al-
lowed (Requirement Cb.4 is dropped), _-operators are allowed (Requirement Cb.5
is dropped), and τ leafs are allowed (Requirement Cb.1 is dropped).

Ccoo.2 No redo child of a loop can produce the empty trace:
M 1 � 	pM 1

1, . . .M
1
nq : @2¤i¤n ε R LpM 1

iq

Ccoo.3 Interleaving cannot be nested using optionality:
M 1 � ØpM 1

1, . . .M
1
nq : @1¤i¤n M

1
i � �pτ,Øp. . .qq

Ccoo.4 An inclusive choice child of an interleaving has at least one child with disjoint
start and end activities:
M 1 � ØpM 1

1, . . ._pM
1
m1
, . . .M 1

mx
q, . . .M 1

nq :
D1¤i¤x StartpM 1

mi
q X EndpM 1

mi
q � H

We illustrate the relaxed or newly added requirements:

154

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

• Requirement Ccoo.2: no silent activities under a loop-redo. By Corollary 5.2, in
reduced process trees, silent activities will only appear as a child of a �-node
or as a redo-child of a 	-node. As shown in Section 5.1, the reduction rules of
Definition 5.1 are not strong enough. For instance, the process trees 	

τÑ

	

τb

�

aτ

and

	

τÑ

b�

aτ

are both in normal form but have the same language. Therefore, language

uniqueness of the current reduction rules does not hold for such trees.

• Requirement Ccoo.3: no optional nested interleaving. Such a nested optional in-
terleaving has the same directly follows graph as a nested interleaving, which is
ambiguous (see Requirement Ci.3) and the previous section. As discovery algo-
rithms require models to be distinguishable by their abstraction, at least one of
these models could not be discovered by discovery algorithms.

• Requirement Ccoo.4. This requirement corresponds to Requirement Ci.4.

From the observations in Section 5.6.2, it follows that one can arbitrarily add �pτ, .q
constructs to trees of Ci: the footprints will remain visible in the directly follows graph.

Corollary 5.39 (optionality preserves cuts). Take two reduced process trees M P Ci,
and M 1 P Ccoo, such that M � `pM1, . . .Mmq, M 1 � `pM 1

1, . . .M
1
nq and each M 1

i is
equal to either Mi or �pτ,Miq. Then, �pM 1q contains a cut p`,ΣpM1q . . .ΣpMmqq, i.e.
a footprint according to Lemma 5.10.

5.6.4 Optionality under Sequence
In the previous sections, we analysed the influence of �pτ, .q constructs on directly follows
graphs. Two challenges were identified: the directly follows graph does not distinguish
nested ^ and _ operators, and the footprint of Lemma 5.10 does not distinguish nested
Ñ operators. Both challenges prevent discovery algorithms from identifying these con-
structs. In Section 5.6.5, we introduce a new abstraction for ^ and _. In this section,
we introduce a stricter footprint for Ñ.

The challenge occurs in all process trees in which Ñ and �pτ, .q constructs appear
nested at the top of the tree. We refer to the top part of such a tree as a sequence-optional
stem (so stem), and to the subtrees that are not part of the stem as non-so subtrees.
Figure 5.21 shows an example, in which the non-so subtrees have been highlighted in
blue.

Formally, we define the so stem of a process tree as follows:

Definition 5.40 (sequence-optional stem). Let Σ be an alphabet of activities such that
τ R Σ and R Σ, then

– activity a P Σ is a non-so subtree;

155

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

Ñ

�

gfτ

�

Ñ

ed

Ñ

	

cb

a

τ

Ñ

�

gfτ

�

Ñ

ed

Ñ

	

cb

a

τ

(a) A process tree M62. The non-so-
subtrees are denoted in blue.

Ñ

�

τ

�

Ñ

Ñ

τ

(b) The so stem ofM62; the dots denote
non-so subtrees.

Figure 5.21: An example of a process tree showing its so stem and non-so
subtrees.

– τ is a non-so subtree;

– let M1 . . .Mn with n ¡ 0 be process trees (Definition 2.6) and let ` P tØ,^,_,	u,
then `pM1, . . .Mnq is a non-so subtree;

– let M1 . . .Mn with n ¡ 0 be process trees (Definition 2.6) such that no Mi is τ ,
then �pM1, . . .Mnq is a non-so subtree.

Furthermore,

– is a so stem;

– let M1 . . .Mn with n ¡ 0 be so stems, then ÑpM1, . . .Mnq is a so stem;

– let M1 . . .Mn with n ¡ 0 be so stems, �pτ,M1, . . .Mnq is a so stem.

A process tree M has an so stem S if and only if S � and S can be transformed into
M by replacing each in S with a non-so subtree.

Observe that if all children of a �pτ,Ñp. . .qq construct would be optional, then the
Ñ-node itself would be optional, and then the reduction rules (Definition 5.1) would
remove the �pτ, .q construct. (Consequently, the nested Ñ would be removed as well.)

For instance, Ñ

�

Ñ

�

cτ

�

bτ

τ

a

reduces to Ñ

Ñ

�

cτ

�

bτ

a

, which reduces to Ñ

�

cτ

�

bτ

a

.

Corollary 5.41 (pivot). In a reduced process tree, each �pτ,Ñp. . .qq construct has at
least one subtree (a pivot) that is not optional. By Corollary 5.2, a pivot cannot be a
sequential node itself.

156

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

Secondly, observe that while non-root pivots are not necessarily executed in a trace
(due to their �pτ,Ñpqq parent), execution of the pivot is implied by the execution of any
sibling. For instance, in our example tree M61 (Figure 5.20d), not every trace contains
the pivot c, but c is implied by b and d (siblings of c). We use this observation to
introduce a new, stricter, footprint for sequential behaviour in directly follows graphs.
This footprint also contains all the non-root siblings (the scope of the pivot).

Lemma 5.42 (Nested �pτ,Ñp. . .qq footprint). Let M � Ñp. . .q, having a subtree M 1 �
�pτ,ÑpM 1

1, . . .M
1
nqq:

M � Ñ

. . .M 1 � �

Ñ

M 1
n. . .M 1

y. . .M 1
1

τ

Then there is a non-so subtree pivot M 1
y, such that in �pMq:

�pτÑp. . .qq.1 It is possible to not execute the pivot:
D1¤i1¤i Dai1PIi1 ai1 P End_
D1¤j1¤j Daj1PJj1 aj1 P Start_
D1¤i1¤i,1¤j1¤j Dai1PIi1 ,aj1PJj1 ai1� aj1

In which pÑ, I1 . . . Ii,ΣpM 1
yq, J1 . . . Jjq is the maximal sequence cut of

�pMq.
�pτÑp. . .qq.2 Children before the pivot are not end activities:

@1¤x y @axPΣpM 1
xq
ax R End

�pτÑp. . .qq.3 Children before the pivot only have outgoing connections to children before
the pivot, or to the pivot itself:
@1¤x y @axPΣpM 1

xq
@ax� b Dx x1¤y b P ΣpM 1

x1q

�pτÑp. . .qq.4 Children after the pivot are not start activities:
@y z¤n @azPΣpM 1

zq
az R Start

�pτÑp. . .qq.5 Children after the pivot only have incoming connections from children after
the pivot, or from the pivot itself:
@y z¤n @azPΣpM 1

zq
@b� az Dy¤z1 z b P ΣpM 1

z1q

We refer to the set ΣpMxq Y ΣpMyq Y ΣpMzq as the scope of a pivot, we refer to a
scope with at least one other subtree besides the pivot as a nontrivial scope of a pivot, and
we refer to a scope to which no other activities can be added as a maximal scope. Let the
children before the pivot (Mx) be the pre-scope, and let the children after the pivot (Mz)
be the post-scope.

In the following illustration, the scope of the pivot (My) is denoted by a blue coloured
region, Mx is the pre-scope, Mz is the post-scope and I and J are not part of the scope
of My.

I ΣpMxq ΣpMyq ΣpMzqΣpMxq ΣpMyq ΣpMzq J

157

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

In Section 5.6.6, we prove that this footprint suffices to distinguish all so stems in
process trees of Ccoo. However, we first address the remaining challenge: distinguishing
nested _, ^ and �pτ, .q.

5.6.5 Optionality under Inclusive Choice & Concurrency

Process discovery algorithms often use footprints of behaviour in an abstraction to iden-
tify language constructs. Therefore, as many languages as possible should be distin-
guishable by the abstraction and the footprint, i.e. for a class of process models, there
should not be two different models with the same abstraction or the same footprint in
the abstraction. In this chapter, we studied several abstractions and classes of process
trees. In this section (5.6), we address the class of process trees that includes the �pτ, .q,
i.e. optional, construct.

In the previous sections, we introduced the �pτ, .q construct, which makes a process
tree optional. Furthermore, we analysed the influence of this construct in combination
with the process tree operators on directly follows graphs: under �, the construct dis-
appears in reduction, under Ñ, a stricter footprint was necessary that was introduced in
Section 5.6.4, under Ø, the construct doesn’t have any influence on the directly follows
graph, and 	 has some inherent challenges and will not be considered here. In this sec-
tion, we focus on _ and ^: we show that they have equivalent directly follows graphs,
and hence that these graphs are not sufficient as an abstraction. We first study the
properties of these concurrent-optional-or constructs, and introduce a new abstraction.
This abstraction differs from the abstractions used before: it does not consist of a single
graph or relation, but it is a hierarchical relation.

Coo Stem

The concurrent, inclusive choice and optionality constructs have equivalent directly fol-
lows graphs, hence discovery by directly follows based algorithms is impossible. For
instance, the trees ^

ba

, _

ba

and ^

b�

aτ

all have different languages, but their directly

follows graphs are equivalent: a b .
Furthermore, nesting these constructs suffers from the same issue: ^pa,_pb, cqq and

_pa,^pb, cqq have different languages but equivalent directly follows graphs. For instance,
Figure 5.22 shows two process trees having a different language, but the same directly
follows graph.

This problem occurs for any nesting of ^, _ and �pτ, .q constructs (the concurrent-
optional-or operators): for any such nesting, the directly follows graph contains a con-
current footprint of Lemma 5.10 of all children of the nesting. We refer to such a nesting
as the concurrent-optional-or stem(coo-stem) of a process tree, and to the children that
are not coo operator themselves as the non-coo subtrees of the coo stem. Intuitively, the
coo stem of a process tree is the topmost part of the tree consisting of only ^, _ and
�pτ, .q constructs (similar to the so stem). For instance, Figure 5.23 shows a process
tree and its coo stem; the non-coo subtrees, which are denoted in blue, are Ñpa, bq, c, d
and e. The coo stem of this tree is ^p_p,^p, qq,�pτ, qq.

Formally, we define the non-coo subtrees and the coo stem as follows:

158

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

^

�

^

cb

τ

a

(a) S1

^

�

cτ

�

bτ

a

(b) S2

a

b

c

(c) �pS1q ��pS2q.

Figure 5.22: The �pτ, .q construct might interfere with �-footprints (Fig-
ure 5.17 revisited).

^

�

eτ

_

^

dc

Ñ

ba

^

�

eτ

_

^

dc

Ñ

ba

(a) A process tree M63. The non-coo-
subtrees are denoted in blue.

^

�

τ

_

^

(b) The coo stem of M63; the dots de-
note non-coo subtrees.

Figure 5.23: An example of a process tree showing its coo stem and non-coo
subtrees.

159

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

Definition 5.43 (concurrent-optional-or stem). Let Σ be an alphabet of activities such
that τ R Σ and R Σ, then

– activity a P Σ is a non-coo subtree;

– τ is a non-coo subtree;

– let M1 . . .Mn with n ¡ 0 be process trees (Definition 2.6) and let ` P tÑ,Ø,	u,
then `pM1, . . .Mnq is a non-coo subtree;

– let M1 . . .Mn with n ¡ 0 be process trees (Definition 2.6) such that no Mi is τ ,
then �pM1, . . .Mnq is a non-coo subtree.

Furthermore,

– is a coo stem;

– let M1 . . .Mn with n ¡ 0 be coo stems and let ` P t^,_u, then `pM1, . . .Mnq is
a coo stem;

– let M1 . . .Mn with n ¡ 1 be coo stems, then �pτ,M1, . . .Mnq is a coo stem.

A process tree M has a coo stem S if and only if S � and S can be transformed into
M by replacing each in S with a non-coo subtree.

Preliminaries

Before we introduce the coo relations, we introduce some terminology and concepts that
aid reasoning over process trees with coo stems. First, we introduce a function that gives
the activities that are directly below the coo stems, grouped by their subtree (activity
sets of non-coo subtrees). Second, we define the language of the process tree, in terms of
such activity sets, i.e. if these sets were to be the activities of the process tree, what the
language of that process tree would be. This language can obviously only be expressed
over sets of activities that “correspond” to a process tree, which is formalised by the third
function (merge superset of coo subtrees).

We denote the sets of activities of the non-coo subtrees with Σ^. Formally:

Definition 5.44 (activity sets of non-coo subtrees). Let M be a process tree in normal
form of Ccoo. Then, Σ^pMq returns the activity sets of the non-coo subtrees of M :

Σ^ : TÑ 2Σ

Σ^paq � ttauu

Σ^p�pτ, . . .qq � Σ^p�p. . .qq

Σ^p�pM1, . . .Mmqq � tΣp`pM1, . . .Mmqqu with @iMi � τ

Σ^p`pM1, . . .Mmqq � tΣp`pM1, . . .Mmqqu with ` P tÑ,Ø,	u
Σ^p`pM1, . . .Mmqq �

¤
1¤i¤m

Σ^pMiq with ` P t_,^u

For instance, in our example tree M64 � ^

�

eτ

_

^

dc

Ñ

ba

:

Σ^pM64q � tta, bu, tcu, tdu, teuu

160

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

A coo stem does not express order over its non-coo subtrees: if a subtree is executed,
its execution is concurrent with all other non-coo subtrees. Furthermore, due to the
absence of loops in the coo stem, each non-coo subtree is executed at most once. Thus,
a coo stem only expresses which combinations of its subtrees can be executed.

To enable reasoning about the combinations of subtrees that can be executed, we
introduce a language abstraction that abstracts from the subtrees. We refer to the set
of such possible combinations that can be produced by a process tree as an activity set
language (LΣ). Notice that this language depends on the set of sets of activities under
consideration. Formally:

Definition 5.45 (activity set language (LΣ)). For a process tree M and a set of sets of
activities S, LΣpM,Sq expresses the language of M over the sets of activities in S. Let
qpnq be the set of all combinations of the numbers t1 . . . nu without the empty combination.

LΣpM,Sq � tΣpMqu if ΣpMq P S and M not optional

LΣp�pτ, . . .q, Sq � LΣp�p. . .q, Sq Y tHu

LΣp^pM1, . . .Mmq, Sq � tX | @1¤i¤m Ai P LΣpMi, Sq ^X �
¤

1¤i¤m

Aiu

if
¤

1¤i¤m

ΣpMiq R S

LΣp_pM1, . . .Mmq, Sq �
¤

pi1...inqPqpmq

LΣp^pMi1 , . . . ,Minq, Sq

if
¤

1¤i¤m

ΣpMiq R S

For instance, in our example tree M64 � ^

�

eτ

_

^

dc

Ñ

ba

:

LΣpM64, tta, bu, tcu, tdu, teuuq � txta, buy, xtcu, tduy,

xta, bu, tcu, tduy, xta, bu, teuy,

xtcu, tdu, teuy, xta, bu, tcu, tdu, teuyu

A trace from an activity set language is an activity set trace, e.g. xta, bu, tcu, tduy.
We denote the removal of a set of activities A from an activity set trace with z, e.g.
xta, bu, tcu, tduyztcu � xta, bu, tduy.

Notice that the activity set language definition is a partial definition: an activity set
language is only defined on sets of activities that are actually “in the tree”. This final
concept we formalise using the merge superset of coo subtrees, i.e. LΣ is only defined for
S if S P MΣpMq. The merge superset is obtained from Σ^ by recursively merging all
activity subsets according to the process tree. Formally:

161

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

Definition 5.46 (merge superset of coo subtrees).

MΣpaq � ttauu

MΣp�pτ, . . .qq � MΣp�p. . .qq

MΣp�pM1, . . .Mmqq � tΣp�pM1, . . .Mmqqu with @iMi � τ

MΣp`pM1, . . .Mmqq � tΣp`pM1, . . .Mmqqu with ` P tÑ,Ø,	u
MΣp`pM1, . . .Mmqq � t

¤
1¤i¤m

ΣpMiqu Y ttT1 . . . Tmu|@1¤i¤m Ti P MΣpMiqu

with ` P t_,^u

For instance, in our example tree M64 � ^

�

eτ

_

^

dc

Ñ

ba

:

MΣpM64q � ttta, bu, tcu, tdu, teuu, tta, bu, tc, du, teuu,

tta, b, c, du, teuu, tta, b, c, d, euuu

Each activity set in the superset corresponds to a certain “view” of the process tree in
which some nodes are “collapsed”, e.g. in our example, the set tta, bu, tc, du, teuu corre-
sponds to ^

�

eτ

_

[^pc, dq][Ñpa, bq]

.

Coo Relations & Abstraction

Using the concepts defined in the previous section, we define the the coo abstraction.
This abstraction is hierarchical and contains relations for each view in the process tree,
i.e. for each set of sets of activities in MΣ. For each such set (e.g. tta, bu, tcu, tdu, teuu,
we define coo relations that relate the sets of activities. In reasoning (and algorithms in
Chapter 6), we will use the relations bottom-up in the abstraction, i.e. we first reason
about Σ^ and gradually, by merging activity sets, we obtain the singleton set Σ. Notice
that the coo relations have a different nature than the activity relations introduced in
Section 5.3: activity relations are defined on single activities and are applied in a top-
down fashion, while the coo relations are defined on sets of activities are are applied in
a bottom-up fashion.

In the remainder of this section, we first introduce these coo relations. Second, we
give footprints that connect these relations to the process tree operators _ and ^. Third,
we use that property to prove that the reduction rules yield a language unique normal
form for the class of process trees Ccoo. That is, we prove that for every two different
reduced trees of Ccoo, their coo abstractions are different.

We identified three coo relations on sets of activities: optionality ? , implication ñ
and interchangeability _. The unary optionality relation expresses that there cannot be
an obligation to execute an activity of the set. Second, the binary directed implication
expresses that if at least one activity of the first set is executed, then an activity of the

162

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

second set should be executed as well. Finally, the binary undirected interchangeability
expresses that if at least one activity of one set is executed, then that execution can be
replaced by (or added to) an execution of the other set. Formally:

Definition 5.47 (coo relations). Let L be an activity set language, and let A,B � Σ
denote non-overlapping sets of activities. Then,

?A � @tPL A P tñ tztAu P L

AñB � @tPL A P tñ B P t

A_ B � @tPL A P t_B P tñ

tY tA,Bu P L^ ptY tAuqztBu P L^ ptY tBuqztAu P L

A^ B � AñB ^BñA

A ?̂B � ?A^AñB ^

 DC�ΣzpAYBq pB �ñ C ^ CñB ^ @aPAYB,cPC a� c^ c� aq

Notice that we overload optionality here: before, it was defined on process trees, now
on sets of activities; if and only if a process tree M is optional, then ?pΣpMqq holds.

We illustrate the relations using our example tree T � ^

�

eτ

_

^

dc

Ñ

ba

:

Σ^pT q � tta, bu, tcu, tdu, teuu

LΣpT,Σ^pT qq � ttta, buu,

ttcu, tduu,

tta, bu, tcu, tduu,

tta, bu, teuu,

ttcu, tdu, teuu,

tta, bu, tcu, tdu, teuuu

Here, ?teu holds, as each trace with teu also appears without teu. Furthermore, tcuñtdu
holds, as in each trace where tcu occurs, tdu occurs as well. Similarly, tduñtcu holds, and
consequently tcu^tdu holds. Notice that this relation corresponds to the bottom-most
^ node in T .

As another example, merge tcu and tdu to obtain S2:

S2 � tta, bu, tc, du, teuu

LΣpT, S2q � ttta, buu,

ttc, duu,

tta, bu, tc, duu,

tta, bu, teuu,

ttc, du, teuu,

tta, bu, tc, du, teuuu

163

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

(We don’t report onñ from now on.) Here, the relation ?teu holds, as well as ta, bu_tc, du,
as for each trace in which either ta, bu, tc, du or both occur, traces with the other two
of these three options also occur. For instance, there is a trace tta, bu, teuu, which im-
plies that there should also be traces ttc, du, teuu and tta, bu, tc, du, teuu. This relation
corresponds to the _ node in T .

As a last example, merge ta, bu and tc, du to obtain S3:

S2 � tta, b, c, du, teuu

LΣpT, S2q � ttta, b, c, duu,

tta, b, c, du, teuuu

Here, the relation teu ?̂ta, b, c, du holds, as ?teu holds and whenever teu appears, ta, b, c, du
appears as well. This relation corresponds to the root ^ node in T .

Footprint

The coo relations have a one-to-one or one-to-two relationship with the process tree
operators ^ and _. Therefore, the footprint of these operators is simply the presence of
a coo relation: for _, this is _, for ^ this is ^ or ?̂.

Finally, in this section, we prove that the relations are necessary and sufficient for
children of coo stem operators. We do this for both operators separately in two lem-
mas. In the next section, we will use these lemmas prove language uniqueness, i.e. that
two different reduced process trees of Ccoo have different directly follows graphs and/or
different coo abstractions.

First, we show the correspondence for _ and _:

Lemma 5.48 (_ corresponds to _). Let M be a reduced process tree of class Ccoo with
a coo stem, and let M 1 � _pM 1

1, . . .M
1
mq be one of its coo stem nodes. Take any child

M 1
i, and let S P MΣpMq such that ΣpM 1

iq P S. Then for any A P S such that A � ΣpM 1
iq,

it holds that ΣpM 1
iq_ A if and only if D1¤j¤m A � ΣpM 1

jq.

Proof. Prove both directions separately:

ð Take such an M 1
j . By semantics of _, ΣpM 1

iq_ ΣpM 1
jq. Hence, children of M 1 are in

_-relations with each other.

ñ Towards contradiction, assume that there exists such a set of activities A, such that
A_ ΣpM 1

iq. As A P S and S P MΣ, A corresponds to a node in M . Let M2 be
this node. Then, of M2 and M 1, the lowest common parent is either M 1 itself or
a parent of M 1.

• The lowest common parent is M 1. Then by the assumptions made, M2 is
not a direct child of M 1. Furthermore, by Corollary 5.2, the direct child of
M 1 must be a ^, and there must be a node X such that (the wiggled edge
denotes M2 might be an indirect child): _

M 1
i^

M2X. . .

. . .

.

In this case, ΣpM2qñΣpXq, thus ΣpM2q and ΣpM 1
iq cannot be interchange-

able, and therefore A �_ ΣpM 1
iq.

164

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

• The lowest common parent is a parent of M 1. Then, by Corollary 5.2,
the parent of M 1 must be a ^, and there must be a node X such that

`

M2^

X_

. . .M 1
i

. . .

or ^

M2X_

. . .M 1
i

. . .

.

In both cases, ΣpM 1
iqñΣpXq, thus ΣpM 1

iq and ΣpM2q cannot be interchange-
able, and therefore A �_ ΣpM 1

iq.

Hence, such a set A cannot exist, and thus children of M 1 are in _-relations with
each other only.

Thus, the presence of _ is a necessary and sufficient condition for two subtrees to
have a _-parent.

Second, we prove the correspondence for ^ and ?̂, and ^.

Lemma 5.49 (^ corresponds to ?̂ and ^). LetM be a reduced process tree of Ccoo with
a coo stem, and let M 1 � ^pM 1

1, . . .M
1
mq be one of its coo stem nodes. Take any child

M 1
i, and let S P MΣpMq such that ΣpM 1

iq P S. Then for any A P S such that A � ΣpM 1
iq,

it holds that ΣpM 1
iq^ A_ ΣpM 1

iq ?̂A_A ?̂ ΣpM 1
iq if and only if D1¤j¤m A � ΣpM 1

jq.

Proof. Prove both directions separately:

ð Take such an M 1
j . By Corollary 5.2, at most one of M 1

i and M 1
j is optional. If

neither M 1
i nor M 1

j is optional, by semantics of ^, ΣpM 1
iq^ ΣpM 1

jq. If M 1
i is

optional, by semantics of ^, ΣpM 1
iq ?̂ ΣpM 1

jq. If M 1
j is optional, by semantics of

^, ΣpM 1
jq ?̂ ΣpM 1

iq. Hence, all children of M 1 are in either ^ or ?̂ with each
other.

ñ Towards contradiction, assume that there exists such a set of activities A. As A P S
and S P MΣ, A corresponds to a node in M . Let M2 be this node. Then, of M2

and M 1, the lowest common parent is either M 1 itself or a parent of M 1.

• The lowest common parent is M 1. By the assumptions made, M2 is not a di-
rect child ofM 1. Furthermore, by Corollary 5.2, the direct child ofM 1 must be
either _ or �pτ,^p. . .qq, and there must be a node X: ^

M 1
i_{�pτ,^pqq

XM2. . .

. . .

.

In both cases, ΣpM 1
iq �ñ ΣpM2q, therefore ΣpM 1

iq �̂ ΣpM2q and ΣpM 1
iq �̂ ?

ΣpM2q. For every Y P MΣpXq, Y ñΣpM 1
iq, and one such Y is in S. There-

fore, ΣpM2q �̂ ? ΣpM 1
iq.

• The lowest common parent is a parent of M 1. Using Corollary 5.2, four cases
apply as shown in Figure 5.24. In all these cases, ΣpM2q �ñ ΣpM 1

iq. Thus,
ΣpM 1

iq �̂ ΣpM2q and ΣpM2q �̂ ? ΣpM 1
iq. Left to prove: ΣpM 1

iq �̂ ? ΣpM2q.

– In the first case, if ΣpM 1
iqñΣpM2q then for every Y P MΣpX1q it holds

that Y ñΣpM2q, and at least one such Y is in S, thus ΣpM 1
iq �̂ ? ΣpM2q.

– The second case is similar to the first.
– In the third case, ΣpM 1

iq �ñ ΣpM2q, thus ΣpM 1
iq �̂ ? ΣpM2q.

165

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

`

M2_

. . .^

. . .X1M 1
i

. . .

`

M2^

. . .�

^

. . .X2M 1
i

τ

. . .

_

M2^

. . .M 1
i

. . .

^

M2�

^

. . .X4M 1
i

τ

. . .

Figure 5.24: Cases for Lemma 5.49.

– In the fourth case, for every Y P MΣpX4q, Y ñΣpM2q, and one such Y
is in S, thus ΣpM 1

iq �̂ ? ΣpM2q.

Thus, the presence of ^ or ?̂ is a necessary and sufficient condition for two subtrees
to have a ^-parent.

From these two lemmas, it straightforwardly follows that the language of non-coo
subtrees is unique. That is, there exists only one reduced coo stem with the same
language.

Lemma 5.50 (Coo-stem uniqueness). There are no two reduced (Definition 5.1) coo
stems A � B P Ccoo such that LΣpA,Σ^pAqq � LΣpB,Σ^pBqq.

5.6.6 Language Uniqueness

In this section, we have analysed the influence of �pτ, .q and addressed the _ operator.
Two cases required special attention: Ñ and _/^. For the other operators, no changes
were necessary.

As a final step, we prove language uniqueness, i.e. the one-to-one correspondence
between syntax and semantics of reduced process trees, languages, and the combination
of coo abstractions and directly follows graphs: each two reduced process trees from
Ccoo have a different directly follows graph or a different coo abstraction, and a different
language. We prove language uniqueness by proving that for reduced trees with the same
language, the root operators cannot be different (Lemma 5.51), that the root activity
partitions cannot be different (Lemma 5.52), and finally that the entire trees need to be
equivalent (Lemma 5.53).

166

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

Lemma 5.51 (Operators are mutually exclusive for Ccoo). Take two reduced process
trees of Ccoo K � `pK1, . . .Knq and M � bpM1, . . .Mmq such that ` � b. Then
LpKq � LpMq.

Proof. Towards contradiction, assume that LpKq � LpMq. Then, �pKq � �pMq and
^pKq � ^pMq. Perform case distinction on `:

` � � and one child Ki is a τ . As described before, the footprint of �pτ, . . .q applies
whenever the root is optional. Thus, we need to consider the case in whichM is op-
tional, but does not have the�pτ, .q construct as root. LetK � �pτ, p`1pK 1

1, . . .K
1
kqq

(or K � �pK 1
1, . . . ,K

1
kq if ` � �) and perform case distinction on b:

b � � By semantics of �, �pMq consists of unconnected clusters. As �pMq �
�pKq, and by semantics of the operators, `1 � �. At least one child (say
Mj) is optional, but does not have the �pτ, .q construct as root. Let K 1

i be
the corresponding child in K. Then, LpK 1

iq Y tεu � Mj . Mj cannot be a
single activity (cannot be optional without the �pτ, .q construct), or � (by
Rule A�). For the other operators, see the other cases (termination of the
argument guaranteed as Ki and Mj are strictly smaller than M).

b � Ñ By semantics of Ñ, �pMq consists of a chain of clusters. As �pMq �
�pKq, and by semantics of the operators, `1 � Ñ. By semantics of Ñ,
all children Mj are optional. By rule T�, at least one child (say Ki) is not
optional. Therefore, there is a non-empty trace in LpKq in which no activity
of ΣpKiq occurs. There is no such Mj , thus LpKq � LpMq.

b � ^ By semantics of ^, all childrenMj must be optional. However, by rule C_,
this situation cannot occur.

b � _ By semantics of _, at least one child Mj is optional. Consider the options
for Mj exhaustively: �pτ, . . .q (would be reduced by Rule T_,�), _p. . .q
(would be reduced by Rule A_), ^p. . .q with all children optional (would be
reduced by Rule C_), a (cannot be optional without �pτ, .q construct), or,
hence, an optional non coo subtree without �pτ, .q as root. For the other
operators, see the other cases (termination of the argument guaranteed as Ki

and Mj are strictly smaller than M).

b � Ø By semantics of the process tree operators, `1 � Ø. By reduction rule T�,
at least one child K 1

i is not optional. By Requirement Ccoo.3, all children Mi

must be optional.
Take a childK 1

j�i. Then, execution of some activity inK 1
j implies execution of

some activity in K 1
i, while there can be no childMj�i with such a dependency

can exist in Mi, as Ø cannot be nested by Requirement Ccoo.3. Hence,
LpKq � LpMq.

b � 	 In this case, 	 is optional and this is excluded by Requirement Ccoo.2.

Hence, LpKq � LpMq.
` � � and no child is a τ . The graph �pMq consists of several unconnected compo-

nents, while as b is either pÑ,^,_,Ø,	q, �pMq is connected. Thus, �pKq �
�pMq.

` � Ñ The graph�pMq is a chain, while as b is either p�,^,_,Ø,	q,�pMq is either
unconnected or strongly connected. Thus, �pKq ��pMq.

` � ^ We consider the remaining cases of b:

167

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

b � _ The children of K have ^ or ?̂ relations, while the children of M have _
relations (lemmas 5.48 and 5.49). Hence, LpKq � LpMq.

b � Ø As shown in Section 5.6.2, optionality does not influence the footprint of
^ or Ø. Therefore, Lemma 5.25 applies. Hence, LpKq � LpMq.

b � 	 By Requirement Ccoo.2, children of 	 are not allowed to be optional.
Therefore, Lemma 5.25 applies. Hence, LpKq � LpMq.

` � _ _ has the same directly follows footprint as ^. Therefore, the arguments given
at ` � ^,b � Ø and b � 	 apply.

` � Ø We consider the remaining case of b, being b � 	.
By Requirement Ccoo.2, children of 	 are not allowed to be optional. Therefore,
Lemma 5.25 applies.

As LpKq � LpMq, two reduced process trees of Ccoo with the same language cannot
have different root operators.

Lemma 5.52 (Partitions are mutually exclusive for Ccoo). Take two reduced process trees
of Ccoo K � `pK1 . . .Knq and M � `pM1 . . .Mmq such that their activity partition is
different, i.e. there is a 1 ¤ w ¤ n such that ΣpKwq � ΣpMwq. Then, LpKq � LpMq.

Proof. Without loss of generality, we assume a fixed order of subtrees for all operators.
Towards contradiction, assume that �pKq ��pMq. Perform case distinction on ` (the
case for K and M swapped is symmetric).

` � � If a child Ki is τ , see the proof of Lemma 5.51.
As K is reduced,�pKq contains n unconnected clusters, corresponding to ΣpKiq’s.
These clusters themselves are connected (by Rule A� and semantics of the other
operators), hence �pKq contains a maximal � cut. The same holds for �pMq,
hence ΣpKwq � ΣpMwq.

` � Ñ In case no child Ki has the �pτ,Ñp. . .qq structure, �pKq is a chain of strongly
connected or unconnected clusters, which correspond to ΣpKiq’s. Notice that �-
edges can skip clusters, hence �pKq contains a maximal Ñ cut. The same holds
for �pMq.
In case at least one child Ki has the �pτ,Ñp. . .qq structure, the corresponding
cluster ΣpKiq is a chain itself. By Rule T�, at least one child of Ki (say Kip) is a
pivot according to Lemma 5.42. By semantics of Ñ, ΣpKiq is a pivot scope. This
holds for all such ΣpKiq, hence ΣpKwq � ΣpMwq.

` � ^ In K, ΣpKwq^ ΣpKv�wq or ΣpKwq ?̂ ΣpKvq. By Lemma 5.49 and as LpKq �
LpMq, ΣpMwq^ ΣpMv�wq or ΣpMwq ?̂ ΣpMvq. Hence, ΣpKwq � ΣpMwq.

` � Ø Let Kw � bpKw1 . . .Kwpq. Perform case distinction on b:

b � � and a child Mi is τ . The Ø operator has a distinct directly follows graph
footprint, on which �pτ, .q has no influence. Therefore, refer to the other
cases as if b is the child of �pτ, .q, using the requirements of Ccoo.

b � � and no child Mi is τ . By semantics of �, no end activity of Kw1 has a
connection to any start activity of any other Kwj . Thus, as M contains an
interleaved activity partition, ΣpKwq � ΣpMwq.

b � Ñ Similar to the � case.

168

5

A
b
st
ra
ct
io
n
s

5.6 Language Uniqueness with Optionality & Inclusive Choice

b � ^ and b � _. By requirements Ci.2 and Ccoo.4, at least one child of Kw

has disjoint start and end activities. Take such a child Kwy , and consider
two activities: a R StartpKwy q and b P ΣpKwqzKwy . By semantics of ^ and
_, b� a. Then, by Lemma 5.10, a P ΣpMwq and b P ΣpMwq. This holds
for all b and by symmetry for StartpKwy q Y EndpKwy q. By semantics of Ø,
non-start non-end activities only have connections with start/end activities of
Kw. Therefore, ΣpKwqz pStartpKwqYEndpKwqq � ΣpMwq. Hence, ΣpKwq �
ΣpMwq.

b � Ø Excluded by Requirement Ci.3.

b � 	 By semantics ofØ, non-start non-end activities only have connections with
start/end activities of Kw. Therefore, ΣpKwqzpStartpKwq Y EndpKwqq �
ΣpMwq. All activities P StartpKwq Y EndpKwq have connections from/to
EndpKw2q Y StartpKw2q, thus StartpKwq Y EndpKwq � ΣpMwq. Hence,
ΣpKwq � ΣpMwq.

By symmetry, ΣpKwq � ΣpMwq.

` � _ In K, ΣpKwq_ ΣpKv�wq. By Lemma 5.48 and as LpKq � LpMq, it holds that
ΣpMwq_ ΣpMv�wq. Hence, ΣpKwq � ΣpMwq.

` � 	 By Requirement Ccoo.2, children of 	 are not allowed to be optional. Therefore,
Lemma 5.25 applies.

By contradiction, we conclude LpKq � LpMq.

Lemma 5.53 (Language uniqueness for Ccoo). For trees of class Ccoo, the normal form
of Definition 5.1 is language unique: for any two reduced process trees K � M of Ccoo,
LpKq � LpMq.

The proof for this lemma is similar to the proof of Lemma 5.13, using lemmas 5.51
and 5.52.

As a side effect of the proofs of lemmas 5.51, 5.52 and 5.53, we conclude that the
directly follows graphs and coo relations are unique:

Corollary 5.54 (Directly follows graph and coo relations uniqueness). There are no
two different reduced process trees of Ccoo with equal directly follows graphs and equal
coo relations: for all reduced K �M of Ccoo, �pKq ��pMq or coopKq � coopMq.

In this section, we have analysed the influence of the �pτ, .q construct and addressed
the_ operator: the�pτ, .q construct explicitly introduces the empty trace to the language
of a process tree, but its influence can be larger: we introduced a stricter footprint to
address nested sequences (Lemma 5.42), and we introduced the new coo abstraction and
coo relations to be able to distinguish inclusive choice and concurrency, such that these
can be arbitrarily nested as well. Due to Corollary 5.54, discovery algorithms can use
the stricter footprint and the new abstraction to identify these constructs.

Several combinations of constructs were excluded in this section: for nested _ and ^
operators, we introduced a new abstraction, but for Ø, we limited the class of process
trees Ccoo. An interesting subject of further study would be to reverse these, i.e. to
identify a new abstraction to distinguish more nestedØ operators and find requirements
such that the new abstraction is not necessary for _ and ^.

Future work 5.55: Identify requirements such that nested _ and ^ can be handled
without coo abstractions, and identify an abstraction to identify nested Ø.

169

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

Furthermore, as shown in Section 5.1, the reduction rules of Definition 5.1 are not
strong enough to reduce all language equivalent trees to the same normal form, e.g. we
have not yet identified rules to reduce the following trees to a common normal form:

	

τÑ

	

τb

�

aτ

future work
ðùùùùùñ 	

τÑ

b�

aτ

Therefore, language uniqueness of the current reduction rules does not hold for such
trees.

5.7 Language Uniqueness with non-Atomic Pro-
cess Models

In this chapter, we analyse abstractions of languages, which are used by discovery algo-
rithms to not have to consider a full event log, as event logs are typically assumed to
be incomplete. A desirable property of such abstractions is that they represent a large
class of models, such that no two different models or languages of the class have the same
abstraction. Furthermore, we studied process trees and established a one-to-one mapping
between the semantics and syntax of process trees, by introducing a normal form and
showing that for a large class of trees, the abstraction is unique to the normal form, i.e.
there are no two trees with different normal forms and the same abstraction. Using the
one-to-one mapping, discovery algorithms can focus on finding a tree for an abstraction,
disregarding unimportant syntactical variations in models having the same language.

The abstractions addressed before include directly follows graphs, minimum self-
distance graphs and concurrent-optional-or relations. For each of these abstractions, we
proved language uniqueness for a certain class of process trees. In this section, we address
a different variant of process models: non-atomic process models, i.e. in the following,
we consider how to describe non-atomic activity executions: the execution of an activity
starts at some point, and at a later point it completes, represented by two different but
related steps in the model/symbols in the language.

In the event logs used in the previous parts of this chapter, each execution of an
activity is atomic, i.e. instantaneous. However, as discussed in Chapter 2, event logs
might contain information about the start and completion of executions of activities,
i.e. they provide a duration and make these executions non-atomic. In this section,
we study abstractions for non-atomic process models, i.e. process models in which the
steps consist of a distinguishable start and completion step. For instance, in Petri nets,
steps are atomic, i.e. the occurrence of a Petri net transition labeled with some activity
a denotes an atomic and instantaneous execution of a. In this section, we extend the
notions of process trees and Petri nets to include non-atomic activities, and we explore the
limitations of these formalisms. Non-atomic Petri nets and process trees require adapted
abstractions: we introduce an adapted directly follows graph and study its limitations.
Furthermore, in non-atomic process trees, single activities in a concurrent or interleaved
relation have different languages, a difference that cannot be noticed using the directly
follows abstraction. Therefore, we introduce a new abstraction in which these types of
behaviour have different footprints. We introduce these footprints and a class of process

170

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

a

(a) Non-atomic transition a.

as ac

(b) Expanded transition a.

Figure 5.25: Non-atomic Petri nets.

trees that drops a restriction of Ci, and we prove for this class that two trees having
different languages also have different abstractions.

We introduce the non-atomic process model formalisms in Section 5.7.1. In Sec-
tion 5.7.2, we explore the boundaries of non-atomic formalisms. We adapt the directly
follows abstraction in Section 5.7.3, and introduce the new abstraction in Section 5.7.4.
In Section 5.7.5, we introduce the class of trees, for which we prove language uniqueness
in Section 5.7.6.

5.7.1 Non-Atomic Process Models
As shown in the previous sections, process discovery formalisms typically assume that
their execution steps are atomic. However, sometimes event logs contain more informa-
tion, i.e. in event logs adhering to the XES standard [77], events can be annotated as
being start or completion events (for more information, please refer to Section 2.3.2). A
simple strategy for a discovery algorithm would be to treat start and completion events
as different activities, i.e. for an an activity a, consider a start event as and a completion
event ac as the “activities”, such that likely no further change in the algorithm is neces-
sary. However, this poses a new challenge for discovery algorithms: these as and ac need
to be related and kept in sync in the discovered model, e.g. a model like Ñpac, asq would
make little sense. Thus, discovery algorithms face the challenge of keeping the start and
completion events together, such that each trace of the model is consistent. That is, for
each activity a in the model there should be a one-to-one mapping between as and ac
events, such that each start event in the mapping appears before its mapped end event
(see Definition 2.13).

We apply a different strategy: we support non-atomic steps by using higher-level
building blocks that denote the execution of activities. These higher-level blocks consist
of low-level start and completion steps, but the discovery algorithm can safely ignore
these. If the discovery algorithm discovers these higher-level building blocks, consistency
is guaranteed as long as the translation from higher-level to low-level constructs is con-
sistent. A downside of this choice is that constraints such as ‘a can start as soon as b has
started’ cannot be expressed.

For Petri nets we use a non-atomic transition, as shown in Figure 5.25a. A non-
atomic transition can be directly translated to a normal Petri net construct, as shown
in Figure 5.25b. We refer to this translated net as an expanded net. For Petri nets, a
similar technique has been proposed in [19].

For process trees, we introduce the non-atomic leaf or non-atomic activity, which we
denote with ~a for an activity a. A non-atomic leaf can be expanded into a normal process

171

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

as

ac

bs bc

Figure 5.26: A counterexample showing that non-atomic Petri nets are not
restricted to regular languages.

tree construct by putting as ac in sequence:

Definition 5.56 (non-atomic process tree). Let a be an activity, then

~a � Ñ

acas

A process tree with non-atomic leaves is a non-atomic process tree.

A non-atomic process trees is inherently consistent, and denotes a process tree in
which execution of activities takes time. Notice that in this section, we consider process
trees without any atomic leaf. However, there is no reason why a process tree could have
both atomic and non-atomic leaves.

5.7.2 Representational Bias of Non-Atomic Models
The concept of non-atomic process models brings some limitations. First, the notion
of regular languages suddenly becomes very limiting: as all regular languages can be
constructed using |, � and �, there is no concurrency. Luckily, both non-atomic Petri nets
and non-atomic process trees can express concurrency and therefore are able to express
more languages than non-atomic regular languages.

Second, non-atomic trees and workflow nets cannot express all expanded regular lan-
guages. As a counterexample, consider Figure 5.26. In this example, as is first executed,
after which b can start concurrently. The restriction that b can start after a started is not
expressible in non-atomic process models, as it inherently involves targeting the ‘hidden’
start in a non-atomic activity, regardless of the formalism used.

Third, neither non-atomic nor expanded non-atomic process trees nor sound work-
flow nets can express unbounded concurrency. For instance, consider the infinite set
of traces L � txas, as, . . . ac, acyu, i.e. a is concurrent with itself arbitrarily often. The
YAWL [82] language supports unbounded concurrency by means of ‘multiple-instance
activities’. However, correctly handling multi-instance activities requires support from
the BPM system, as keeping track of the number of started multiple-instance activities
cannot be modelled in a regular language, and hence in neither process trees nor sound
workflow nets [101]. This choice for absence of unbounded concurrency also implies
that a non-atomic flower model cannot exist, i.e. there is no non-atomic process tree or
sound workflow net of which the language contains only and all consistent traces over an
alphabet.

Fourth, the language of any non-atomic process model can obviously only contain
consistent traces. Therefore, a restriction applies to fitness: on logs with inconsistent

172

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

traces, perfect traditional fitness is unachievable, e.g. there is no non-atomic process
model on which the trace xas, asy is fitting. Therefore, we assume that all non-atomic
traces are consistent.

5.7.3 Non-Atomic Directly Follows Graphs & Footprints

Atomic directly follows graphs were not defined over start and completion events. There-
fore, in this section we define directly follows graphs on non-atomic languages, such that
the footprints and formal results of the previous sections apply to non-atomic languages
as well.

Similar to an atomic directly follows relation, a non-atomic directly follows relation
(�̃) is a relation of activities and the special elements J denoting start of traces and
K denoting completion of traces. The part of the relation in which only activities are
involved is the non-atomic directly follows graph. Let ~L be a non-atomic language.

In a trace, an activity instance f follows an activity instance e directly if there is
no full activity instance between ec and fs: a full activity instance is an unmatched
completion event or a combination of a start and completion event of the same activity.
Furthermore, an activity instance e that is not preceded by a full activity instance is a
start activity instance. Then, a start activity has a start activity instance in at least one
trace in ~L. Similarly, an activity instance after which no full activity instance of another
activity occurs in a trace is an end activity instance. Its corresponding activity is an end
activity.

We give an example, which is shown in Figure 5.27. Let ~L66 be a non-atomic language
consisting of the single trace t � xas, as, ac, bs, bc, cs, ac, ccy be a non-atomic trace. The
start activities of ~L66 are a and b, but not c as bc precedes cs in the only trace t. Similarly,
the end activities are a and c.

Formally,

Definition 5.57 (Non-Atomic Directly follows Relation). Let ~L be a consistent non-
atomic language. Then,

a �̃ bô DtP~L t � x. . . , ac, . . .1 , bs, . . .y

such that Dd x. . . ds . . . dc . . .y � . . .1

J �̃ aô DtP~L t � x. . .2 , as, . . .y

such that Dd x. . . , dc, . . .y � . . .2

a �̃K ô DtP~L t � x. . . , ac, . . .3y

such that Dd x. . . , ds, . . .y � . . .3

J �̃K ô DtP~L t � ε

Notice that it is not necessary to know which start event belongs to which completion
event. We chose not to make this assumption to increase the class of event logs the
techniques will be able to handle.

The non-atomic directly follows relation resembles the atomic relation: using the
mapping of non-atomic events (a) to non-atomic events (as followed by their ac), the
graphs of definitions 5.57 and 2.14 are equivalent. As atomic process trees only differ
in leaves from non-atomic trees (and these leaves have a straightforward translation to
atomic trees), all directly follows footprints for tree operators introduced earlier in this
chapter (e.g. Lemma 5.21) apply as well.

173

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

a

a

b c

a

a

b c

(a) A graphical representation of ~L66 showing
non-atomic executions of activities a, b and c over-
lapping in time. Notice that we do not assume
to know which start belongs to which completion
event, thus two explanations are possible.

a

b

c

(b) �̃ of ~L66.

a

b

c

(c) Concurrency
graph (‖) of ~L66.

Figure 5.27: Graphs of a trace ~L66 � rxas, as, ac, bs, bc, cs, ac, ccys.

A difference in semantics between atomic and non-atomic trees can be found in
the Ø and ^ operators with leaves as children: in non-atomic semantics, these rep-
resent the same behaviour, while in non-atomic semantics these children can now be
executed concurrently. For instance, the language of the atomic treesØpa, bq and ^pa, bq
is txa, by, xb, ayu, while the languages of their non-atomic counterparts are:

LpØp~a,~bqq � txas, ac, bs, bcy, Lp^p~a,~bqq � txas, ac, bs, bcy,
xbs, bc, as, acyu xas, bs, ac, bcy,

xas, bs, bc, acy,

xbs, bc, as, acy,

xbs, as, bc, acy,

xbs, as, ac, bcyu

As shown before, these process trees have the same directly follows graph, and there-
fore no directly follows footprint can distinguish them. However, non-atomic languages
provide information about concurrency as well. Next, we introduce an abstraction and
footprints to benefit from this information, after which we prove that this abstraction is
able to distinguish a larger class of process models than considered before.

5.7.4 Concurrency Graphs & Footprints

To distinguish interleaved and concurrent behaviour, in this section we introduce a new
abstraction that describes concurrency explicitly: the concurrency graph. In the remain-
der of this section, we introduce footprints of process tree operators in the concurrency
graph abstraction, and we introduce a class of process trees for which we later prove
that no two different reduced trees of this class have the same directly follows graph and
concurrency graph.

174

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

Definition 5.58 (Concurrency Graph). Let ~L be a consistent non-atomic language.
Activities a and b are concurrent if somewhere in ~L, activity instances of a and b are
executed and these instances overlap in time:

a ‖ bô DtP~L t � x. . . as . . .1 bs . . . ac . . .y

such that |ras P . . .1s| ¥ |rac P . . .1s| _
t � x. . . as . . .1 bc . . . ac . . .y

such that |ras P . . .1s| ¥ |rac P . . .1s| _
t � x. . . bs . . .1 as . . .2 ac . . . bcy

such that |ras P . . .1 � . . .2s| ¥ |rac P . . .1 � . . .2s|

An example is given in Figure 5.27c: as a overlaps in time with b, this witnesses
that a is concurrent with b (a ‖ b). This also illustrates that we do not need to assume
knowledge of which as belongs to which ac, as for the concurrency relation, it is only
important that there is an activity instance of a being executed when b starts, not which
activity instance of a. Similarly, a ‖ c, but b �‖ c as these do not overlap in time.

Notice that as we assume all traces to be consistent, ‖ is commutative, i.e. a ‖ b ô
b ‖ a. We use ‖p~Lq and ‖pMq for the complete concurrency relation over an non-atomic
language ~L or a non-atomic process tree M .

Concurrency Footprints

We first give the relevant characteristic footprints, after which we introduce a new, larger,
class of process trees and prove language uniqueness for this class.

Using this concurrency graph abstraction, we introduce concurrent, interleaved and
loop footprints:

Definition 5.59 (Concurrency footprints). Let ‖ be a concurrency graph and let c �
p`,Σ1, . . .Σnq be a cut, consisting of a process tree operator ` P tØ,^,	u and a partition
of activities with parts Σ1 . . .Σn such that Σp‖q �

�
1¤i¤n Σi and @1¤i j¤n ΣiXΣj � H.

• c is an concurrent cut if ` � ^ and

^.1 All activities in all parts are connected to all activities in all other parts in
the concurrency graph:
@1¤i n,1¤j¤n,i�j @aPΣpMiq,bPΣpMjq a ‖ b

ΣpM1q

ΣpM2q

. . . ΣpMnq

• c is an interleaved or loop cut if ` � Ø or ` � 	 and

Ø	.1 No activities have connections to other parts in the concurrency graph:
@1¤i¤n,1¤j¤n,i�j @aPΣpMiq,bPΣpMjq a �‖ b

175

5

A
b
st
ra
ct
io
n
s

5.7 Language Uniqueness with non-Atomic Process Models

ΣpM1q ΣpM2q . . . ΣpMnq

Lemma 5.60 (Concurrency footprints). LetM � `pM1, . . .Mmq in which ` is a process
tree operator P t�,Ñ,^,	,Øu be a process tree for which Requirement Cb.2 holds, i.e.
M does not contain duplicate activities. Then, the footprints of Definition 5.60 hold, i.e.
‖pMq contains the footprint of the cut p`,ΣpM1q, . . .ΣpMnqq.

5.7.5 A Class of Trees: Clc

Previously in this section we showed that directly follows graphs cannot distinguish con-
current and interleaved activities, even if these are not atomic. We introduced non-atomic
process trees and non-atomic directly follows graphs, and argued that the normal, atomic,
footprints are valid for these new graphs. Furthermore, we introduced the concurrency
graph abstraction. In this section, we extend the class of process trees Ci for which we
will prove language uniqueness, i.e. that two different reduced trees of this new class Clc

have different non-atomic directly follows graphs or different concurrency graphs.

Definition 5.61 (Class Clc). Let M be a non-atomic process tree. Then, M belongs to
Clc if all requirements except Requirement Ci.4 hold for all reduced and expanded subtrees
of M as if they were normal subtrees.

Compared to Ci, Requirement Ci.4 is dropped: the concurrency graph allows for the
distinction of concurrent subtrees of interleaved trees.

Requirement Cb.3 cannot be dropped. Even though the concurrency footprints can
distinguish 	 and ^ in all cases, it does not aid in distinguishing the activity partition
of some 	 trees (see the discussion of the LC-property in Section 5.5.4).

5.7.6 Language Uniqueness
In this section, we have analysed languages with non-atomic activities, i.e. activities
that take time and have an explicit start and completion moment. We identified the
limitations of non-atomic directly follows graphs and introduced a new abstraction and
footprints. In the remainder of this section, we first introduce a new normal form for
these non-atomic trees. Second, we prove that two trees of Clc in this new normal form
have a different language, using the new concurrency footprints.

As we can now distinguish concurrency and interleaving for single activities, we need
to adjust the set of reduction rules that lead to a normal form.

Definition 5.62 (Reduction rules for non-atomic process trees). The reduction rules
for non-atomic trees coincide with the rules of Definition 5.1, excluding Rule CØ, i.e.
Øp ~a ,~bq cannot be reduced to ^p ~a ,~bq.

Correctness of these rules, i.e. applying a rule will not change the language of the
tree, follows from Definition 5.1: all rules except Rule CØ pose no restrictions on their
subtrees, and non-atomic trees have a direct translation into atomic trees. The exception
is Rule CØ, which requires its subtrees to be leaves, thus this rule is not applicable
to non-atomic process trees. Obviously, this set of reduction rules is still terminating,
locally confluent, confluent and thus canonical, as of Corollary 5.6.

Finally, we prove that for trees of class Clc, the normal form of Definition 5.62 is
language unique.

176

5

A
b
st
ra
ct
io
n
s

5.8 Classes of Process Trees: Revisited

Lemma 5.63 (Language uniqueness for Clc). Take two process trees of Clc: K �
`pK1, . . .Knq and M � bpM1, . . .Mmq such that K �M . Then, LpKq � LpMq.

Proof. We prove this lemma in three steps: first, we show that if the operators ` and
b are different, then the abstractions of the trees are different. Second, we prove that
if their activity partitions are different, then their abstractions are different. Third, we
reuse Lemma 5.13 that says that for any two structurally different trees, one of the
preceding cases holds.

Given the close resemblance with lemmas 5.23 and 5.24, we only need to address
some cases of these lemmas:

` � ^ We need to consider the casesMx � 	 andMx � Ø. For both, ΣpKxq � ΣpMxq
follows from argumentation similar to the �-case, however using the ‖-relation
instead of the �-relation.

` � 	 We only need to consider the case b � ^, which trivially holds using the ‖-
relation.

` � Ø We only need to consider the case b � ^, which trivially holds using the ‖-
relation.

Corollary 5.64 (concurrency uniqueness). All reduced process trees of Clc have unique
combinations of directly follows graphs and concurrency graphs.

Using this final corollary, discovery algorithms can distinguish process trees of Clc

using the directly follows and concurrency relations. In the next section, we explore some
more boundaries of non-atomic process models. The non-atomicity concept can easily
be combined with the minimum self-distance concept, by only considering completion
events in the computation of minimum self-distances.

Another way to derive a concurrency graph from an event log is to use the intermedi-
ate concept of partial orders, i.e. instead of considering a trace to be a fully ordered list of
events, the events have predecessors and successors. Partial orders can be derived from
timestamps, e.g. to resolve timestamp accuracy issues, resources, e.g. assuming resources
are busy all the time, or other data fields. For more information about partial orders and
their use in process discovery, please refer to [104]. To show that the analysis performed
in this chapter, e.g. Corollary 5.64, holds for partially ordered traces, one could verify
that concurrency graphs derived from partially ordered traces are semantically equivalent
to the concurrency graphs introduced in this section.

5.8 Classes of Process Trees: Revisited

In process discovery, it is typically assumed that an event log does not contain all possible
behaviour. The model should generalise and not just show the observed behaviour.
Moreover, one cannot assume to have seen all possible traces. To infer a loop one need to
see infinitely many traces. Moreover, concurrency constructs may generate much more
traces than the number of observed traces. For instance, there are 10! � 3.628.800
possibilities to execute 10 activities concurrently, hence an event log with all behaviour
would need to contain at least 3.628.800 traces. Notice that even if the log would have
more traces the likelihood to have observed all traces is close to zero. Therefore, instead
of considering an event log directly, many process discovery algorithms first construct

177

5

A
b
st
ra
ct
io
n
s

5.8 Classes of Process Trees: Revisited

an abstraction of the behaviour in the event log, and use that abstraction to discover
a model. As a consequence, typically only all behaviour of the abstraction needs to be
present in the event log. For instance, a directly follows graph abstraction of 10 concurrent
activities has only 10 � 9 � 90 edges, so an event log with all behaviour according to this
abstraction could be smaller than 90 traces instead of at least 3.628.800.

Using an abstraction allows discovery algorithms to generalise behaviour, however
there might be multiple languages with the same abstraction, which therefore cannot be
distinguished, and hence might reduce precision. In this chapter, we analysed what classes
of languages have equivalent abstractions, and therefore cannot be discovered reliably by
algorithms that use these abstractions. For several abstractions, we introduced a class of
languages such that no two languages of the class have the same abstractions.

Furthermore, in this chapter we addressed the many-to-many relation between se-
mantics and syntax of process trees: there can be many process trees with the same
language, and we are not interested in the difference between two process models if they
have the same language. Therefore, we introduced a set of reduction rules for process
trees, such that applying these rules exhaustively yields a normal form. Ideally, these
normal forms have one-to-one mapping to languages, i.e. for each language in our class
of process tree languages there is precisely one process tree in normal form and vice
versa. We proved this property for several classes of process trees using abstractions,
i.e. we proved that two process trees in normal form have different abstractions. This
establishes the close relation between the syntax of process trees in normal form, the
abstraction under consideration and the semantics (i.e. the language) of process trees
(as the abstractions are language based, obviously two different abstractions represent
different languages).

In this section, we summarise the classes of process trees that were addressed in this
chapter, illustrate the hierarchy between these classes and show a theoretical boundary
to these abstractions (Corollary 5.65).

Figure 5.28 shows the classes of process trees addressed in this chapter, and shows
their hierarchy. Furthermore, it shows which abstractions are sufficient such that no two
process trees of the class have the same combination of abstractions, and a reference to
the proof of this property.

The edges in Figure 5.28 denote the inclusion of classes, and follow directly from the
definitions of these classes.

The class Cb consists of process trees with the four basic operators �, Ñ, ^ and 	,
which can be arbitrarily nested, except for concurrency and activities under loops. We
included this class as it resembles the class of unlabeled free-choice Petri nets, which is
used by many process discovery algorithms (e.g. α, HM). However, the class of unlabeled
free-choice Petri nets is incomparable with Cb, as witnessed by Figure 5.29. Figure 5.29
illustrates that the process tree ^pa, bq, which is of Cb cannot be translated to a unlabeled
free-choice Petri net: either the thread of control is split at the start of the process, which
requires a silent (thus, labeled with an explicit “no label”) transition, or all possible traces
of the concurrency are explicitly denoted, which inherently introduces duplicated (thus
labeled) transitions. Hence, the class of languages that can be expressed using process
trees of Cb is not a subset of unlabeled free-choice Petri nets.

The other way around, Figure 5.30 shows an unlabeled free-choice Petri net. There
is no process tree of Cb with the same language, as nesting of sequential and exclusive
choice construct is inherently non-block-structured. Therefore, the only way to represent

178

5

A
b
st
ra
ct
io
n
s

5.8 Classes of Process Trees: Revisited

Cb

Ci

Cm

Ccoo

Clc

regular languages

Turing complete languages

directly-follows relation Corollary 5.14

directly-follows relation Corollary 5.26

directly-follows relation
minimum self-distance graph Corollary 5.34

directly-follows relation
coo relations

Corollary 5.54

directly-follows relation
concurrency graph Corollary 5.64

none from event logs Corollary 5.65

Figure 5.28: A hierarchy of the classes of process trees used in this chapter,
the abstractions that distinguish their trees and a reference to where this was
proven.

a

b

(a) Using silent transitions.

a

b

b

a

(b) Using labeled activities.

Figure 5.29: Two Petri nets with the same language as ^pa, bq.

179

5

A
b
st
ra
ct
io
n
s

5.8 Classes of Process Trees: Revisited

a b c

d

e

Figure 5.30: An unlabeled free-choice Petri net, which cannot be translated
to a process tree without duplicate activities.

this Petri net in a process tree is by duplication of activities, e.g. �

Ñ

�

eÑ

cb

a

Ñ

cd

. Hence, the

class of unlabeled free-choice Petri nets is not a subset of the class of languages that can
be expressed using process trees of Cb, and hence, these classes are incomparable.

The class Ci adds the interleaved operator to the basic four operators of Cb. As
shown in Section 5.4, this operator necessitates either duplication of activities (to produce
a language-equivalent Petri net) or a (non-free choice) critical section place. The class
Ci does not require a larger abstraction: as for Cb, the directly follows relation suffices.
However, the interleaved operator cannot be nested with itself or with concurrency, as
the difference between such trees is not observable from a directly follows graph.

The following three classes of process trees (Cm, Ccoo and Clc) all extend Ci by drop-
ping restrictions, in particular restrictions related to concurrency, thereby all requiring
new abstractions. With Cm we attempted to drop the restriction of Cb that concur-
rency cannot be nested under loop operators. This was partially achieved: concurrent
behaviour can be distinguished from loop behaviour using the minimum self-distance
graph, but we did not identify a footprint to distinguish loops from loops with a different
activity partition yet. We believe that such a footprint exists, but we have not found
a counterexample or proof yet (Conjecture 5.32). Second, the class Ccoo adds both the
inclusive choice operator and a skip construct to Ci. The inclusive choice operator has
the same directly follows footprint as the concurrency operator, thus a new abstraction
is necessary. This abstraction uses the occurrences of subtrees to distinguish skipping
constructs, concurrency and inclusive choices. Finally, the class Clc adds non-atomic
activities to Ci, i.e. activities that take time. As a consequence, concurrency becomes
explicit: non-atomic activities can overlap in time. This explicit concurrency notion is
captured by the concurrency graph abstraction, and used to allow concurrency nested
under interleaving.

As a final step in this chapter, we show a limit to what can be achieved using event
logs and language abstractions. In [75], it was proven that a regular language cannot
be rediscovered from an event log by any process discovery technique, as an event log
contains only traces from the system. In order to rediscover all regular languages, event
logs should contain “negative” traces, i.e. traces that do not adhere to the system, and
these negative traces need to be clearly marked. The unrestricted class of process trees

180

5

A
b
st
ra
ct
io
n
s

5.8 Classes of Process Trees: Revisited

coincides with the class of regular languages, as each regular language can be expressed
using |, � and � (see Section 2.2.1), which correspond to the process tree constructs �, Ñ
and 	pτ, . . .q). Therefore, the unrestricted class of process trees cannot be rediscovered
from event logs without the use of negative traces. Consequently:

Corollary 5.65 (language-uniqueness for regular languages). If there is a language ab-
straction such that no two different regular languages have the same abstraction, then
this abstraction cannot be derived from an event log.

In the next chapter, we introduce several process discovery algorithms that use the
abstractions presented in this chapter. Using the language uniqueness properties, we will
prove that if the event log contains the entire abstraction that an algorithm uses, then
the discovery algorithm rediscovers a process tree with the same abstraction.

181

182

6Discovery Algorithms

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

In Chapter 4, we introduced the IM framework, which recursively discovers process trees
from event logs. Every algorithm that implements the IM framework is characterised by
four functions: one to detect cuts (i.e. process tree operators) in the event log, one to split
the event log, one to handle base cases (e.g. individual events), and one as a fall through
(i.e. to handle exceptional cases). Furthermore, we discussed several guarantees that the
IM framework supports, such as perfect fitness, perfect log precision and rediscoverability.
As many process discovery algorithms use an abstraction, we studied rediscoverability in
terms of these abstractions. We showed that a desirable property of these abstractions is
that no two models with different languages have the same abstraction (for a certain class
of systems). In Chapter 5, we studied this property, language uniqueness (Definition 4.4),
for combinations of abstractions and process trees, thereby showing the expressive power
and limits of these abstractions.

In this chapter, we introduce actual process discovery algorithms. As argued in
Chapter 3, a process discovery algorithm should ideally adhere to certain requirements
(see sections 3.2.4 and 3.3.3):
• all discovered models should be sound DR1,
• balance log-conformance measures DR4,
• distinguish deviating, infrequent and incomplete behaviour DR3,
• be fast DR5,
• and provide rediscoverability on systems with several challenging constructs DR2,

DR6, DR7, DR8 and DR9.
Furthermore, we argued that no single discovery algorithm can satisfy all use cases and
all these requirements.

Therefore, in this chapter we introduce several discovery algorithms. For each algo-
rithm, we describe how it implements the IM framework, i.e. we first give an example,
after which we describe their base case, cut detection, log splitting and fall-through
functions. For each of these functions, we show whether they preserve fitness and log
precision locally. We finish each algorithm with a discussion of guarantees provided by
the algorithms, using the rediscoverability framework of Section 4.2.2.

We start with a basic discovery algorithm (Section 6.1), that guarantees perfect fit-
ness, maximises log precision and guarantees rediscoverability. Rediscoverability is guar-
anteed for systems consisting of the four basic operators �,Ñ, ^ and 	 adhering to some
restrictions (i.e. from Cb), and assuming that the event log is fitting with respect to and
has the same directly follows graph as the system. Even though this basic algorithm has
rather strong assumptions on the input log for rediscoverability, it illustrates the prin-
ciples of the IM framework, and we extend it in subsequent algorithms to handle event
logs with more challenges. One such challenge is deviating or infrequent behaviour, i.e.
behaviour that is not in the system model but ends up in the event log anyway (deviating
behaviour) or behaviour of the system that occurs so infrequently that the user may want
it to be excluded from the model, e.g. to obtain a “80% model” (infrequent behaviour).
In Section 6.2, we show that deviating or infrequent behaviour might prevent rediscovery
of the original system, and we show a variant of the basic algorithm that can filter out
infrequent behaviour and thereby becomes suitable to more practical use cases.

Another challenge is incompleteness of information, i.e. the event log not containing
enough behaviour of the system model to rediscover that system model. In Section 6.3,
we show how missing information influences the basic discovery algorithm, and we show
how this can be solved in the IM framework: we introduce an algorithm to deal with less
information than the basic algorithm.

184

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

In Section 6.4, we show how to extend the algorithm to discover the remaining process
tree operators used in this thesis. The basic algorithm is unable to discover interleaved
Ø, inclusive choice _ constructs and is not proven to handle silent activity τ constructs,
and we discuss extensions to discover these constructs. Furthermore, we show how the
IM framework can handle non-atomic event logs (Section 6.5).

In Chapter 8, we will show that algorithms of the IM framework are efficient and
capable of handling event logs with millions of events and hundreds of activities on
common (anno 2016) hardware. However, the IM framework requires the event log to
reside in main memory, and therefore has difficulties handling event logs of billions of
events and thousands of activities. Therefore, in Section 6.6, we show that ideas and
parts of the IM framework can be applied in algorithms that do not implement the
full framework: we introduce an algorithm that applies a divide-and-conquer strategy
on directly follows graphs, instead of on event logs. A directly follows graph can be
computed by a single pass over the event log, and therefore the algorithms introduced in
Section 6.6 are able to handle much larger event logs, at the cost of using less information
of the event log. In our evaluation (Chapter 8), we will show that using less information
manifests positively when dealing with infrequent and deviating behaviour (as using less
information may decrease the influence of such behaviour), while having a negative effect
on incomplete behaviour handling.

In Section 6.7, we describe the implementation of these algorithms in the ProM
framework, after which the chapter is concluded in Section 6.8, in which we summarise
the discussed process discovery algorithms, provide an overview when to choose which
miner, and discuss the guarantees provided by each algorithm.

6.1 Inductive Miner (IM)

In this section, we introduce a basic algorithm that uses the IM framework: the Inductive
Miner (IM). This algorithm guarantees to preserve fitness and aims to maximise preci-
sion, i.e. for any input event log, IM discovers a model that has at least the behaviour
of the log. Furthermore, IM guarantees rediscoverability, i.e. is able to rediscover the
language of a system, if the event log fits the system and the system and the event log
have the same directly follows graph, and if the system is representable by a process tree
using the four operators �, Ñ, ^ and 	 and adhering to some restrictions, i.e. of class
Cb, which was defined in Section 5.2.1.

Rather than being a practical algorithm, IM illustrates the IM framework by provid-
ing a straightforward implementation, for which we prove local fitness preservation and
rediscoverability, and that illustrates the boundaries of local log-precision preservation.

We start with an example, after which we explain how IM uses the parameters func-
tions of the IM framework: cut detection, log splitting, base cases and fall throughs
in Section 6.1.2. The section is finished with a summary of these four functions (Sec-
tion 6.1.2) and a discussion of the guarantees provided by IM (Section 6.1.3).

6.1.1 Example
We revisit the example given in Section 4.1.3, considering the event log

L67 � rxa, b, c, d, ey, xa, d, b, ey, xa, e, by, xa, c, by, xa, b, d, e, cys

Following the steps of the IM framework, IM first considers a base case, however
as L67 contains multiple activities, the baseCaseIM function does not detect a base

185

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

a
b

c

d

e

(a) � of L67.

b

c

d

e

(b) � of L69.

c

d

e

(c) � of L71.

Figure 6.1: Directly follows graphs of logs used in the recursion. The dashed
red curves denote cuts.

case in L67. Second, cut detection is attempted, for which IM considers the directly
follows graph abstraction, which is shown in Figure 6.1a. In the cut detection, IM
looks for the footprints as defined in Definition 5.9, e.g. for L67, the sequence cut c1 �
pÑ, tau, tb, c, d, euq is present, as all edges cross this line in one direction (hence, the
sequence). Third, using this cut, the log is split accordingly, e.g. splitLogIMpL67, c1q
splits the log in sublogs L68 and L69 as follows:

L68 � rxay
5s

L69 � rxb, c, d, ey, xd, b, ey, xe, by, xc, by, xb, d, e, cys

Fourth, IM records the choice and recurses, i.e. IMpL67q � ÑpIMpL68q, IMpL69qq.
We first consider the recursive step on L68. As L68 consists of a single activity (a),

baseCaseIMpL68q returns a base case, being the process tree a:

baseCaseIMpL68q � a

On L69, no base case applies as it contains multiple activities, and thus cut detection
is applied to its directly follows graph, which is shown in Figure 6.1b. In this graph, the
concurrent cut p^, tbu, tc, d, euq is present, as all edges that could cross the dashed red
line in Figure 6.1b are present. Using this cut, the log is split: splitLogIMpL69, c3q �
L70, L71 with

L70 � rxby
5s

L71 � rxc, d, ey, xd, ey, xey, xcy, xd, e, cys

The choice recorded is IMpL69q � ^pIMpL70q, IMpL71qq.
Log L70 contains a single activity and is again a base case, i.e. IMpL70q � b.
Log L71 does not contain a base case, and a cut cannot be found as its directly follows

graph, shown in Figure 6.1c, does not contain a footprint of any of the four operators �,
Ñ, ^ or 	. Therefore, IM applies a fall through. The fall-through function must return
a process tree, and fallThroughIM has several options; IM aims to get a perfect fitness
and an as high as possible log precision, thus all fall throughs preserve fitness, but the
most precise one is chosen: we will discuss this in more detail in Section 6.1.2. For L71,

186

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

fallThroughIM takes activity d out, puts it concurrent and splits the event log, i.e.
IMpL71q � ^pIMpL72q, IMpL73qq, with

L72 � rxd
3y, ε2s

L73 � rxc, ey, xey
2, xcy, xe, cys

On L73, no base case applies, however the cut p^, tcu, teuq is detected, and the log is
split into L74 and L75:

L74 � rxcy
3, ε2s

L75 � rxey
4, εs

The log L74 contains only a single activity. However, it contains an empty trace ε
as well, which cannot be ignored as IM aims to preserve fitness. Therefore, no base
case or cut detection applies, and a fall through is chosen. This fall through denotes the
possibility of skipping explicitly by discovering a model �pτ, IMpL76qq and continuing
the recursion on a log L76 from which the empty traces have been removed:

L76 � rxcy
3s

Log L76 contains a base case, thus IMpL76q � c. Similarly, for log L72 the model
�pτ, dq, and for L75 the model �pτ, eq is discovered. Combining all intermediate steps,
IM will discover the process tree T � Ñ

^

^

^

�

eτ

�

cτ

�

dτ

b

a

, which is optionally reduced to

Ñ

^

�

eτ

d�

cτ

b

a

using the reduction rules of Definition 5.1.

In the remainder of this section, we first introduce the algorithm formally, after which
we discuss its guarantees.

6.1.2 Inductive Miner (IM)

In this section, we formally introduce IM: for each of the four parameter functions of the
IM framework, we describe how they are implemented by IM. Furthermore, for each of
these parameter functions, we show whether local fitness and log-precision preservation
holds. We start with cut detection, after which we discuss log splitting, base cases and
fall throughs.

187

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Cut Detection

The IM searches for several cuts using the cut footprints discussed in Section 5.2.2: it
attempts to find cuts in the order �, Ñ, ^ and 	. As soon as a non-trivial cut is
encountered, that cut is returned by the findCutIM function. We first give the pseudo
code of these cuts, after which we prove their correctness and discuss their guarantees.
We will prove correctness for event logs without empty traces, this assumption will be
satisfied by the fall through emptyTraces.

In Definition 4.1, we defined local fitness and log-precision preservation on com-
binations of cut finders and log splitters. Therefore, we will discuss local fitness and
log-precision preservation after introducing the log splitters. However, some cut finders
already disable local log-precision preservation, irrespective of the used log splitter, so
these are discussed here.

The cut detection algorithms construct a partition of the alphabet of the event log:
they start with the largest partition, i.e. each activity has its own set, and the algorithms
repeatedly merge sets until the requirements of the particular operator footprint are
met. In case the event log does not contain a footprint, then all activities will be merged
and the partition will consist of a single set. The final findCutIM function applies the
following footprint detection functions, until one finds a cut with a partition consisting
of multiple sets.

Exclusive Choice. To detect an exclusive choice cut, perform the following steps:
function xorCut(�)

Σ1 . . .Σk Ð nodes of connected components of �
return p�,Σ1 . . .Σkq

end function
We prove that xorCut coincides with Definition 5.9:

Lemma 6.1 (xorCut returns �-cuts). For any log L such that ε R L, xorCutp�pLqq
returning a cut corresponds to L containing a maximal �-cut according to Definition 5.9.

Proof. By construction of connected components, no connections exist between the parts
corresponding to the cut’s activity partition, which coincides with Requirement �.1.

Sequence. To detect a sequence cut, perform the following steps:
function sequenceCut(�)

P Ð ttau|a P Σp�qu
for all a, b P Σp�q do

if a��b^ b��a then � merge pairwise reachable nodes
let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu

end if
if a ���b^ b ���a then � merge pairwise unreachable nodes

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end if

end for
sort P1 . . . Pk on reachability, i.e. Pi Pj ô @aPPi,bPPj a��b
return pÑ, P1 . . . Pkq

end function
We prove that sequenceCut coincides with Definition 5.9.

188

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

L77 � rxa, c, dy, xb, c, eys

a
b

c
d

e

Figure 6.2: A log and its directly follows graph.

Lemma 6.2 (sequenceCut returns Ñ-cuts). For any log L such that ε R L, it holds
that if sequenceCutp�pLqq returns a cut, then this cut corresponds a maximal Ñ-cut
in L according to Definition 5.9.

Proof. For each pair of activities a and b from different Pi and Pj , RequirementÑ.1 states
that a��b �ô b��a. This corresponds to the two commented checks in sequenceCut,
i.e. the two cases of merging sets of activities when this condition does not hold.

The sequenceCut function can be locally fitness preserving (with a proper log split-
ting function), but not locally log-precision preserving, as for some event logs, extra be-
haviour might be introduced. For instance, consider the event log in Figure 6.2. This log
contains a so-called long-distance dependency , i.e. the choice between d and e depends on
the choice between a and b. For this log L77, the function sequenceCut(�pLq) returns
the cut c � pÑ, ta, bu, tcu, td, euq. (Eventually, the process treeÑp�pa, bq, c,�pd, eqq will
be discovered.) However, the long-distance dependency is not captured by this cut, thus
precision is not preserved locally, e.g. xa, c, ey will be part of the discovered model, while
it is not present in L77. A solution to this problem would be to only report a Ñ-cut
after verifying that choosing this cut will not introduce new behaviour. For efficiency
considerations, we did not include such a step in the IM algorithm.

Concurrency. To detect a concurrent cut, perform the following steps:
function concurrentCut(�, üü)

P Ð ttau|a P Σp�qu
� merge not-fully connected sets

for all a, b P Σp�q, a � b do
if a �� b_ b �� a then

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
else if a üüb_ b üüa then

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end if

end for
� merge sets without start or end activities

for all C P P do
if C X Startp�q � H_ C X Endp�q � H then

merge C with an arbitrary other set in P
end if

end for
return p^, P q

end function

189

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

We prove that concurrentCut coincides with definitions 5.9 and 5.29.

Lemma 6.3 (concurrentCut returns ^-cuts). For any log L such that ε R L,
concurrentCutp�pLq, üüpLqq returns a cut p^,Σ1, . . .Σnq according to definitions 5.9
and 5.29.

Proof. The second for-loop of concurrentCut coincides with Requirement ^.1; the
first if in the first for-loop coincides with Requirement ^.2; and the second if coincides
with Requirement ^Ø.1.

For local log-precision preservation, an argument similar to sequenceCut holds, i.e.
as the directly follows graph cannot capture the full behaviour of loops, an extension is
necessary to preserve log precision locally.

Loop. To detect a loop cut, perform the following steps:
function loopCut(�)

P1 Ð Startp�q Y Endp�q � Requirement 	.1

� Requirement 	.3
P2 . . . Pn Ð maximal partition of Σp�qzP1 such that @2¤i j¤n,aPPi,bPPj a �� b

P Ð P1 . . . Pn
� exclude sets that are connected from a start activity

for all a P Startp�qzEndp�q do
for all b such that a� b do

let b P Py, then P Ð P ztP1, Pyu Y tP1 Y Pyu
end for

end for

� exclude sets that are connected to an end activity
for all b P Endp�qz Startp�q do

for all a such that a� b do
let a P Px, then P Ð P ztPx, P1u Y tPx Y P1u

end for
end for

� sets should have all connections (Requirement 	.4)
for all 2 ¤ i ¤ n, a P Pi do

if DbPStartp�q a� b^ @bPStartp�q a� b then
let a P Px, then P Ð P ztPx, P1u Y tPx Y P1u

end if
if DbPEndp�q b� a^ @bPEndp�q b� a then

let a P Px, then P Ð P ztPx, P1u Y tPx Y P1u
end if

end for
return p	, P1, . . . Pnq

end function
We prove that loopCut coincides with Definition 5.9.

Lemma 6.4 (loopCut returns 	-cuts). For any log L such that ε R L, loopCutp�pLqq
returning a cut corresponds to L containing a maximal 	-cut according to Definition 5.9.

190

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Proof. Requirements 	.1, 	.3 and 	.4 coincide with the parts denoted in the pseudocode.
Requirement 	.2 coincides with the two remaining for-loops. Thus, the remaining non-
first sets P2 . . . Pn are the redo parts.

Local fitness preservation will be discussed in combination with the log-splitting func-
tions in the next section. Local log-precision preservation is not possible for loops, as
discussed in Section 4.1.4.

Local Log-Precision Preservation. The log-precision discussions of the functions
sequenceCut and concurrentCut show the limitations of using an abstraction: a
directly follows graph does not contain as much information as an event log, thus the
directly follows based cut detection techniques cannot guarantee to not introduce extra
behaviour. However, the IM framework is not limited to directly follows based techniques:
one could easily define cut detection techniques that use the entire log and, as discussed
before, preserve log precision locally. The only exception to this is the 	-operator that,
as discussed in Section 4.1.4, cannot guarantee to preserve log precision, as it describes
unbounded behaviour while the event log is always bounded.

Log Splitting

After finding a cut, the IM framework splits the log into several sub-logs, on which
recursion continues. The IM algorithm uses several log splitting functions. For each of
these log splitting functions, we give pseudocode, an example and we prove their local
guarantees.

Exclusive Choice. To split a log L according to an exclusive choice cut, IM puts
each trace in its respective sublog:
function xorSplit(L, p�,Σ1, . . . ,Σnq)
@i : Li Ð rt P L|@e P t : e P Σis
return L1, . . . , Ln

end function
For instance, the log L � rxa, by, xc, c, cys would be split using the cut p�, ta, bu, tcuq

into rxa, bys, rxc, c, cys. Due to the cut detection of xorCut, all cuts to which xorSplit
is applied adhere to Definition 5.9 and consequently, each trace contains events of at most
one Σ1¤i¤n.

Lemma 6.5 (xorCut & xorSplit are locally fitness preserving). Let L be a log and
c � p`,Σ1, . . .Σnq be a non-trivial exclusive choice cut (Definition 5.9). Then setpLq �
�LpxorSplitpL, cqq (see Definition 2.7).

Proof. Let L1, . . . , Ln be the result of xorSplitpL, cq, i.e. the split logs. By construction
of xorSplit and the fact that

�
i Σi � ΣpLq, every t P L is in at least one Li. Hence,

setpLq �
�
i Li and thus by semantics of �, setpLq � �LpxorSplitpL, cqq.

Lemma 6.6 (xorSplit is locally log-precision preserving). Let L be a log. Then
�LpxorSplitpL, cqq � setpLq for any cut c.

Proof. Let L1, . . . , Ln be the result of xorSplitpL, cq, i.e. the split logs. Pick a trace t in
any Li. By construction of xorSplit, t P L. Hence, �LpxorSplitpL, cqq � setpLq.

191

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Sequence. To split a log L according to a sequence cut, IM searches for the split
points in each trace:
function sequenceSplit(L, pÑ,Σ1, . . . ,Σnq)
@j : Lj Ð rtj |t1 � t2 � � � tn P L^ @i ¤ n^ Σprtisq � Σis
return L1, . . . , Ln

end function
For instance, the log L � rxa, b, cy, xb, a, cys would be split using the cut pÑ, ta, bu, tcuq

into rxa, by, xb, ays, rxcy2s. Similar to xorCut, all cuts to which sequenceSplit is applied
adhere to Definition 5.9.

Lemma 6.7 (sequenceCut & sequenceSplit are locally fitness preserving). Let L
be a log and c � pÑ,Σ1, . . .Σnq be a non-trivial sequence cut (Definition 5.9). Then
setpLq � ÑLpsequenceSplitpL, cqq (see Definition 2.8).

Proof. Let L1, . . . , Ln be the result of sequenceSplitpL, cq, i.e. the split logs. Pick a
trace t P L. Divide t � z1 � t1 � t2 � � � tn � z2 such that @i : Σprtisq � Σi and both z1

and z2 are as small as possible. For |t| � 0 and |t| � 1, z1 and z2 are trivially empty.
Towards contradiction, assume |t| ¡ 1 and z1 � ε _ z2 � ε. Then there must be two
activities ai and ai�1 somewhere in t with ai P Σk, ai�1 P Σl and k ¡ l. By definition
of GpLq, ai��ai�1 in L and therefore, by Definition 5.9, l ¤ k. Hence, both z1 and
z2 must be empty and t can be written as t1 � t2 � � � tn such that @i : Σpttiuq � Σi.
By construction of sequenceSplit and semantics of Ñ, t P ÑLpL1, . . . , Lnq and hence
setpLq � ÑLpsequenceSplitpL, cqq.

In Section 6.1.2, we showed that the sequenceCut is not locally log-precision pre-
serving. Therefore, neither the combination of sequenceCut and sequenceSplit is
locally log-precision preserving.

Concurrency. To split a log L according to a concurrent cut, IM divides events over
their corresponding subtraces:
function concurrentSplit(L, p^,Σ1, . . . ,Σnq)
@i : Li Ð rt|Σj |t P Ls
return L1, . . . , Ln

end function
For instance, the log L � rxa, b, cy, xa, c, by, xc, a, bys would be split using the cut

p^, ta, bu, tcuq into rxa, by3s, rxcy3s.

Lemma 6.8 (concurrentSplit is locally fitness preserving). Let L be a log. Then
setpLq � ^LpconcurrentSplitpL, cqq for any cut c.

Proof. Pick a trace t P L. By definition of concurrentSplit, each Li contains a ti,
being the projection of t to Σi. Obviously, for each t there is a corresponding trace in t1�
t2 . . . tn. Hence, setpLq � ^LpL1, . . . , Lnq and thus setpLq � ^LpconcurrentSplitpL, cqq.

Loop To split a log L according to a loop cut, IM starts a new trace whenever it
detects that execution left a Σi:
function loopSplit(L, p	,Σ1, . . . ,Σnq)

192

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

L78 L79 L80

xa, by

xa, b, c, a, by

xa, b, c, a, b, c, a, by

xa, by

xa, by

xa, by

xa, by

xa, by

xa, by

xcy

xcy

xcy

Figure 6.3: Example of log splitting for a 	-cut.

@i : Li Ð rt2|t1 � t2 � t3 P L^

Σprt2sq � Σi ^

pt1 � ε_ pt1 � x� � � , a1y ^ a1 R Σiqq ^

pt3 � ε_ pt3 � xa3, � � � y ^ a3 R Σiqqs
return L1, . . . , Ln

end function

For instance, the log L78 � rxa, by, xa, b, c, a, by, xa, b, c, a, b, c, a, bys would be split
using the cut p	, ta, bu, tcuq into L79 � rxa, by6s and L80 � rxcy3s, as illustrated in
Figure 6.3.

Lemma 6.9 (loopSplit is locally fitness preserving). Let L be a log. Then setpLq �
	LploopSplitpL, cqq for any cut c.

Proof. Pick a trace t P L. Apply case distinction on whether t consists exclusively of
activities in Σ1:

Σprtsq � Σ1 By construction of loopSplit, L1 contains t.

Σprtsq � Σ1 By Definition 5.9, StartpLqYEndpLq � Σ1 and therefore there exist ti such
that t � t1 � t2 � � � t2m�1, such that @j : Σptt2j�1uq � Σ1. Definition 5.9 guarantees
that no t2m1 contains activities from two different Σi. Then, loopSplit puts all
t2m in some Li�1 intact and all L2m�1 in L1 intact.

By semantics of 	, t P 	LpL1, . . . , Lnq and hence setpLq � 	LpL1, . . . , Lnq.

Local Guarantees. Fitness and log-precision preservation are defined on combina-
tions of cut finders and log splitters (Definition 4.1). Table 6.1 summarises the local
guarantee lemmas and the descriptions in Section 6.1.2.

193

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Table 6.1: Local guarantees provided by the cut detection and log splitting
functions of IM.

locally fitness locally log precision
preserving preserving

xorCut & Split yes (Lemma 6.5) yes (Lemma 6.6)
sequenceCut & Split yes (Lemma 6.7) when extended
concurrentCut & Split yes (Lemma 6.8) when extended
loopCut & Split yes (Lemma 6.9) no (see Section 4.1.4)

Base Cases

The base cases for the IM algorithm provide an end to the recursion. IM implements
the baseCaseIM-function of the IM framework using several steps: it tries several base
cases and returns the first matching one. As the base cases are mutually exclusive, so
their order is irrelevant. We distinguish several cases:

• emptyLog applies when the log contains no traces, i.e. setpLq � H. The only
thing any discovery algorithm could do is return τ , i.e. the model consisting of an
empty step.

• singleActivity applies when the event log contains only traces with a single
activity, i.e. Σ � tau ^ @tPL |t| � 1 for some activity a. This activity a is returned
as a leaf.

All of these base cases obviously preserve both fitness and precision (Definition 4.1):

locally fitness locally log precision
preserving preserving

emptyLog yes yes
singleActivity yes yes

Fall Throughs

For some input event logs, no base case applies (if the log contains multiple activities)
and no cut applies (because e.g. the directly follows graph is not complete, the system is
not from Cb, the log contains empty traces, or the log contains deviating behaviour, . . .).
However, IM should return a process tree under all circumstances, hence a fall through
needs to be selected. As a last resort a flower model can be returned, i.e. a model that
allows for any behaviour over a given set of activities. However, such a flower model
would have a bad precision. Therefore, we identified some patterns that could improve
precision over a flower model. The fall-through function of IM, fallThroughIM, applies
these patterns in order until one matches.

As this is the last resort for the IM framework, the final one, i.e. flowerModel,
always applies. We introduce each fall through and illustrate each of them using the
same log, to which no cut applies:

L81 � rxa, b, c, dy, xd, a, by, xa, d, cy, xb, c, dys

194

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

• emptyTraces applies when the event log contains empty traces, i.e. if ε P L. To
preserve fitness, the empty traces are accounted for using �pτ, . . .q, and recursion
continues on a log without the empty traces, i.e. the model �pτ, IMpLztεuqq is
returned. (notice that emptyTraces does not apply to our example log L81).

• activityOncePerTrace applies when an activity a appears precisely once in
every trace of the log L. Then, this fall through discovers that activity a can be
put concurrent to L1, which is obtained by filtering a from L, i.e. ^pa, IMpL1qq. In
case this applies to multiple activities a, an arbitrary one is chosen.
For instance, in L81, d appears once in every trace. Thus, d is filtered out of L81

and a new event log L82 is obtained:

L81 � rxa, b, c, �dy, x�d, a, by, xa, �d, cy, xb, c, �dys

L82 � rxa, b, cy, xa, by, xa, cy, xb, cys

Then recursion continues on L82 and the tree ^pd, IMpL82qq is discovered.

• activityConcurrent leaves out an activity a from the log L and tries to find a
cut. If this succeeds, a is put concurrently to L1, which is obtained by filtering a
from L, and recursion continues on L1. In case this applies to multiple activities,
an arbitrary one is chosen.
For instance, in L81, activity d is filtered out and logs L83 and L84 are obtained:

L81 � rxa, b, c, dy, xd, a, by, xa, d, cy, xb, c, dys

L85 � rxdy
4s

L86 � rxa, b, cy, xa, by, xa, cy, xb, cys

This log contains the non-trivial cut pÑ, tau, tbu, tcuqq. Thus, the tree ^pIMpL85q,
IMpL88qq is discovered and recursion continues on L85 and L88.
The fall through activityConcurrent potentially leads to a lower log precision
than activityOncePerTrace: if activityConcurrent selects an activity (e.g.
a) that is executed multiple times in one of the traces (e.g. xa, b, ay), recursive calls
will put this activity in a loop (e.g. 	pa, τq) and thereby lower log precision. This
is a rather expensive fall through, as the event log is split repeatedly and after
each split cut finding is applied. Even though our implementation executes these
calls in parallel, we observed that in large event logs with lots of activities, this fall
through is the most time-consuming task of the IM algorithm. However, this fall
through is the last fall through that does not introduce unbounded behaviour (i.e.
loops), which would cause a lower log precision.

• strictTauLoop applies when looping behaviour is present. To verify this, each
trace of the log L is split on each occurrence of an end activity followed by a start
activity, and the result is stored in a log L1. If L1 has more traces than L, i.e.
at least one trace was split, a tau loop, i.e. 	pIMpL1q, τq, is discovered and the
recursion continues.
For instance, the start activities of L81 are ta, b, du, the end activities tb, c, du.
Therefore, L81 is split into L87:

L81 � rxa, b, c | dy, xd | a, by, xa, d, cy, xb, c, | dys

L88 � rxa, b, cy, xa, by, xa, d, cy, xb, cy, xdy
3s

and the model 	pIMpL88q, τq is discovered and recursion continues.

195

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

• tauLoop applies when looping behaviour is present. To verify this, each trace of
the log L is split on every occurrence of a start activity, and the result is stored in
a log L1. If L1 has more traces than L, i.e. at least one trace was split, a tau loop,
i.e. 	pIMpL1q, τq, is discovered and the recursion continues.
For instance, the start activities of L81 are ta, b, du. Therefore, L81 is split into
L89 as follows:

L81 � rxa | b, c | dy, xd | a | by, xa | d, cy, xb, c, | dys

L89 � rxay
3, xb, cy, xdy3, xby, xd, cy, xb, cys

the model 	pIMpL89q, τq is discovered and recursion continues. Notice the dif-
ference between tauLoop and strictTauLoop: strictTauLoop leaves longer
subtraces in the log. This might preserve information in the event log and thus
potentially increase log precision.

• flowerModel applies to an event log without empty traces, i.e. ε R L. Given the
activities of the event log ΣpLq, it returns the model that allows for any behaviour
without ε: 	p�pa1, . . . anq, τq with a1 . . . an � ΣpLq.
For instance, given log L81 this fall through discovers the model 	p�pa, b, c, dq, τq.

We illustrated these fall throughs using a single example event log to illustrate the
loss of log precision that these fall throughs imply. The partial models that would be
returned for L81 are:

emptyTraces �pτ, . . .q1

activityOncePerTrace ^pd, . . .q

activityConcurrent ^p. . . , . . .q

strictTauLoop 	p. . . , τq
tauLoop 	p. . . , τq

flowerModel 	p�pa, b, c, dq, τq

The order in which the fall throughs are applied was chosen to preserve log precision
as much as possible: the last resort (flowerModel) allows for any behaviour except
the empty trace and therefore has almost the lowest precision possible, tauLoop and
strictTauLoop introduce a loop and remove a lot of information from the event log
but at least continue the recursion, activityConcurrent sacrifices log precision of one
activity (in our example: d) to continue the recursion normally on the other activities,
and activityOncePerTrace applies this to the special case that an activity appears
once in every trace.

For completeness, we describe two more fall throughs: the first is the traceModel
that locally preserves log precision: traceModel applies to any event log L, and returns
a trace model , i.e. the choice between sequences corresponding to all traces. For instance,
if L � rxa, by, xa, c, bys, then traceModel(L) � �pÑpa, bq,Ñpa, c, bqq. We chose to not
include this fall through in IM as a trace model has a poor generalisation and simplicity.
However, in case log precision should be preserved, a traceModel can be used to
guarantee this. Second is the flowerModelWithEpsilon, which applies to any event
log, even if it contains empty traces: given the activities of the event log ΣpLq, it returns
the model that allows for any behaviour, i.e. 	pτ, a1, . . . anq with a1 . . . an � ΣpLq. For
instance, given log L this fall through discovers the model 	pτ, a, b, c, dq.

1emptyTraces does not apply to L81, but has been included for the sake of completeness.

196

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Local Guarantees. The following table shows the preservation guarantees of these
fall throughs. Notice that activityOncePerTrace and activityConcurrent could
be extended to preserve log precision locally, similar to sequenceCut. However, this
would limit their applicability to cases in which all behaviour is present in the event log,
which would render them useless as in such cases, a cut will be detected and the fall
through will never be reached.

locally fitness locally log precision
preserving preserving

emptyTraces yes yes
activityOncePerTrace yes when extended
activityConcurrent yes when extended
strictTauLoop yes no
tauLoop yes no
flowerModel yes no
flowerModelWithEpsilon yes no
traceModel yes yes

Summary

To summarise, the Inductive Miner (IM) implements the functions of the IM framework
as follows. In these functions, strategies (i.e. base cases, cut detections, fall throughs)
are tried until one matches (if a strategy does not apply, it returns nothing (l). For
instance, in baseCaseIM, the variable bc holds the result of the base cases.
function baseCaseIM(L)

if ε R L then
bcÐ emptyLogpLq
if bc � l then bcÐ singleActivitypLq end if
if bc � l then return bc end if

end if
return l

end function
function findCutIM(L)

if ε R L then
p`,Σ1 . . .Σkq Ð xorCutp�pLqq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð concurrentCutp�pLq, üüpLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð loopCutp�pLqq end if
if k ¥ 2 then return p`,Σ1 . . .Σkq end if

end if
return l

end function
function splitLogIM(L, p`,Σ1, . . . ,Σnq)

if ` � � then return xorSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return concurrentSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopSplitpL, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIM(L)

197

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

ftÐ emptyTracespLq
if ft � l then ftÐ activityOncePerTracepLq end if
if ft � l then ftÐ activityConcurrentpLq end if
if ft � l then ftÐ strictTauLooppLq end if
if ft � l then ftÐ tauLooppLq end if
if ft � l then return ft
else return flowerModelpLq
end if

end function
The run time of IM depends on the size of the event log L and on the size of the

alphabet ΣpLq. Three recursive paths are relevant for run time:

• baseCaseIM stops recursion, and has Op|L|q run time.

• findCutIM has a polynomial run time: Op|L|q to construct a directly follows
graph, and at most Op|ΣpLq|3q to compute reachability in sequenceCut. Second,
splitLogIM takes Op|L|q. Notice that this step decreases the size of the alphabet
by at least one.

• most fall throughs of fallThroughIM take at most Op|L|q, however activity-
Concurrent takes |ΣpLq| � |ΣpLq|3q, i.e. alphabet size times cut finding time.
Furthermore, four functions recurse: activityOnePerTrace and activityCon-
current, which reduce the size of the alphabet by one, and strictTauLoop and
tauLoop, which can never be applied twice consecutively.

Hence, the run time of IM is Op|L| � |ΣpLq|5q.
Besides the fall throughs mentioned in this section, other techniques that could be

included as fall throughs are: (1) trace clustering [31], i.e. clustering similar traces and
discovering an exclusive choice between these clusters (and continuing the recursion), (2)
hybrid approaches, for instance [109] that would mine a Declare model and treat this as
a process tree operator, and (3) other process tree discovery algorithms, for instance the
Evolutionary Tree Miner [36]. In the future, we would like to explore such options.

Future work 6.10: Explore other techniques as fall throughs.

6.1.3 Guarantees
In the previous sections, we introduced the basic IM algorithm, and showed how it
implements the IM framework. As a final step, we discuss the guarantees provided by
IM: soundness, perfect fitness and rediscoverability.

Soundness is guaranteed as IM implements the IM framework that returns process
trees, which are sound by construction.

In the previous section, we proved that all steps of IM are locally fitness preserving,
so by Corollary 4.2 we conclude that IM always returns a fitting model:

Corollary 6.11 (IM guarantees fitness). As all steps of IM are locally fitness preserving,
by Corollary 4.2 for any log L it holds that setpLq � LpIMpLqq.

Next, we show rediscoverability for IM, i.e. we show that if a system model S is of
class Cb, and a log L is given to IM that is fitting to S and has the same directly follows
graph, then IM will return a model that is language equivalent to S. Let LAIMpSq be the
log assumption function of IM, i.e. L P LAIMpSq � psetpLq � LpSq^�pSq ��pLqq. In
order to prove this, we perform three steps: we first show that the directly follows graph
survives log splitting, second we prove that IM is abstraction preserving, and third we

198

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

a�L b

a�Li b

a�S b

a�Mi b

Figure 6.4: Proof strategy to prove that �pLiq ��pMiq (Lemma 6.12).

prove that IM only discovers trees of Cb. These three arguments provide rediscoverability
directly.

Lemma 6.12 (IM: log splitting preserves log assumptions). Let S � `pS1, . . . Snq with
S P Cb, let c � p`,Σ1, . . .Σmq be a cut conforming to S, let L1 . . . Lm � splitLogpL, cq
and let L P LAIMpSq. Then, there exist subtrees M1 . . .Mm such that �p`pM1, . . .Mmqq
��pSq and @1¤i¤m Li P LAIMpMiq.

Proof. We prove this lemma by constructing trees M1 . . .Mm corresponding to S1 . . . Sn
and showing that the log assumptions hold for these M1 . . .Mm, i.e. that the sublogs
returned by splitLogIM are fitting to their respective Mi and have the same directly
follows graph.

As c is conforming, each Σ1 . . .Σm is the conjunction of one or more ΣpSiq. Let each
M1 . . .Mm be the trees corresponding to the subtrees Si, combined with ` if necessary.
(for instance, if S � Ñpa, b, cq and c � pÑ, ta, bu, tcuq, then M1 � Ñpa, bq and M2 � c).

We prove the log assumptions LAIM for these sublogs, i.e. @1¤i¤m psetpLiq � LpMiq^
�pMiq ��pLiq by case distinction on `:

` � � Let i ¤ n and t P Li. By exclusiveChoiceSplit, t P L. Then, t P LpSq and by
semantics of �, t P LpMiq. Hence, setpLiq � LpMiq and ΣpLiq � ΣpMiq.
Left to prove: �pLiq ��pMiq, for which we follow a strategy shown in Figure 6.4.
As setpLiq � LpMiq, a�Li b ñ a�Mi b. Reversely, assume a�Mi b. By Defini-
tion 2.14, there is a t � x. . . a, b, . . .y P L. By exclusiveChoiceSplit, t P Li,
hence a�Li b ô a�Mi b. By similar arguments, @aPΣpMiq J�Mi a ô J�Li a
and @aPΣpMiq a�Mi K ô a�Li K. As S P Cb, ε R LpSq � L. Thus, neither
J�Mi K nor J�Li K. Hence, �pLiq ��pMiq.

` � Ñ Let i ¤ n and t P Li. By sequenceSplit, there must be a trace t1 �t �t2 P L, such
that Σptt1uq X ΣpMiq � H � Σptt2uq X ΣpMiq. As L P LAIMpSq, t1 � t � t2 P LpSq.
Then by semantics of Ñ, t must have been produced by Mi. Hence, setpLiq �
LpMiq.
Left to prove: �pLiq � �pMiq. As setpLiq � LpMiq, a�Li b ñ a�Mi b. Re-
versely, assume a�Mi b. Each ΣpMjq can be recognised as a cluster of of nodes in
�pSq. Consider an internal edge a�Mj b in this cluster. As L P LAIMpSq, there
exists a trace t � x. . . a, b, y P L. As sequenceSplit only splits t on the boundaries
of the cluster, Dx. . . a, b, . . .y P Li, so a�Li b ô a�Mi b. By arguments similar to
the � case, dfpLiq ��pMiq.

` � ^ Let i ¤ n and t P Li. By construction of concurrentSplit, there must be
a trace t1 P L such that t is a projection of t1. As L P LAIMpSq, t1 P LpSq. By
Requirement Cb.2, the activities of t1 in t can only be produced by Mi. Therefore,
Mi must have produced t1 and hence setpLiq � LpMiq.

199

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

Left to prove: �pLiq ��pMiq, which holds by an argument similar to the ` � Ñ
case.

` � 	 Let i ¤ n and t P Li. Apply case distinction on whether i � 1:

i � 1 By loopSplit, there exists a trace t1 � t � t2 P L, such that t1 is either empty
or ends with an activity R ΣpM1q, and t2 is either empty or starts with an
activity R ΣpMiq.

i � 1 By loopSplit, there exists a trace t1 � xa1y � t � xa2y � t2 P L, such that
a1, a2 R ΣpMiq.

By Requirement Cb.2, the semantics of 	 and LAIMpSq, tmust have been produced
by Mi. Hence, setpLiq � LpMiq.
Left to prove: �pLiq ��pMiq, which holds by an argument similar to the ` � Ñ
case.

Hence, subtrees M1 . . .Mm exist such that �p`pM1, . . .Mmqq � �pSq and @1¤i¤m

Li P LAIMpMiq.

Next, we prove that IM is abstraction preserving.

Lemma 6.13 (IM is abstraction preserving). IM is abstraction preserving, i.e. the
combination of the class of process trees Cb, the directly follows abstraction �, the log
assumptions function L P LAIMpSq � psetpLq � LpSq^�pSq ��pLq, and the algorithm
IM implementing the IM framework with baseCaseIM, findCutIM, splitLogIM and
fallThroughIM, is abstraction preserving.

Proof. We discuss the requirements of Definition 4.8:

AP.1 An activity base case preserves the abstraction.
As L P LAIMpSq holds, setpLq � txayu. By code inspection, the base case single-
Activity applies, which returns a. Hence, �pbaseCaseIMpLqq ��paq.

AP.2 A τ base case preserves the abstraction.
As τ R Cb, this case cannot occur and the requirement holds.

AP.3 The base case parameter function preserves the abstraction.
If S � `pS1, . . . Snq, with S P Cb, then ΣpSq ¥ 2. As L P LAIMpSq holds, by code
inspection, no base case in baseCaseIM applies. Thus, if baseCaseIM applies,
then �pbaseCaseIMpLqq ��pSq.

AP.4 Every cut that is detected conforms to S.
As L P LAIMpSq, �pSq � �pLq. By Lemma 5.10, �pLq contains a cut c �
`pΣpS1q, . . .ΣpSnqq. By Corollary 5.14, no other footprint is present in �pLq.
By code inspection of findCutIM, this cut c is returned, hence findCutIMpLq
conforms to S (Definition 5.16).

AP.5 Log splitting preserves the log assumptions.
This requirement follows from Lemma 6.12.

AP.6 Fall throughs preserve the abstraction.
By the previous requirements and Lemma 5.10, for all systems S P Cb, either
baseCaseIM or findCutIM applies, i.e. fallThroughIM is never reached for
S P Cb. Therefore, this case cannot occur and the requirement holds.

200

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.1 Inductive Miner (IM)

We show that IM is language-class preserving (Definition 4.10), i.e. that the discov-
ered model is of Cb:

Lemma 6.14 (IM is language-class preserving). For all systems S P Cb and logs L such
that L P LAIMpSq, it holds that IMpLq P Cb.

Proof. As discussed in the previous requirements, fallThroughIM is never executed.
We consider the requirements of Cb separately:

Cb.1 As shown for Requirement AP.2, no τ is returned in a base case for S P Cb.
Similarly, fallThroughIM is not reached, thus IM does not return τ leafs.

Cb.2 This requirement is guaranteed by the cuts discovered by findCutIM, which guar-
antee that all Σi are disjoint, and splitLogIM being fitting (Requirement AP.5.

Cb.3 As the fallThroughIM function is never reached if S P Cb, we limit ourselves to
the case in which a cut is detected and the log is split into sublogs L1 . . . Ln.
By the previous requirements, findCutIM only selects a 	 if S � `pS1, . . . Snq.
As S P Cb, StartpS1q X EndpS1q � H. By Requirement AP.5 and the log assump-
tions LAIM, StartpL1q X EndpL1q � H. By lemmas 6.13 and 4.9, �pIMpL1qq �
�pIMpS1qq, hence StartpIMpLqq X EndpIMpLqq � H.

Cb.4 By code inspection, IM never returns Ø.
Cb.5 By code inspection, IM never returns _.

Hence, IMpLq P Cb and thus IM is language-class preserving (Definition 4.10).

Then, by Theorem 4.11, IM guarantees rediscoverability for Cb:

Theorem 6.15 (IM rediscoverability). Let L be a log and S P Cb be a system such that
setpLq � LpSq ^�pLq ��pSq. Then, LpIMpLqq � LpSq.

To summarise, IM guarantees to return a fitting and sound model for all event logs.
Furthermore, if a system S is from Cb and a log L has a perfect fitness with respect to
S and has the same directly follows graph, then IM applies to L returns a model that is
language equivalent to S.

In Section 5.5, we showed that the minimum self-distance relation suffices to dis-
tinguish the larger class of process trees Cm (Corollary 5.34), if an LC-property exists
(Conjecture 5.32) that distinguishes of a particular class of process trees containing nested
	 and ^ operators. As shown in Section 5.5, the directly follows relation does not suffice
to distinguish all process trees of Cm, hence if an LC-property will be discovered in the
future, this property will have to be incorporated into the cut detection functions of IM
in order to guarantee rediscoverability for Cm. Notice that to incorporate this property,
the algorithm would need to be changed in a limited scope: only the loopCut function
would need to be changed, which shows the flexibility of the IM framework.

Using the functions described in this section, a log-precision-guaranteeing algorithm
can be constructed (using emptyLog, emptyTraces, singleActivity, xorCut, xor-
Split and traceModel, and when extended sequenceCut, sequenceSplit, concur-
rentCut, concurrentSplit, activityOncePerTrace and activityConcurrent).
The current functions would result in an algorithm with a limited scope, i.e. only support-
ing the �-operator, but it nevertheless shows that the IM framework is flexible enough
to support such guarantees. In future research, the mentioned extensions could be based
on other abstractions.

Future work 6.16: Research more elegant locally log-precision preserving IM frame-
work functions.

201

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

L90 � rxa, by25, xa, cy25, xd, by25,

xd, cy25, xa, b, a, cys

a b

cd

26

126
25

25

51

5150

50

Figure 6.5: A log and its directly follows graph.

6.2 Handling Deviating & Infrequent Behaviour

In the previous section, we introduced the basic IM algorithm that returns a fitting
model, and returns a model that is language equivalent to the system, if the event log
contains no deviations and is directly follows complete to the system. Deviating behaviour
is behaviour that appears in the event log but is not part of the system. Infrequent
behaviour is behaviour that is part of the system but does not happen or happens in just
a few cases in the event log. As described in Section 3.2.2, both deviating and infrequent
behaviour challenge discovery algorithms. In this section, we study the influence of
deviating and infrequent behaviour on directly follows graphs, process discovery and the
IM algorithm in Chapter 8. Next, we introduce a variant of IM to exclude such behaviour
from event logs in Section 6.2.1. Finally, we give an example in Section 6.2.3, and we
finish with a discussion of the guarantees provided by the new variant (Section 6.2.4).

6.2.1 Deviating & Infrequent Behaviour

Figure 6.5 contains an example of an event log in which each trace occurs 25 times, except
the last trace, which occurs once. Given this event log, IM returns Ñ

�

cτ

�

	

ττ�

ab

τ

�

dτ

,

which is fitting (Corollary 6.11), but is neither log precise nor simple. In case the use
case does not require perfect fitness, an obviously better model is achievable: Ñ

�

cb

�

da

.

This model would fit 100 of the 101 traces, and be perfectly precise, as each trace of the
model appears in the event log as well.

IM fails to discover the more log-precise second model as the first cut should be
pÑ, ta, du, tb, cuq, which is not a valid sequence cut in the directly follows graph of L90

(edge b� a prevents it). In general, if the behaviour of the event log does not fit the

202

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

a b c

d e f

(a) � of L91.

� a b c d e f
a 28 13 10 3
b 2 27 6 11 7
c 2 10 10
d 20 9 2 19
e 6 9 5 30
f 3 8 17

(b) Weights of �pL91q.

Figure 6.6: The directly follows graph and edge weights of log L91.

representational bias of the discovery algorithm well, then leaving out behaviour might
help to improve the balance between fitness and log precision.

As the system is unknown to the algorithm, deviating behaviour is not always distin-
guishable from infrequent behaviour, algorithms enjoy the freedom to classify behaviour
as deviating (and filter it) if it does not fit nicely in the model class the algorithm consid-
ers, or if it does not lead to “nice” models. It might even be necessary to include deviating
or infrequent behaviour to discover an elegant model: due to concurrency, trace might
appear few times in the log as well. For instance, consider the process tree ^

Ñ

fed

Ñ

cba

,

consisting of two concurrent branches, and having a language of 20 different traces. Fur-
thermore, consider the following event log of 50 correct traces (randomly generated) and
two deviating traces (the trace xa, b, a, b, a, b, cy that occurs twice):

L91 � rxd, a, b, c, e, fy
5, xa, b, d, e, f, cy4, xd, a, e, b, c, fy4, xa, d, b, c, e, fy3,

xa, d, b, e, f, cy3, xa, d, b, e, c, fy3, xd, a, e, b, f, cy3, xd, a, e, f, b, cy3,

xd, a, b, e, f, cy3, xd, e, f, a, b, cy3, xd, e, a, f, b, cy3, xa, b, c, d, e, fy2,

xd, e, a, b, f, cy2, xa, b, d, c, e, fy2, xd, a, b, e, c, fy2, xa, d, e, f, b, cy2,

xa, d, e, b, f, cy2, xd, e, a, b, c, fy, xa, b, a, b, a, b, cy2s

Figure 6.6 shows the corresponding directly follows graph (for readability reasons, fre-
quencies have been denoted in a separate table). The deviating edge b� a occurs twice,
which is not that often, as the correct edges, i.e. the edges corresponding to the process
tree, between a and f and between c and d occur only 2 or 3 times. Thus, deviating
behaviour might have a big impact, as it requires only a couple of deviating traces to
introduce an edge that is stronger than some ‘real’ edges.

Hence, deviation filtering involves a trade-off between removing unwanted behaviour
while keeping less-occurring wanted behaviour. We discuss several strategies, after which
we discuss our choice for IMf:

• Decide for each pair of activities what their most likely relation is, i.e. which of
the two possible edges between them is really present. This technique, presented

203

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

in [167], compares the frequencies of both edges and decides the relation between
activities based on a heuristic. This would work on both example logs L90 and
L91, but is vulnerable to parameter settings: if the event log is not balanced, this
method might remove correct edges as well.

• Filter the infrequent traces from the log before discovery, i.e. choose a threshold f
and remove all traces that occur less than f times. On L1, it would obviously be
easy to choose f : any value between 2 and 24 will remove the faulty trace. However,
on L2, there is no suitable f , as choosing it to be 1 or 2 will already remove valid
behaviour. This is due to the concurrency: on a model of n concurrent activities,
there are Opn!q different traces, which makes the expected frequency of edge cases
low.

• Filter the least-occurring edges from the directly follows graph, i.e. choose a thresh-
old f and remove all edges from the directly follows graph that do not occur more
than f times. On L90, this would easily remove the faulty directly follows edge.
On L91, this would remove the faulty edge, but it is clear that in larger examples,
deviations would overshadow concurrent behaviour. This method would perform
better than the previous method, as in a model of n concurrent activities, there
are at most Opn2q directly follows edges.

• Filter the locally least-occurring edges from the directly follows graph, i.e. choose
a threshold f such that 0 ¤ f ¤ 1, consider the outgoing edges of each activity,
and remove all outgoing edges that occur less than f times the occurrences of the
most-occurring outgoing edge. On L90, this would easily remove the faulty directly
follows edge. On L91, this would remove the faulty edge, but the method would
fail on larger examples. Nevertheless, this method would perform better than the
previous method, as with a model of n concurrent activities, there are at most
Opnq outgoing directly follows edges for each activity.

Many more deviation-filtering techniques could be applied, and different real-life event
logs might require different techniques. In the next section, we illustrate how IM can be
adapted by using the last of these deviation-filtering techniques. The modularity of the
IM framework allows for easy implementation of other techniques.

Future work 6.17: Consider other deviation-filtering techniques to distinguish concur-
rency and deviating/infrequent behaviour.

6.2.2 Inductive Miner - infrequent (IMf)
To handle deviating and infrequent behaviour, we introduce a second algorithm: In-
ductive Miner - infrequent (IMf). IMf applies filtering to all four steps of the IM
framework, using a deviation-threshold parameter f . In this section, we discuss how
IMf implements the IM framework by giving its cut detection, log splitting, base cases
and fall through parameter functions.

Cut Detection

To guarantee rediscoverability, in each recursion, IMf first applies the cut-detection
functions of IM. If these do not succeed, the directly follows graph is filtered, after which
cut detection is applied again. We first formalise the deviations filtering step, after which
we give an example of a filtering cut detection function. The other filtering cut detection
functions are similar. A user-chosen deviation threshold parameter f is assumed to be
available.

204

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

function filter(�)
copy � into �1

for a P ΣpLq Y tJu, b P ΣpLq Y tKu such that a� b do
if |a� b| f �maxcPΣp�qYK |a� c| in L then
�1 Ð�1 z all pa, bq

end if
end for
return �1

end function
function xorCutFiltering(�)

return xorCutpfilterp�qq
end function
function sequenceCutFiltering(�)

return sequenceCutpfilterp�qq
end function
function concurrentCutFiltering(�, üü)

return concurrentCutpfilterp�q, üüq
end function
function loopCutFiltering(�)

return loopCutpfilterp�qq
end function

Log Splitting

As the cut detection functions of IMf might return cuts that do not adhere to the
footprints of Lemma 5.10, log splitting must be robust to deviating behaviour. A strategy
could be to simply ignore the deviating behaviour and making sure that log splitting is
not influenced. However, deviations might accumulate over recursions and influence
discovery in later recursions of the IM framework. Therefore, the log splitting functions
defined below filter deviating events whenever they are detected. As a consequence, in
absence of deviating events, these log splitting functions perform the same split as the
log splitting functions of IM, i.e. the filtering log splitting functions of IMf could be
used for IM as well. We describe the log splitting functions of IMf.

Exclusive Choice. To split a log L according to an exclusive choice cut, IMf needs
to put each trace in one sublog; all events not from the Σi belonging to that sublog are
decided to be deviating. To choose a sublog for a trace, IMf selects the Σi with the most
events in the trace, which minimises the number of deviating events.
function xorSplitFiltering(L, p�,Σ1, . . . ,Σnq)

L1 . . . Ln Ð r s . . . r s
for t P L do

iÐ the Σi with the most events in t
t1 Ð t|Σi

Li Ð Li Z rt
1s

end for
return L1, . . . , Ln

end function
For instance, the log L � rxa, by, xc, c, cy, xa, b, cys would be split using the cut p�,

ta, bu, tcuq into rxa, by2s and rxc, c, cys.

205

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

Notice that as a side effect, xorSplitFiltering might return empty sublogs. These
sublogs will be recursed on and they will be handled by the emptyLog base case. For
instance, when the log rxa, b, bys is split using the cut p�, tau, tbuq, the sublog for tau will
be empty, while the sublog for tbu contains the trace xb, by.

Obviously, in case of a cut according the footprint of Lemma 5.10, no events are
filtered. Therefore, Lemma 6.5 holds as well, assuming that a valid cut is provided.

Sequence. To split a log L according to a sequence cut, IMf aims to minimise the
number of events that are classified as deviations. Let a split point (sequence split) be the
point in a trace where execution changed branches, e.g. for the cut pÑ, tau, tbuq and trace
xa, by, the split point would be in between a and b, denoted with xa|by. All events that
are on the wrong side of the split point according to the cut are classified as deviations.
For instance, given the cut pÑ, tau, tbuq, the trace xa, b, a, a, by could have several split
points (the deviations have been striked out):

x| �a, b, �a, �a, by

xa | b, �a, �a, by

xa,� b| �a, �a, by

xa,� b, a | �a, by

xa,� b, a, a | by

xa,� b, a, a,� b| y

The last split point is optimal, as it introduces the least number of deviations. The
function sequenceSplitFiltering first decides the split points in each trace, which it
does iteratively. Second, all deviating events are removed.
function sequenceSplitFiltering(L, pÑ,Σ1, . . . ,Σnq)

L1 . . . Ln Ð r s . . . r s
for 1 ¤ i ¤ n do

splitPointÐ 0
for t P L do

newSplitPointÐ findSplitPointpt,Σi, splitPoint,Y1¤j iΣjq
t1 Ð trsplitPoint, newSplitPointq|Σi

Li Ð Li Z rt
1s

splitPointÐ newSplitPoint
end for

end for
return L1, . . . , Ln

end function
in which tra, bq denotes the subtrace of t starting at position a up to (exclusive) position
b.

The main problem of the log splitting is to find the split point in the trace, such
that splitting the trace on that point introduces the least number of deviations. This
algorithm searches for the optimal split point in trace t where the set of activities Σ
begins its subtrace. The algorithm walks over t once and keeps track of the cost (or
gain) that is involved with including each event in the final subtrace. To limit the search
space, the algorithm ignores the part of the trace before position start and all activities
in ignore.
function findSplitPoint(t,Σ, start, ignore)

leastCostÐ start

206

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

positionWithLeastCostÐ start
costÐ 0
for iÐ start . . . |t| do

if tris P Σ then costÐ cost� 1
else if tris R ignore then costÐ cost� 1
end if
if cost leastCost then

leastCostÐ cost
positionWithLeastCostÐ i

end if
end for
return positionWithLeastCost

end function
For instance, the log rxa, b, cy, xb, a, cy, xc, a, b, cys would be split using the cut pÑ,

ta, bu, tcuq into rxa, by2, xb, ays, rxcy3s, i.e. the first c in the third trace is classified as
deviating and removed.

Notice that as a side effect, sequenceSplitFiltering might return sublogs with
empty traces. For instance, when the trace xb, b, ay is split using the cut pÑ, tau, tbuq,
the sublog for tau contains the empty trace, while the sublog for tbu contains the trace
xb, by.

In case the given cut corresponds to a footprint of Lemma 5.10, the log splitting
points returned by findSplitPoint correspond to the switch from Σi to Σi�1 and the
log split corresponds to the regular non-filtering sequence split. Therefore, if such a cut
is provided, Lemma 6.7 holds as well.

Concurrency. In the IM framework, a log splitting function has no knowledge at all
about the subtrees that will be discovered later, i.e. the cut and the log are the only
information available. A concurrent operator combines the languages of its subtrees in
a nonrestrictive way, i.e. all behaviour of all subtrees can be present in any interleaved
way. As the concurrent operator does not restrict behaviour, at log splitting using a
concurrent cut no behaviour could be considered deviating. Therefore, IMf uses the
concurrentSplit function of IM and no changes are necessary.

Loop. In the IM framework, a log splitting function is assumed to have no knowledge
about the subtrees. Therefore, few deviations can be detected while splitting a log using
a loop cut. For instance, consider the cut p	, tau, tbuq, the trace t � xa, b, a, a, b, ay
and the model 	

ba

. Trace t does not fit the model: the two consecutive a’s are not

supported by the model. In the IM framework, the log splitting function is assumed to
have no knowledge about subtrees, thus cannot determine that the two consecutive a’s
are deviating.

The only deviations that can be detected using log splitting with a loop cut is if a
trace starts or ends with an activity from the body of the loop. For instance, consider
the system 	

ba

, the cut p	, tau, tbuq and the trace xa, by, which does not fit the model.

In this case, log splitting can detect the deviation, as the trace ends with the non-body
activity b. To handle these deviations, we decided to “repair” the log by inserting an
empty trace in the sublog for a, i.e. in our example we discover the sublogs L1 � rxay, εs

207

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

and L2 � rxbys. In a subsequent recursion on L1, the fall through emptyTraces, which
will be introduced later on in this section, will decide whether this empty trace occurs
frequent enough to be included in the model.

We introduce the filtering log splitting function for loop cuts loopSplitFiltering:
function loopSplitFiltering(L, p	,Σ1, . . . ,Σnq)
@1¤i¤n Li Ð r s
for t P L do

S Ð Σ1

stÐ ε
for a P t do

if a P S then
stÐ xay � st

else
Lj Ð Lj Z rsts with Σj � S
stÐ ε
S Ð Σi such that a P Σi

end if
end for
Lj Ð Lj Z rsts with Σj � S
if S � Σ1 then L1 Ð L1 Z rεs end if

end for
end function

Base Cases

In the base cases, infrequent behaviour can be detected and accounted for as follows:

• in emptyLog, no filtering can be applied, thus we reuse this base case of IM.

• singleActivityFiltering applies when the event log contains a single activity,
i.e. ΣpLq � tau for some activity a. Then, the event log might contain empty traces,
traces with a single a or traces with multiple a’s. If the log contains “enough” traces
with a single a, we consider the base case a appropriate, which only produces traces
with a single a. Therefore, we assume a geometric distribution with parameter p,
which we estimate as pp � |L|{p||L|| � |L|q, in which |L| is the number of traces in
log L and ||L|| is the number of events in L. If the log contains only traces with
a single a, then pp � 0.5. If this pp is ‘close enough’ to 0.5, i.e. |pp � 0.5| ¤ f , the
activity a is returned as a leaf.

The new base case emptyTracesFiltering obviously does not preserve fitness, and
does not preserve log precision, as it applies to logs in which there is no trace with a
single event, thus it might introduce new behaviour.

locally fitness locally log precision
preserving preserving

emptyLog yes yes
singleActivityFiltering no no

Fall Throughs

All fall throughs of IM preserve all behaviour of the log, i.e. are locally fitness preserving,
thus also work in case of deviating behaviour, i.e. they preserve all deviating behaviour.

208

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

Thus, IMf mostly uses the same fall throughs as IM. However, the emptyTraces fall
through is sensitive to deviating and infrequent behaviour: a single empty trace in the
event log triggers the discovery of optionality, even if all other traces occur thousands of
times. Therefore, the emptyTracesFiltering fall through applies when the event log
contains empty traces, i.e. ε P L. If the event log contains “enough” empty traces, i.e.
|ε P L| ¥ |L| � f , the model �pτ, IMfpLzMptεuqqq is returned and recursion continues
on a log without the empty traces. Otherwise, the empty traces are filtered out and
recursion continues, i.e. IMfpLzMptεuqq.

The new fall through does not preserve fitness, as in the second case the empty traces
are simply removed.

locally fitness locally log precision
preserving preserving

emptyTracesFiltering no yes

Summary

To summarise, the Inductive Miner - infrequent (IMf) implements the functions of the
IM framework as follows, using a user-chooseable deviation-threshold-filtering parameter
f :
function baseCaseIMf(L)

if ε R L then
bcÐ emptyLogpLq
if bc � l then bcÐ singleActivityFilteringpLq end if
return bc

end if
return l

end function
Notice that findCutIMf first calls findCutIM to, as we will show in Theorem 6.18.

function findCutIMf(L)
if ε R L then
p`,Σ1 . . .Σkq Ð findCutIMp�pLqq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð xorCutFilteringp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutFilteringp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð concurrentCutFilteringp�pLqq end if
if k ¤ 1 then

return loopCutFilteringp�pLqq
else

return p`,Σ1 . . .Σkq
end if

end if
return l

end function
function splitLogIMf(L, p`,Σ1, . . . ,Σnq)

if ` � � then return xorSplitFilteringpL, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return

sequenceSplitFilteringpL, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return concurrentSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopSplitFilteringpL, p`,Σ1, . . . ,Σnqq
end if

209

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

end function
function fallThroughIMf(L)

bcÐ emptyTracesFilteringpLq
if bc � l then return bc
else return fallThroughIMpLq
end if

end function

The run time of IMf equals the run time of IM: Op|L| � |ΣpLq|4q.

6.2.3 Example

We revisit the example given in Section 4.1.3, using an event log in which all traces
happen 10 times, except for the last trace, which occurs once:

L92 � rxa, b, c, d, ey
10, xa, d, b, ey10, xa, e, by10, xa, c, by10, xa, b, d, e, cy10, xc, a, bys

Figure 6.7a shows the directly follows graph of L92. As a first step, IMf applies
findCutIM, which returns nothing. Second, the directly follows graph is filtered, here
using a threshold of 0.15. The result is shown in Figure 6.7b. In this filtered directly
follows graph, the sequence cut pÑ, tau, tb, c, d, euq is present.

Then, sequenceSplitFiltering splits the log in sublogs L93 and L94 (notice that
in the last trace, c is considered a deviation and is removed):

L93 � rxay
51s

L94 � rxb, c, d, ey
10, xd, b, ey10, xe, by10, xc, by10, xb, d, e, cy10, xbys

IMf records the choice and recurses, i.e. IMfpL92q � ÑpIMfpL93q, IMfpL94qq. We
first consider the recursive step on L93, for which baseCaseIMfpL93q returns a base case,
being the process tree a:

baseCaseIMpL93q � a

210

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

a
b

c

d

e

21

10
11010

10

10

10
10

10

1020

10

50

1

21

10

20

(a) � of L92.

a
b

c

d

e

21

10
1010

10

10

10
10

10

1020

10

50

1

21

10

20

(b) filtered � of L92.

b

c

d

e

10

10
10

10

10
10

20

10

21

10

10

21

10

20

(c) � of L94.

c

d

e

10

30

10

20

20

10

20

30

(d) � of L97.

Figure 6.7: Directly follows graphs of logs used in the recursion. The dashed
red curve does not denote a cut as of the red thick edge c� a. The non-dashed
red curves denote cuts.

211

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.2 Handling Deviating & Infrequent Behaviour

Next, we give the computation steps taken and the results of the recursive calls:

IMfpL93q � a

baseCaseIMfpL94q � l

findCutIMfpL94q � c3 � p^, tbu, tc, d, euq (see Figure 6.7c)
splitLogIMfpL94, c3q � L95, L96

L95 � rxby
51s

L96 � rxc, d, ey
10, xd, ey10, xey10, xcy10, xd, e, cy10, εs

IMfpL94q � ^pIMfpL95q, IMfpL96qq

baseCaseIMfpL95q � b

IMfpL95q � b

baseCaseIMfpL96q � IMfpL97q (remove ε)

L97 � rxc, d, ey
10, xd, ey10, xey10, xcy10, xd, e, cy10s

IMfpL96q � IMfpL97q

findCutIMfpL97q � l (see Figure 6.7d)
fallThroughIMfpL97q � 	p�pc, d, eq, τq

IMfpL97q � 	p�pc, d, eq, τq

Combining all these intermediate steps, IMf will discover the process tree T � Ñ

^

	

τ�

edc

b

a

.

6.2.4 Guarantees

Filtering deviating behaviour excludes behaviour of the event log from the discovered
model, hence IMf does not guarantee fitness: Corollary 6.11 does not hold for IMf.

To preserve rediscoverability, IMf extends IM, i.e. before any filtering is applied
to cut detection, the cut detection functions of IM are applied (i.e. the second line in
findCutIMf calls findCutIM). Thus, in case the system model is of class Cb, the
deviation filtering is not reached, and therefore, lemmas 6.13 and 6.14 hold for IMf, and
hence by Theorem 4.11, IMf guarantees rediscoverability for Cb. Using the flexibility
of the IM framework, we inserted deviation filtering in several steps, without losing
rediscoverability.

Theorem 6.18 (IMf rediscoverability). Let L be a log and S P Cb be a system such
that setpLq � LpSq ^�pLq ��pSq. Then, LpIMfpLqq � LpSq.

Notice that result only holds in case the event log contains no infrequent or deviating
behaviour (setpLq � LpSq). This thesis introduces the rediscoverability framework of

212

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

Theorem 4.11, which enables rediscoverability proofs using formal characterisations and
quantifications of deviating and infrequent behaviour, which remain future work:

Future work 6.19: Prove rediscoverability of IMf for logs with deviating and infrequent
behaviour.

In this section, we described several techniques to detect deviating and infrequent be-
haviour, and used one of these in IMf. However, many more deviation-filtering techniques
could be applied, and different real-life event logs might require different techniques.

Future work 6.20: Consider other deviation-filtering techniques to distinguish concur-
rency and deviating/infrequent behaviour.

IMf uses a user-specified threshold f to filter deviating and infrequent behaviour,
which is fixed for the entire application of IMf to a log. We chose to use a single f
for simplicity and to limit the number of interactions a user has with the algorithm,
however one could choose different thresholds for different cut detections, base cases, fall
throughs and recursions. Future work might reveal whether different thresholds may be
used sensibly.

In Chapter 8, we investigate the influence of deviating and infrequent behaviour on
rediscoverability, and evaluate how IMf handles such behaviour. In the next section,
we introduce an algorithm to handle the opposite of deviating and infrequent behaviour:
incomplete behaviour.

6.3 Handling Incomplete Behaviour

In Section 3.2, we identified three types of behaviour that challenge discovery techniques:
deviating behaviour, infrequent behaviour and incompleteness. In the previous section,
we showed how the IM framework can be used to handle deviating and infrequent be-
haviour. In this section, we address the last challenge: incompleteness, i.e. behaviour
that is part of the system but which is not present in the event log. We first discuss
incompleteness and its influence on directly follows graphs and process discovery in Sec-
tion 6.3.1. In Section 6.3.2, we introduce an algorithm that handles incompleteness, the
Inductive Miner - incompleteness (IMc). We give an example in Section 6.3.3, discuss
the guarantees it provides in Section 6.3.4 and discuss some of its implementation details
in Section 6.3.5.

6.3.1 Incomplete Behaviour
As discussed in Chapter 3, in process discovery it is assumed that an event log does not
contain all behaviour of the system, as it is infeasible or impossible that this assumption
holds for complex systems with, for instance, a high degree of concurrency or looping
behaviour. Furthermore, if one would assume that all behaviour is present in the event
log, then the event log could serve as a model and it is not necessary to discover a
model. Therefore, in process discovery, it is typically assumed that not all behaviour of
the system is present in the event log, i.e. that the event log is merely a sample of the
possible behaviour. In the previous sections, we used this assumption already. However,
in this section, we push the lower boundary of behaviour that needs to be present in the
event log to enable rediscovery.

Instead of assuming that the event log contains all behaviour, many discovery algo-
rithms assume a weaker notion of completeness to provide rediscoverability. For instance,

213

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

a b

c

de

f

(a) � of L99.

a b

c

de

f

(b) � of M98.

Figure 6.8: Directly follows graphs of L99 and M98. The dashed red line
denotes that the loop cut p	, ta, b, c, du, te, fuq is not present.

in the previous sections, we showed that IM and IMf provide rediscoverability, assum-
ing that the directly follows relation of the event log contains all relations of the directly
follows relation of the system. We refer to this property of log and system as the log
being directly follows complete to the system. In this section, we explore what happens
if the information in the event log does not suffice to obtain an equivalent directly fol-
lows graph: in the relation of the log, edges, start activities or end activities are missing
compared to the relation of the system.

For instance, consider the tree M98 � 	

Ñ

fe

^

Ñ

dc

Ñ

ba

and the following event log:

L99 � rxa, b, c, d, e, f, a, c, b, dy,

xa, c, d, b, e, f, a, b, c, dy,

xc, a, b, dy,

xc, a, d, by,

xc, d, a, bys

Figure 6.8 shows the directly follows graph of L99, in which the edge f� c of M98 is
missing in L99. Due to this missing edge, the cut p	, ta, b, c, du, te, fuq is not a cut
according to Lemma 5.2.2 and therefore IM will not rediscover M98, but will select a fall
through (activityConcurrent in this case).

In the next section, we introduce an algorithm to handle such incomplete behaviour.

6.3.2 Inductive Miner - incompleteness (IMc)
In the following, we explore a way to use information from incomplete logs that could help
to rediscover the original model. That is, introduce an algorithm that instead of selecting
a cut that perfectly matches a footprint of Lemma 5.2.2, searches for the cut that comes
closest, using the activity relations of Section 5.3. In the remainder of this section, we

214

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

describe how this algorithm, Inductive Miner - incompleteness (IMc), implements the
IM framework: cut detection, log splitting, base cases and fall throughs.

Cut Detection

Cut detection in IMc changed completely compared to IM and IMf: instead of searching
for a cut that perfectly matches the footprints of Lemma 5.10, it selects the cut that comes
closest to a footprint, i.e. the most probable cut. To explain the steps necessary to select
the most probable cut, we reuse the example process treeM98 and log L99 of the previous
section, i.e M98 � 	

Ñ

fe

^

Ñ

dc

Ñ

ba

, from which the event log L99 was derived. The directly

follows graph of L99 was shown in Figure 6.8, and the edge f� c of M98 is missing in
L99. Without this edge, the footprint of cut p	, ta, b, c, du, te, fuq, which conforms to
M98, is not present as Requirement 	.4 does not hold for it. Furthermore, no other cut
is present.

To determine the probability that a cut would show up when more behaviour would
be added to the log, IMc uses the activity relations introduced in Section 5.3, which
express the type of relation of two activities: we identified the five relations �, Ñ, ^,
	i and 	s. Information in the log may allow us to conclude that a particular relation
between two activities cannot hold. For instance, in L99, 	ipf, cq has been observed,
i.e. a trace x. . . f . . . c . . .y and a trace x. . . c . . . f . . .y, hence observing more behaviour
will not allow us to conclude that e.g. Ñpf, cq holds, as x. . . c . . . f . . .y has already been
observed, which violatesÑpf, cq (we assume that the event log contains neither deviating
nor infrequent behaviour). These violations follow from the lattice recalled in Figure 6.9:
if the log contains information that a relation ` holds, then any weaker relation, i.e., not
reachable from ` in the lattice, cannot hold after seeing more traces: one can only move
up in the lattice when more behaviour is observed.

However, even when knowing that a weaker relation does not hold, stronger relations
than b might still hold. As we do not have precise information about which relations
hold, IMc uses an estimated probability that a relation holds instead of a binary choice:
for each of the activity relations `, we introduce a probabilistic version p`: for activities
a and b, p`pa, bq denotes an estimated probability that pa, bq are in a `-relation. These
probabilistic versions make it easier for techniques to handle incompleteness, e.g. instead
of a binary choice whether 	ipc, fq or 	spf, cq hold, we can compare the probabilities
p	ipa, bq and p	spa, bq to make this choice (notice that for	s, there should be a connection
f� c). The actual probabilities could be chosen in several ways; in our example, we chose
p	spc, fq to be 0.045.

These estimated probabilities are accumulated into a probabilities for cuts, and IMc
searches for and selects the cut with the highest accumulated probability. In L99, the cut
with the highest probability is p	, ta, b, c, du, te, fuq, and its probability is 0.72.

We first discuss how probabilities are estimated from the activity relations, second
we show how they are accumulated into probabilities for cuts, and third we show how
IMc performs the cut selection. We finish the section with an example, after which, in
the next section, we discuss log splitting, base cases and fall throughs.

215

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

a� b b� a
a��b b��a

a� b b �� a
a��b b��a

a �� b b� a
a��b b��a

a� b b �� a
a��b b ���a

a �� b b �� a
a��b b��a

a �� b b� a
a ���b b��a

a �� b b �� a
a��b b ���a

a �� b b �� a
a ���b b��a

a �� b b �� a
a ���b b ���a

^pa, bq
^pb, aq

	spa, bq

Ñpa, bq

Ñpa, bq

	spb, aq

Ñpb, aq

Ñpb, aq

	ipa, bq
	ipb, aq

�pa, bq
�pb, aq

Figure 6.9: Activity relations; the arrows define a lattice.

Probabilistic Activity Relations. In this part, we describe how we estimate a
probability p`pa, bq for two activities a and b and an activity relation `. Our choice for
these p` is shown in Table 6.2, next we explain our rationale, after which we characterise
the conditions for other choices that lead to rediscoverability. In this table, if the relations
given in the first column hold, the table denotes the probability that each ` is the ‘true’
relation. Let M be a model and L a log of M . Then, using Figure 6.9, we distinguish
three cases and choose p`pa, bq as follows:

• if `pa, bq holds in L, it makes sense to choose p`pa, bq as the highest of all relations
for the pair pa, bq. The more frequent activities a and b occur in L, the more con-
fident we are that `pa, bq holds for M , and not some stronger relation. We choose
p`pa, bq as follows: let zpa, bq � |a|�|b|

2
denote the average number of occurrences

of a and b, then we define p`pa, bq � 1 � 1
zpa,bq�1

, yielding a number between 1
2

and 1.

• if some relation bpa, bq, holds in L from which `pa, bq is unreachable, then L
contains a violation to p`pa, bq, as we assumed L to be deviation-free and the
behavioural relations cannot cease to hold by adding observations. Therefore, we
choose p`pa, bq � 0.

• if some relation b1pa, bq holds in L from which `pa, bq can be reached, i.e. `pa, bq
could hold by adding more traces to L, we choose to divide the remaining 1

zpa,bq�1

evenly over all remaining entries, such that the probabilities for each pair pa, bq
sum up to 1.

In our example, in case of L99, we obtain p	ipa, eq � 0.82 and p	spc, fq � 0.045.

216

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

Table 6.2: Our proposal for probabilistic activity relations for activities a and
b, with zpa, bq � p|a| � |b|q{2. Negations of relations are omitted from the first
column.

p�pa, bq pÑpa, bq pÑpb, aq p	i
pa, bq p	s

pa, bq p	s
pb, aq p^pa, bq

(nothing) 1� 1
z�1

1
6 �

1
z�1

1
6 �

1
z�1

1
6 �

1
z�1

1
6 �

1
z�1

1
6 �

1
z�1

1
6 �

1
z�1

a��b 0 1� 1
z�1 0 1

4 �
1

z�1
1
4 �

1
z�1

1
4 �

1
z�1

1
4 �

1
z�1

b��a 0 0 1� 1
z�1

1
4 �

1
z�1

1
4 �

1
z�1

1
4 �

1
z�1

1
4 �

1
z�1

a��b^ b��a 0 0 0 1� 1
z�1

1
3 �

1
z�1

1
3 �

1
z�1

1
3 �

1
z�1

a� b 0 1� 1
z�1 0 0 1

2 �
1

z�1 0 1
2 �

1
z�1

a� b^ b��a 0 0 0 0 1� 1
z�1 0 1

z�1

b� a 0 0 1� 1
z�1 0 0 1

2 �
1

z�1
1
2 �

1
z�1

b� a^ a��b 0 0 0 0 0 1� 1
z�1

1
z�1

a� b^ b� a 0 0 0 0 0 0 1

One could define Table 6.2 differently, as long as for each pair of activities pa, bq and
each relation `, a probability p`pa, bq is available, and as long as p`pa, bq ¥ 0.5 if `pa, bq
has been observed in the event log, and p`pa, bq 0.5 if `pa, bq has not been observed
in the event log yet. In Section 6.3.4, we will show that such a choice for p` leads to an
algorithm that provides rediscoverability.

Accumulated Probabilities. Given such activity relation probabilities, we com-
pute an accumulated probability for a cut. We first explain �, Ñ and ^, after which we
explain 	. Informally, for ` P t�,Ñ,^u, the accumulated probability p` is the average
p` over all pairs of activities that are partitioned:

Definition 6.21 (accumulated probability for �, Ñ and ^). Let c � p`,Σ1,Σ2q be a
cut, with ` P t�,Ñ,^u. Then p`pΣ1,Σ2q denotes the accumulated probability of c:

p`pΣ1,Σ2q �

°
aPΣ1,bPΣ2

p`pa, bq

|Σ1| � |Σ2|

For instance, in L99, the accumulated probability of the cut p^, tau, tb, c, d, e, fuq is
the average over p^pa, bq, p^pa, cq, p^pa, dq, p^pa, eq and p^pa, fq.

By Definition 6.21, a Ñ, �, or ^ cut requires all pairs of activities to be in the same
relation sufficiently often. For a loop cut, this is not sufficient, as all pairs with an activity
on both sides of the partition (all crossing pairs) in a loop are in a loop relation, i.e. 	s or
	i. The combination of both loop relations suffices to describe the probability whether
all activities are indeed in a loop, but on its own cannot distinguish the body of a loop
from its redo parts. For this, we have to explicitly pick the start and end activities of
the redo parts, such that a redo start activity follows a body end activity , and a redo end
activity is followed by a body start activity. This direct succession in a loop is expressed
in 	s. Next, we define the probability that c � p	,Σ1,Σ2q is a loop cut, given a set of
redo start activities S2 and a set of redo end activities E2. In the next section, we show

217

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

how S2 and E2 could be chosen (one can always try all possibilities to find the possibility
with the highest probability).

Definition 6.22 (accumulated probability for). Let c � p	,Σ1,Σ2q be a cut, L be a
log, and S2E2 � Σ2 be sets of activities. We aggregate over three parts: start of a redo
part, end of a redo part and everything else:

redostart �
¸

pa,bqPEndpLq�S2

p	spa, bq

redoend �
¸

pa,bqPE2�StartpLq

p	spa, bq

indirect �
¸

aPΣ1,bPΣ2
pa,bqRpEndpLq�S2qYpE2�StartpLqq

p	ipa, bq

Then, p	pΣ1,Σ2, S2, E2q denotes the accumulated probability of c:

p	pΣ1,Σ2, S2, E2q �
redostart � redoend � indirect

|Σ1| � |Σ2|

In this definition, redostart and redoend capture the strength of S2 and E2 really being
the start and end of the redo parts; indirect captures the strength that all other pairs
of activities that cross Σ1, Σ2 are in a loop relation. For readability reasons, in the
following, we will omit the parameters S2 and E2.

For instance, in the example log L99 for the cut p	, ta, b, c, du, te, fuq, we assume
knowledge that S2 � teu and that E2 � tfu:

StartpLq � ta, cu

EndpLq � tb, du

S2 � teu

E2 � tfu

redostart � p	spb, eq � p	spd, eq

� 0.818� 0.818

� 1.636

redoend � p	spf, aq � p	spf, cq

� 0.818� 0.045

� 0.864

indirect � p	ipa, eq � p	ipb, fq � p	ipc, eq � p	ipd, fq

� 0.818� 0.818� 0.818� 0.818

� 3.273

p	pta, b, c, du, te, fu, S2, E2q � p1.636� 0.864� 3.273q{8

� 0.722

Performing the Cut Detection. To detect a cut, IMc uses the accumulated
estimates of definitions 6.21 and 6.22 to select the cut with the highest accumulated
probability over all cuts, for the operators�,Ñ, ^ and 	. To select a cut with highest p`,
our implementation uses an SMT solver: in Section 6.3.5, we will discuss the translation

218

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

to an SMT problem in more detail. In case p` � 	, the SMT solver will choose S2 and
E2 as well.

As solving the SMT problem might take a long time, and to guarantee rediscover-
ability, in each recursion, IMc first applies the cut-detection functions of IM, before
attempting to find a cut with the method described.

Applied on our example log L99, IMc starts with the probabilistic activity relations:

� a b c d e f

a . 0.00 0.00 0.00 0.00 0.00

b 0.00 . 0.00 0.00 0.00 0.00

c 0.00 0.00 . 0.00 0.00 0.00

d 0.00 0.00 0.00 . 0.00 0.00

e 0.00 0.00 0.00 0.00 . 0.00

f 0.00 0.00 0.00 0.00 0.00 .

Ñ a b c d e f

a . 0.00 0.00 0.00 0.00 0.00

b 0.00 . 0.00 0.00 0.00 0.00

c 0.00 0.00 . 0.00 0.00 0.00

d 0.00 0.00 0.00 . 0.00 0.00

e 0.00 0.00 0.00 0.00 . 0.00

f 0.00 0.00 0.00 0.00 0.00 .

^ a b c d e f

a . 0.13 1.00 1.00 0.05 0.18

b 0.13 . 1.00 1.00 0.18 0.05

c 1.00 1.00 . 0.13 0.05 0.05

d 1.00 1.00 0.13 . 0.18 0.05

e 0.05 0.18 0.05 0.18 . 0.33

f 0.18 0.05 0.05 0.05 0.33 .

	s a b c d e f

a . 0.88 0.00 0.00 0.05 0.00

b 0.00 . 0.00 0.00 0.82 0.05

c 0.00 0.00 . 0.88 0.05 0.05

d 0.00 0.00 0.00 . 0.82 0.05

e 0.05 0.00 0.05 0.00 . 0.67

f 0.82 0.05 0.05 0.05 0.00 .

219

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

	i a b c d e f

a . 0.00 0.00 0.00 0.82 0.00

b 0.00 . 0.00 0.00 0.00 0.82

c 0.00 0.00 . 0.00 0.82 0.82

d 0.00 0.00 0.00 . 0.00 0.82

e 0.82 0.00 0.82 0.00 . 0.00

f 0.00 0.82 0.82 0.82 0.00 .

Second, IMc considers all possible cuts that can be made using the activities a, b, c,
d, e and f . We do not list all of them here, but instead provide some examples:

p	pta, b, c, du, te, fuq � 0.722

p�pta, bu, tc, d, e, fuq � 0

p^pta, b, cu, td, e, fuq � 0.299

pÑpta, bu, tc, d, e, fuq � 0

. . .

From all these cuts, the cut with the highest accumulated probability is selected, i.e. here
p	, ta, b, c, du, te, fuq. Thus, even though the directly follows graph (shown in Figure 6.8)
is not complete and does not contain any cut, IMc manages to select a cut according to
tree M98 that underlies the log L99 by choosing the most probable cut.

Local Guarantees. The aim of IMc is to handle event logs with incomplete in-
formation, i.e. to rediscover a system even though the event log is not directly follows
complete with respect to that system. Inherently, log precision is not preserved locally:
by the introduction of extra �-edges in the behaviour of the model, the model contains
more behaviour than the event log. Furthermore, IMc selects a cut by maximising the
accumulated cut probability, thus individual activity relations might be violated in the
final cut, hence local fitness cannot be guaranteed neither. Nevertheless, our evaluation
(Chapter 8) shows that IMc is more robust to incomplete behaviour than IM and other
algorithms.

Log Splitting

The cuts chosen by IMc are not guaranteed to be locally fitness preserving, i.e. in the
process choosing cuts and splitting logs, deviating behaviour might surface. Therefore,
IMc uses the filtering log splitting functions of IMf.

Base Cases

As the aim of IMc is to handle incompleteness, we choose to use the non-filtering base
cases of IM.

Fall Throughs

As IMc always discovers a cut, a fall through is only necessary if the event log consists
of a single activity, or if the event log contains empty traces ε. That is, emptyTraces
and flowerModel.

220

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

Summary

To summarise, the Inductive Miner - incompleteness (IMc) implements the functions of
the IM framework as follows:
function baseCaseIMc(L)

return baseCaseIM

end function

function findCutIMc(L)
if ε R L then

return cut p`,Σ1,Σ2q of ΣpLq with highest p`pΣ1,Σ2q; ` P t�,Ñ,^,	u
end if

end function

function splitLogIMc(L, p`,Σ1, . . . ,Σnq)
return splitLogIMf

end function

function fallThroughIMc(L)
ftÐ emptyTracespLq
if ft � l then return ft
else return flowerModelpLq
end if

end function
IM has a run time of Op|L| � |ΣpLq|4q, to which IMc adds an SMT step that is

exponential in the number of activities, which is executed at most |ΣpLq| times (once in
each recursive step). Op|L| � |ΣpLq|4 � |Σ| � |2ΣpLq|q.

6.3.3 Example

As an example, consider the log

L100 � rxc, d, e, f, d, e, f, d, ey, xb, a, d, ey, xa, b, d, e, f, d, ey, xc, gys

If IMc is applied to L100, it first searches for the most likely cut, which is pÑ, ta, b, cu,
td, e, f, guq, with a pÑ of about 0.64. The choice for Ñ is recorded, and L100 is split into

L101 � rxcy
2, xb, ay, xa, bys

L102 � rxd, e, f, d, e, f, d, ey, xd, ey, xd, e, f, d, ey, xgys

Then, IMc recurses on both these sublogs. Figure 6.10 shows the recursive steps that
are taken by IMc, which continues as IM. The final result is Ñ

�

g	

fÑ

ed

�

c^

ba

.

221

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

)}d, e, f, g}{a, b, c{,→(

)}c{,}a, b{,×(

)}b{,}a{,∧(

)}g{,}d, e, f{,×(

)}f{,}d, e{,�(

)}e{,}d{,→(a b

c

d e

f

g

64.0

74.0

00.1

74.0

82.0

86.0

Figure 6.10: Example of IMc applied to a log. As a first step, the cut with
highest p` is pÑ, ta, b, cu, td, e, f, guq, with p` � 0.64. Then, IMc recurses as
shown.

6.3.4 Guarantees

We first discuss why IMc does not guarantee fitness, after which we show that IMc
provides rediscoverability.

Fitness

In contrast with IM, IMc does not guarantee fitness. IMc cannot guarantee fitness,
as a cut with the highest probability does not necessarily honour all observed activity
relations.

For instance, consider the process tree M103 � �

Ñ

�

lkjihg

f

Ñ

�

edcb

a

, and a log

L104 consisting of 1000 traces of M103 and an extra trace xe, ly. Figure 6.11 selects the
directly follows graph of L104. Using this directly follows graph, IMc discovers the cut
p�, ta, b, c, d, e, lu, tf, g, h, i, j, kuq. Then, splitting e.g. the trace xf, ly results in either the
f or l event to be excluded. Consequently, the resulting model �

Ñ

�

kjihgτ

f

Ñ

�

dcbÑ

�

lτ

e

�

aτ

222

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

a

b

c

d
ef

g

h

i

j
k l

Figure 6.11: �pL104q. The red line denotes the cut that is selected by IMc.

does not fit L104.

Rediscoverability.

Similar to IMf, the fact that IMc as a first step applies IM cut detection, IMf log
splitting and IM base cases, already provides rediscoverability:

Theorem 6.23 (IMc rediscoverability). Take a system S P Cb and a log L such that
setpLq � LpSq and �pLq ��pSq. Then, LpIMcpLqq � LpSq.

However, in order to show that the new cut detection is consistent with IM, we prove
rediscoverability also for the IMc SMT-cut detection in isolation, i.e. let findCutIMc be
findCutIMc without the findCutIM step.

Then, in order to prove rediscoverability, we reuse the results of Lemma 6.13, which
shows that IM is abstraction preserving, and only need to prove Requirement AP.4,
which states that each cut returned by findCutIMc should conform to S. The following
lemma proves that Requirement AP.4 holds for IMc. This lemma makes an additional
assumption, i.e. that the activities of S appear in L at least a certain number of times.
Let leastpLq denote the number of times the least occurring activity occurs in a log L
(we will give a characterisation of a lower bound for leastpLq later).

Lemma 6.24 (IMc cut conformance). Let S P Cb be a reduced system. Then, there
exists a l P N such that for all logs L with setpLq � LpSq, �pLq ��pSq and leastpLq ¥ l,
and for which baseCaseIMcpLq does not apply, it holds that findCutIMcpLq conforms
to S (Definition 5.16).

We prove this lemma as follows: we first show that IMc selects the correct root
operator (Lemma 6.25), and second that IMc selects a partition corresponding to S
(Lemma 6.26).

In the first lemma, we prove that for each log for which least is sufficiently large,
IMc selects the correct root operator.

Lemma 6.25 (IMc selects the correct root operator). Assume a model S � `pS1, . . . , Snq
reduced according to Definition 5.1. Then there exists a l P N such that for all logs L
with setpLq � LpSq, �pLq ��pSq and leastpLq ¥ l, it holds that IMcpLq selects `.

223

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

Proof. IMc selects binary cuts, while S can have an arbitrary number of children. With-
out loss of generality, assume that c � p`,Σ1, Σ2q is a binary cut conforming to S.
Let c1 � pb,Σ1

1,Σ
1
2q be an arbitrary cut of S, with b � `. We need to prove that

p`pΣ1,Σ2q ¡ pbpΣ
1
1,Σ

1
2q, which we do by computing a lower bound for p`pΣ1,Σ2q

and an upper bound for pbpΣ
1
1,Σ

1
2q and then comparing these two bounds. Apply case

distinction on whether ` � 	:

` � 	 We start with the lower bound for p`pΣ1,Σ2q. By Definition 6.21,

p`pΣ1,Σ2q �

°
aPΣ1,bPΣ2

p`pa, bq

|Σ1| � |Σ2|

By semantics of process trees, the relations defined in Figure 6.9, the probabilities
defined in Table 6.2, setpLq � LpSq, and�pLq ��pSq, for each activity pair pa, bq
that crosses c, `pa, bq holds. For each such pair, we defined p`pa, bq ¥ 1� 1

zpa,bq�1

(notice that this is an equality for all operators except p^). Thus,

p`pΣ1,Σ2q ¥

°
aPΣ1,bPΣ2

1� 1
zpa,bq�1

|Σ1| � |Σ2|

For all a and b, zpa, bq � |a|�|b|
2

¥ minp|a|, |b|q ¥ leastpLq. Thus,

p`pΣ1,Σ2q ¥

°
aPΣ1,bPΣ2

1� 1
leastpLq�1

|Σ1| � |Σ2|

p`pΣ1,Σ2q ¥ 1�
1

leastpLq � 1
(6.1)

Next, we prove an upper bound for pbpΣ
1
1,Σ

1
2q. By Definition 6.21,°

aPΣ11,bPΣ12
pbpa, bq

|Σ1
1| � |Σ

1
2|

� pbpΣ
1
1,Σ

1
2q

Let pu, vq be a pair partitioned by both Σ1,Σ2 and Σ1
1,Σ

1
2. By Lemma 5.17, such a

pair exists. For all other pa, bq � pu, vq, it holds that pbpa, bq ¤ 1 (abusing notation
a bit by combining 	i and 	s), and there are |Σ1| � |Σ2| � 1 of those pairs.

p|Σ1
1| � |Σ

1
2| � 1q � 1� 1 � pbpu, vq

|Σ1
1| � |Σ

1
2|

¥ pbpΣ
1
1,Σ

1
2q

As pu, vq crosses c, `pu, vq holds. Then by inspection of Table 6.2, pbpu, vq ¤
1

zpu,vq�1
. Define y to be |Σ1

1| � |Σ
1
2|.

py � 1q � 1
zpu,vq�1

y
¥ pbpΣ

1
1,Σ

1
2q

From zpa, bq � |a|�|b|
2

¥ 1 follows that 1
zpu,vq�1

¤ 1
2
. Thus,

py � 1q � 1
2

y
¥ pbpΣ

1
1,Σ

1
2q (6.2)

224

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

Using the two bounds (6.1) and (6.2), we need to prove that

1�
1

leastpLq � 1
¡
py � 1q � 1

2

y
(6.3)

Note that y is at most tΣpSq{2u � rΣpSq{2s, which allows us to choose l such that
l ¡ 2y � 1. By initial assumption leastpLq ¥ l, and therefore (6.3) holds. Hence,
p`pΣ1,Σ2q ¡ pbpΣ

1
1,Σ

1
2q.

` � 	 Using reasoning similar to the ` � 	 case, while taking S2, E2 and the difference
between 	s and 	i into account, we derive (6.1). We directly reuse (6.2) to arrive
at (6.3) and conclude that p`pΣ1,Σ2q ¡ pbpΣ

1
1,Σ

1
2q.

Thus, p`pΣ1,Σ2q ¡ pbpΣ
1
1,Σ

1
2q holds for all `. As IMc selects the cut with highest

p`, IMc selects `.

Next, we prove that for a log L, if leastpLq is sufficiently large, then IMc will select
a partition conforming to S.

Lemma 6.26 (IMc selects a correct partition). Assume a model S � `pS1, . . . , Snq in
normal form. Let c � p`,Σ1,Σ2q be a cut conforming to S, and let c1 � p`,Σ1

1,Σ
1
2q

be a cut not conforming to S. Then there exists a l P N such that for all logs L with
setpLq � LpSq, �pLq ��pSq and leastpLq ¥ k, holds that p`pΣ1,Σ2q ¡ p`pΣ

1
1,Σ

1
2q.

Proof. We follow a similar reasoning as in the proof of Lemma 6.25 to prove that
p`pΣ1,Σ2q ¡ p`pΣ

1
1,Σ

1
2q: we prove a lower bound for p`pΣ1,Σ2q, an upper bound

for p`pΣ
1
1,Σ

1
2q and compare these two. Apply case distinction on whether ` � 	.

` � 	 Obviously, (6.1) holds in this case as well. For the upper bound for p`pΣ
1
1,Σ

1
2q,

we start with °
aPΣ11,bPΣ12

p`pa, bq

|Σ1
1| � |Σ

1
2|

� p`pΣ
1
1,Σ

1
2q (6.4)

As the cut c1 � p`,Σ1
1,Σ

1
2q does not conform to S, there is a ΣpSiq partitioned

by c1: Σ1
1 X ΣpSiq � H and Σ1

2 X ΣpSiq � H. Consider this Si � bp. . .q, then
c1Si

� pb, pΣpSiq XΣ1
1q, pΣpSiq XΣ1

2q is a cut of Si. Take an arbitrary cut cSi that
conforms to Si. By Lemma 5.17, at least one activity pair pu, vq is partitioned
by both cSi and c1Si

. For all other pa, bq � pu, vq, by Table 6.2, it holds that
p`pa, bq ¤ 1, and there are |Σ1| � |Σ2| � 1 of those pairs. Applying this to (6.4), we
derive:

p|Σ1
1| � |Σ

1
2| � 1q � 1� 1 � p`pu, vq

|Σ1
1| � |Σ

1
2|

¥ p`pΣ
1
1,Σ

1
2q

As cSi conforms to Si and ` � 	, we conclude that bpu, vq holds. As S is in
normal form b � `, and therefore `pu, vq does not hold. Then, by Table 6.2,
p`pu, vq ¤

1
zpu,vq�1

. From zpu, vq � |u|�|v|
2

¥ 1 follows that p`pu, vq ¤
1

zpu,vq�1
¤

1
2
. Define y to be |Σ1

1| � |Σ
1
2|.

py � 1q � 1
2

y
�
p|Σ1

1| � |Σ
1
2| � 1q � 1� 1

2

|Σ1
1| � |Σ

1
2|

¥ p`pΣ
1
1,Σ

1
2q (6.5)

Similar to the proof of Lemma 6.25, from (6.1), (6.5) and choosing l ¡ 2y � 1,
follows that p`pΣ1,Σ2q ¡ p`pΣ

1
1,Σ

1
2q.

225

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

` � 	 We follow a reasoning similar to the proof of Lemma 6.25, and derive the lower
bound (6.1) again. For the upper bound for p`pΣ

1
1,Σ

1
2q, similar to the proof of

Lemma 6.25, we derive °
aPΣ11,bPΣ12

p`pa, bq

|Σ1
1| � |Σ

1
2|

¥ p`pΣ
1
1,Σ

1
2q

As �pLq � �pSq and by semantics of 	, �� holds for all activity pairs. Thus,
	sY	iY^ contains all activity pairs. By Requirement 	.1, StartpSq � StartpS1q
� Σ1 and StartpS1q � Σ1

1.
c1 separates at least a ΣpSiq. Let pu, vq be a pair of activities of ΣpSiq separated by
c1. Prove by case distinction on whether ΣpSiq � Σ1 that at least one pair pu, vq
is counted wrongly.

ΣpSiq � Σ1 Towards contradiction, assume no misclassified pair exists in ΣpS1q.
Take an arbitrary ak P ΣpS1q. Apply case distinction on whether ak is a start
or an end activity.

• If ak P StartpSq or ak P EndpSq, by Requirement 	.1, ak P Σ1
1.

• Consider two �-paths: one path from a start activity to ak: a1 . . . ak
such that a1 P StartpSq and @aj¡1 aj R StartpSqYEndpSq, and one from
ak to an end activity: ak . . . al such that al P EndpSq and @aj l aj R
StartpSqYEndpSq (see Figure 6.12). Apply case distinction on whether
such paths exist.

Da1 . . . ak Then some pair pap, aqq, on this path crosses c1.
As pap, aqq is on a �-path, ap� aq holds, so either 	spap, aqq or
^pap, aqq. Activity aq is not a start activity and ap is not an end
activity, so pap, aqq contributes as 	i towards p	pc

1q.
Dak . . . al Similar.
@a1 . . . ak ^ @ak . . . al Then ak must be on a �-path; let this path be

al . . . ak . . . a1 with a1 P StartpSq and ak P EndpSq. As S1 � 	, this
can only happen if S1 � �, which means that there is a a11 P StartpSq
such that no �-path ak . . . a11 exists. Then, 	ipak, a

1
1q, but pak, a11q

contributes as 	s.

ΣpSiq � Σ1 As S is reduced, Si � `p. . .q and thus, the�-graph of Si is connected.
By semantics of process trees, there is at least a start or end activity that can
be executed before/after both u and v: either xs � � �uy and xs � � � vy or xu � � � ey
and xv � � � ey, with s P StartpSiq and e P EndpSiq. Without loss of generality,
assume that two �-paths xs � � �uy and xs � � � vy exist in the �-graph, such
that s P StartpSiq. The pair pu, vq crosses c1, so one of these paths must cross
c1 as well. Let px, yq be such a crossing pair in the �-graph. As �px, yq,
either ^px, yq or 	spx, yq. Neither x nor y are start or end activities of S, so
the pair px, yq contributes as 	i to the average p	pc

1q.

Hence, at least one pair pu, vq is counted wrongly. Left to prove: this pair has a
large enough influence on the final accumulated probability, thus the lower bound
for p`pΣ1,Σ2q and the upper bound for p`pΣ

1
1,Σ

1
2q are separated. The remaining

part of this case is similar to the case ` � 	.

Hence, p`pΣ1,Σ2q ¡ p`pΣ
1
1,Σ

1
2q, so IMc will select a partition conforming to S.

226

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

aka1 al

StartpLq EndpLq
c1

ap aq

Figure 6.12: Illustration of paths used in the proof of Lemma 6.26.

From these lemmas and the fact that for each tree there is a language-equivalent
binary tree (applying reduction rules of Definition 5.1 in reverse if necessary), rediscov-
erability of IMc follows directly, which shows that the cut detection methods introduced
in this section are sufficient to provide rediscoverability, under assumption that the log is
directly follows complete and has no deviations with respect to the system, and assuming
that the event log contains each activity at least l times.

In the proofs of lemmas 6.25 and 6.26, we chose l ¡ 2 � tΣpSq{2u � rΣpSq{2s � 1.
This gives an upper bound for the minimum leastpLq required, and a characterisation of
sufficiency:

Corollary 6.27 (bound for least). A bound for k and leastpLq as used in lemmas 6.25
and 6.26 is determined by the size of the alphabet: leastpLq ¥ l ¥ 2�t|ΣpSq|{2u�r|ΣpSq|{2s.

In Chapter 8, we investigate the influence of incompleteness on rediscoverability.
Last, the unsolved question remaining is whether directly follows completeness of a

log implies that the log is sufficiently large, and that a generalised version of Lemma 6.24
holds:

Conjecture 6.28. Assume a model S P Cb and a log L such that setpLq � LpSq and
�pLq ��pSq. Then LpIMcpLqq � LpSq.

We finish this section with a more detailed description how IMc finds the cut with
the highest accumulated probability. In the next section, we extend IM and IMf to
handle more process tree constructs: τ , _ and Ø.

6.3.5 Finding Cuts: Translation to SMT
In the previous parts of this section, we introduced IMc, an algorithm that handles
incompleteness of behaviour. Furthermore, we showed that IMc guarantees rediscover-
ability. In this section, we describe the cut detection step of IMc in more detail, i.e. we
describe how the problem of finding the most probable cut is translated to several SMT
problems.

Translating �, Ñ, ^

Cut searches for �, Ñ and ^ are translated straightforwardly to optimisation problems
by maximising the average probability of edges crossing the cut.

For ` P t�,Ñ,^u, p` �
°

a1PΣ1,a2PΣ2
p`pa1,a2q

|Σ1|�|Σ2|
� k

l
. Let n be |ΣpLq|. For the

commutative � and ^, we vary l from 1 to n{2, for the non-commutative Ñ we vary l

227

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.3 Handling Incomplete Behaviour

from 1 to n� 1. The basic decision to be made by the SMT solver is how to divide the
activities in two sets: the ones on one side of the cut (cutpaq) and the ones on the other
side of the cut (cutpaq), such that p` is maximised. As divisions cannot be translated
to SMT directly, we solve multiple SMT problems with varying l. Each of these SMT
problems will return a most probable cut for the l considered, and the most likely cut
over all l is returned. We give the translation to SMT for the non-commutative Ñ; the
commutative � and ^ are similar.

For a chosen l, the number of nodes on the left-hand side of the cut shall be l, so we
add the constraint

|ta|cutpaqu| � l

p` is defined on pairs of activities, so for each pair pa1, a2q we introduce a helper
variable crossespa1, a2q, denoting whether pa1, a2q crosses the cut:

crossespa1, a2q ô pcutpa1q ^ cutpa2qq

The objective function to be maximised is the weighted sum of the crossing edges:

obj �
¸

a1PΣ1,a2PΣ2

crossespa1, a2q � p`pa1, a2q

For^, a constraint is added that both Σ1 and Σ2 contain both start and end activities.
The SMT problem consists of the conjunction of these formulae. Once an optimal

solution for the SMT problem is found, obj
l

gives the probability of p` for the given l.
This procedure is repeated for l varying between 1 and |ΣpLq|�1, i.e. l�1 SMT problems
are solved, and the cut with the highest p` is returned.

Translating 	
For p	, each pair pa, bq that crosses the cut is categorised as being either indirect, single
or reverse single. These correspond to 	i (indirect), 	s (single and reverse single). They
are defined as follows:

pa, bq single ô pa P End1 ^ b P Start2q_

pa P End2 ^ b P Start1q

pa, bq reverse single ô pb, aq single
pa, bq indirect ô pa, bq single ^ pb, aq single

We give an example using Figure 6.13, which shows a directly follows graph. In
this example, Σ1 � tu, vu, Σ2 � tw, xu, Start1 � tuu, End1 � tvu, Start2 � txu, and
End2 � twu. Pairs pu, xq, pv, wq, px, uq and pw, vq are indirect, pw, uq and pv, xq are
single and pu,wq and px, vq are reverse single.

The optimisation searches for assignments to Σ1, Σ2, Start2 and End2, and a classi-
fication of all edges that maximises the average probability of single and indirect edges.
Start1 and End1 are taken as-is from the log.

Conclusion. In this section, we have shown how incomplete behaviour, i.e. the di-
rectly follows graph not containing all information, might prevent rediscovery of a system
by IM. We introduced a new algorithm, the Inductive Miner - incompleteness (IMc),
which searches for the most likely cut instead of searching for a perfect cut, by estimating
pairwise probabilities for activities and activity relations. Using a translation to SMT,
IMc searches for the most likely cut and returns it. We showed that IMc does not

228

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

u v

w x

Figure 6.13: Example �-graph. The dashed line denotes a cut.

provide local log-precision or fitness preservation, i.e. IMc guarantees neither fitness nor
precision. However, we proved that rediscoverability holds, i.e. if the log is part of the
language of the system, the system is of class Cb and the directly follows graph of the
log is equal to the directly follows graph of the system, then IMc will rediscover the
language of the system. Obviously, in such a case the discovered model and the log are
fitting. This illustrates the flexibility of the IM framework: without changing its struc-
ture, we introduced an algorithm to handle infrequent and deviating behaviour (IMf)
and an algorithm to handle incompleteness (IMc). In Chapter 8, we will evaluate the
true gains in incompleteness handling provided by IMc.

All three algorithms introduced in the previous parts of chapter were restricted to
the four operators �, Ñ, ^ and 	, and no silent steps (τ) were allowed. In the next
section, we introduce an algorithm that can handle all process tree constructs that were
introduced in Section 2.2.5, i.e. we add τ leafs, _ operators and Ø operators.

6.4 Handling More Constructs: τ , Ø and _

In the previous section, we have introduced a process discovery algorithm for the opera-
tors �, Ñ, ^ and 	. In this section, we study extensions for three more tree constructs:
the silent activity τ , the interleaved operatorØ and the inclusive choice operator _. We
also introduce a new discovery algorithm: Inductive Miner - all operators (IMa). We
study the influence of these additions on rediscoverability, local log-precision preservation
and local fitness preservation.

The interleaved operator has a distinctive footprint in the directly follows graph,
which was introduced in Lemma 5.21. The algorithms introduced in this section use this
footprint to detect interleaved behaviour. We will show that rediscoverability and fitness
are guaranteed.

As shown in Section 5.6, τ , _ and ^ constructs do not have unique directly follows
graphs and hence cannot be detected reliably by pure directly follows based discovery al-
gorithms, as algorithms based on directly follows graphs would guarantee neither fitness
nor rediscoverability. However, in Section 5.6 we identified three coo relations that allow
to distinguish τ , _ and ^: concurrency ^, concurrent optionality ?̂ and interchange-
ability _.

In this section, we will introduce two algorithms that use these three coo relations
to distinguish and discover _ and ^ operators. One of these algorithms, IMa, is a
basic variant that guarantees fitness and corresponds to IM. Another algorithm filters
infrequent and deviating behaviour, Inductive Miner - infrequent - all operators (IMfa)
which makes it suitable for e.g. discovering 80% models, i.e. analogue to IMf. We
start with an example in Section 6.4.1, after which we introduce the two algorithms
in sections 6.4.2 and 6.4.3. We finish the section with a discussion of the guarantees

229

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

a
b

c

d

e

Figure 6.14: � of L105.

provided by both new algorithms in Section 6.4.4.

6.4.1 Example
Consider the event log

L105 � rxa, dy, xa, b, dy, xa, b, c, dy, xa, ey, xa, b, ey,

xa, b, c, ey, xa, d, ey, xa, b, d, ey, xa, b, c, d, ey, xd, ay,

xb, a, dy, xc, a, d, by, xe, ay, xe, b, ay, xe, a, c, by,

xd, c, b, ay, xa, e, dy, xe, c, b, ays

IMa implements the IM framework, so it considers base cases, cuts and fall throughs.
On this event log, no base case applies as the log contains multiple activities. Second,
IMa searches for a cut by considering the directly follows graph, which is shown in
Figure 6.14, in which the footprint of both _ and ^ is present, with the activity partition
ptau, tbu, tcu, tdu, teuq. Hence, the question is which of these operators should be chosen.
To decide this, IMa applies a bottom-up procedure that starts from the sets of activities
identified in the cut. Then, it finds out whether a set of activities is optional, and whether
two sets of activities are in an ^, an ?̂ or in an _ relation. Any two sets of activities
that are in such a relation are merged and the procedure is repeated until two sets are
left. Finally, the relation between these sets determines the tree operator to be chosen.

In our example, IMa starts with the following activity sets, i.e. the activity partition
of the identified cut:

P1 Ð ttau, tbu, tcu, tdu, teuu

Using these sets and L105, IMa constructs the activity set log , expressing the language
over the activity partition:

T1 Ð txtau, tduy, xtau, tbu, tduy, xtau, tbu, tcu, tduy,

xtau, teuy, xtau, tbu, teuy, xtau, tbu, tcu, teuy,

xtau, tdu, teuy, xtau, tbu, tdu, teuy, xtau, tbu, tcu, tdu, teuyu

Next, IMa considers which coo-relations hold for the activity sets in T1. In our example,
tcu is optional, as each trace that occurs with a tcu also occurs without it. Furthermore,
in every trace in which tcu occurs, tbu occurs as well, thus tcu ?̂tbu. For every trace in

230

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

which either tdu or teu occurs, all variants of that trace with only tdu, only teu and both
tdu and teu occur as well, thus tdu_teu.

tcu ?̂ tbu

tdu_ teu

To move up in the hierarchy, one of the detected relations is chosen and all related
activities are merged into one set. Subsequently, coo-relations between this new set and
the other sets of activities can be detected. In our example, IMa arbitrarily chooses the
first one, merges c and b and constructs a new activity set log:

P2 Ð ttau, tb, cu, tdu, teuu

T2 Ð txtau, tduy, xtau, tb, cu, tduy, xtau, teuy,

xtau, tb, cu, teuy, xtau, tdu, teuy, xtau, tb, cu, tdu, teuyu

In this log, the following coo relations hold:

tb, cu ?̂ tau

tdu_ teu

IMa arbitrarily chooses the first one, merges a, b and c and constructs a new activity set
log:

P3 Ð tta, b, cu, tdu, teuu

T3 Ð txta, b, cu, tduy, xta, b, cu, teuy, xta, b, cu, tdu, teuyu

In T1,3, the following coo relation holds:

tdu_ teu

IMa merges d and e and obtains

P4 Ð tta, b, cu, td, euu

T4 Ð txta, b, cu, td, euyu

In T4, the coo relation ta, b, cu^td, eu holds. As there are only two components remain-
ing, the coo process ends and IMa selects the cut p^, ta, b, cu, td, euq.

Using this cut, the event log L105 is split into two sublogs, and recursion continues
on these sublogs as usual:

L106 � rxay
6, xa, by6, xa, b, cy6s

L107 � rxdy
7, xey7, xd, ey4s

That is, on L106, IMa identifies a nested sequence Ñ

�

Ñ

�

cτ

b

τ

a

. On L107, IMa discovers

an inclusive choice between d and e.

231

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

To illustrate the difference between _ and ^, we show a second log with the same
directly follows graph, however with the _-operator as root: Consider the event log

L108 � rxa, dy, xa, b, dy, xa, b, c, dy, xa, ey, xa, b, ey,

xa, b, c, ey, xa, d, ey, xa, b, d, ey, xa, b, c, d, ey, xd, ay,

xb, a, dy, xc, a, d, by, xe, ay, xe, b, ay, xe, a, c, by,

xd, c, b, ay, xa, e, dy, xe, c, b, ay, xdy, xey,

xd, ey, xay, xa, by, xa, b, cy, xb, ay,

xc, a, by, xa, c, by, xc, b, ays

This log has the same directly follows graph as log L105, which is shown in Figure 6.14.
The steps taken by IMa are:

P10 Ð ttau, tbu, tcu, tdu, teuu

T10 Ð txtau, tduy, xtau, tbu, tduy, xtau, tbu, tcu, tduy,

xtau, teuy, xtau, tbu, teuy, xtau, tbu, tcu, teuy,

xtau, tdu, teuy, xtau, tbu, tdu, teuy, xtau, tbu, tcu, tdu, teuy

xtauy, xtau, tbuy, xtau, tbu, tcuy,

xtduy, xteuy, xtdu, teuyu

coo relations: tcu ?̂tbu tdu_teu

P11 Ð ttau, tb, cu, tdu, teuu

T11 Ð txtau, tduy, xtau, tb, cu, tduy, xtau, teuy,

xtau, tb, cu, teuy, xtau, tdu, teuy, xtau, tb, cu, tdu, teuy,

xtauy, xtau, tb, cuy, xtduy,

xteuy, xtdu, teuyu

coo relations: tb, cu ?̂tau tdu_teu

P12 Ð tta, b, cu, tdu, teuu

T12 Ð txta, b, cu, tduy, xta, b, cu, teuy, xta, b, cu, tdu, teuy,

xta, b, cuy, xtduy, xteuy,

xtdu, teuyu

coo relations: ta, b, cu_tdu ta, b, cu_teu teu_tfu

P13 Ð tta, b, cu, td, euu

T13 Ð txta, b, cu, td, euy, xta, b, cuy, xtd, euyu

coo relations: ta, b, cu_td, eu

Finally, the cut p_, ta, b, cu, td, euq is selected.
In the remaining part of this section, we introduce IMa in more detail, as well as

a variant that filters deviating and infrequent behaviour. Furthermore, we discuss the
guarantees provided by these algorithms.

6.4.2 Inductive Miner - all operators (IMa)
To deal with τ , Ø and _, we extend the basic IM algorithm and introduce the Inductive
Miner - all operators (IMa). We discuss in detail how IMa searches for cuts, splits the

232

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

log, and which base cases and fall throughs it supports. As in Section 5.6, we focus on
the discovery of Ø and _, as τ will be handled by a fall through.

Cut Detection

In this section, we introduce the cut detection mechanisms of IMa. As shown in Sec-
tion 5.6, compared to the previously introduced algorithms, four cut detection functions
need to be addressed: sequence, interleaved, concurrency and inclusive choice.

Sequence. As discussed in Section 5.6.4, some changes to cut detection are necessary
to detect sequence cuts if optionality might be present. Before we introduce the main
cut detection function, we show a helper function that returns whether it is possible to
skip an activity in an event log, in which p is the index of the set of activities in C1 . . . Cn
for which skippability is to be computed, and D is a directly follows graph.
function skippable(p, C1 . . . Cn, D) � whether Cp can be skipped

return D1¤i p j¤n DaiPCi,ajPCj ai�D aj _ � by a �-edge
Dp i¤n DaiPCi ai P StartpDq _ � by a start activity after Cp
D1¤i p DaiPCi ai P EndpDq � by an end activity before Cp

end function
The main cut detection function consists of three parts: first, the normal sequence

cut is computed. Second, for the activity sets of the partition of the cut, two relations
are computed: one that describes for each activity set X the first activity set in the
sequent cut that has a directly follows edge to X, and one that denotes the last activity
set to which there is a directly follows edge from X. Third, the algorithm searches for a
suitable pivot and maximises its scope by probing for the edges of the scope.
function sequenceCutStrict(L)

C Ð C1, . . . Cn Ð partition of sequenceCut(L) (if none: fail)
� minFromrxs the earliest activity set with an outgoing �-edge to x

� maxTorxs the latest activity set from with an incoming �-edge from x
for 1 ¤ x ¤ n do minFromrxs Ð 8;maxTorxs Ð �8 end for
for J� a, a P Ci do minFromris Ð �8 end for
for b�K, b P Cj do maxTorjs Ð 8 end for
for a� b, a P Ci, b P Cj do

minFromrjs Ð minpminFromrjs, iq
maxToris Ð maxpmaxToris, jq

end for
� find a pivot and maximise its scope

for pÐ 1 . . . n do
if skippablepp, C, Lq then

q Ð p� 1
while maxTorqs ¤ p do � Cq is in a pivot scope with p

remove Cq and add it to Cp in C
q Ð q � 1

end while
q Ð p� 1
while minFromrqs ¥ p do � Cq is in a pivot scope with p

remove Cq and add it to Cp in C
q Ð q � 1

end while

233

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

L109 � rxa, b, c, ay, xb, c, ay, xa, b, cys

a

b

c

Figure 6.15: A log and its directly follows graph.

end if
end for
return pÑ, Cq

end function

Interleaved. To detect an interleaved cut, the following steps are performed:
function interleavedCut(L)

P Ð ttau|a P Σp�qu
for all a R StartpLq, b P ΣpLq such that b� a in L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all a R EndpLq, b P ΣpLq such that a� b in L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all a P StartpLq, b P EndpLq such that a �� b in L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all a, b P ΣpLq, a � b such that a üüb_ b üüa in L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all t P L do � guarantee fitness

if DP1,P2PP Da,cPP1,bPP2 t � x. . . a . . . b . . . c . . .y then
P Ð P ztP1, P2u Y tP1 Y P2u merge P1 and P2 in P

end if
end for
return pØ, P1 . . . Pnq

end function
Notice that in order to locally preserve fitness, the interleavedCut requires an

extra pass through the event log. Without the part denoted with “guarantee fitness", for
some event logs, a non-fitting interleaved cut could be detected. For instance, consider
the event log in Figure 6.15. For this log L109, interleavedCut(L) will return the cut
c � pØ, tau, tb, cuq (and eventually the tree Øpa,Ñpb, cqq). However, this cut cannot
lead to a model to which the first trace fits, i.e. xa, b, c, ay R ØLpSpL, cqq, irrespective of
the log splitting function S. Intuitively, the semantics of theØ-operator do not allow for
executing the tree that will be discovered for tau, leaving that tree and later executing it
again. Hence, without the extra pass through the event log, theØ cut detection method
would not preserve fitness locally.

Another method to guarantee local fitness preservation would be to treat theØ cut as
a “maybe”-interleaving cut, and divide the traces based on their first activity. Recursion

234

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

continues, and if all discovered subtrees have a particular shape [93, S5], the “maybe”
interleaved operator is replaced with a proper Ø-operator. Otherwise, the “maybe"
interleaved operator is considered an �, which makes the log split fitting [93, S6]. This
solution does not adhere to the IM framework, so we do not describe it in more detail in
this thesis. Nevertheless, it shows the flexibility and modularity of the IM framework:
insertion of such a step does not influence the discovery of other operators.

Using this extension, we prove that all cuts returned by interleavedCut adhere to
lemmas 5.10 and 5.30.

Lemma 6.29 (interleavedCut returns Ø-cuts). For any log L such that ε R L, if
interleavedCutpLq returns a cut, this is an Ø-cut according to lemmas 5.10 and 5.30.

Proof. Requirement Ø.1 can be split in three parts, which coincide with the three for-
loops in interleavedCut: the first two express that all connections must go through a
start or an end activity, while the third for-loop expresses that all such connections must
be present. The fourth for-loop coincides with Requirement ^Ø.1. The locally fitness-
preserving part only limits cuts further, thus all cuts returned by interleavedCut
adhere to Lemma 5.10.

For local log-precision preservation, an argument similar to sequenceCut holds: an
extension is necessary to preserve log precision locally.

Inclusive Choice & Concurrency. To detect an inclusive choice or concurrent
cut, some changes are necessary. As described in Section 5.6, the directly follows detection
algorithm concurrentCut returns the activity sets P of the non-coo subtrees of the
event log L. In the example given in Section 6.4.1, this was ttau, tbu, tcu, tdu, teuu. Using
the three coo relations ^, ?̂ and _, elements of the set P are merged until only two
sets of activities remain. Finally, these two remaining sets of activities are returned as a
cut, the operator of the cut depends on the remaining holding coo relation. If at some
point in this procedure no coo relation would hold, we choose to return a cut using ^
and the remaining activity sets C, as ^ preserves the behaviour in the event log, and has
less behaviour than _ (and hence a higher precision).

To compute the activity set log T for activity sets P and a log L, iterate over the
traces, and for each trace denote which activity sets have a corresponding event in the
trace (see Definition 5.45). For instance, the activity set log of log rxa, b, cys and activity
set tta, bu, tc, du, te, fuu is txta, bu, tc, duyu.
function cooCut(L)

P � tP1 . . . Pnu Ð partition of concurrentCut(L) (if none: fail)
T Ð activity set log of L given C
while true do

� compute coo relations on C as in Definition 5.47
if |P | ¡ 2^ DPx,PyPP _pPx, Pyq _ ^pPx, Pyq _ ?̂pPx, Pyq then

P Ð P ztPx, Pyu Y tPx Y Pyu
T Ð activity set log of P

else if DPx,PyPP _pPx, Pyq then
return p_, P1 . . . Pnq

else
return p^, P1 . . . Pnq

end if
end while

end function

235

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

Log Splitting

In the log splitting functions, IMa does not require changes for the operators of IM.
However, for the added operators Ø and _, new log splitting functions are necessary:

Interleaved. To split a log L according to an interleaved cut, IM divides events over
their corresponding subtraces:
function interleavedSplit(L, pØ,Σ1, . . . ,Σnq)
@i : Li Ð rt|Σj |t P Ls
return L1, . . . , Ln

end function
For instance, the log L � rxa, b, cy, xc, a, bys would be split using the cut pØ, ta, bu, tcuq

into rxa, by2s, rxcy2s.

Lemma 6.30 (interleavedSplit is locally fitness preserving). Let L be a log. Then
setpLq � ØLpinterleavedSplitpL, cqq for any cut c.

Proof. See the proof of Lemma 6.8.

Inclusive Choice. To split a log L according to an inclusive choice cut, IM divides
events over their corresponding subtraces:
function orSplit(L, p_,Σ1, . . . ,Σnq)
@i : Li Ð rt|Σi |t P L^ t|Σi � εs
return L1, . . . , Ln

end function
For instance, the log L � rxa, b, cy, xcy, xa, bys would be split using the cut p_, ta, bu, tcuq

into rxa, by2s, rxcy2s.
We prove local fitness preservation using the assumption that ε R L. This assumption

is satisfied in IMa by the base case emptyTraces.

Lemma 6.31 (cooCut & orSplit is locally fitness preserving). Let L be a log such
that ε R L. Then setpLq � _LporSplitpL, cqq for any cut c.

Proof. As ε R L, see the proof of Lemma 6.8.

Corollary 6.32 (cooCut & concurrentSplit is locally fitness preserving). Let L be
a log. Then setpLq � _LpconcurrentSplitpL, cqq for any cut c.

Local Guarantees Fitness and log-precision preservation are defined on combina-
tions of cut finders and log splitters (Definition 4.1). The following table summarises the
local guarantee lemmas and the descriptions:

locally fitness locally log precision
preserving preserving

xorCut & Split yes (Lemma 6.5) yes (Lemma 6.6)
sequenceCutStrict & Split yes (Lemma 6.7) when extended
cooCut & orSplit yes (Lemma 6.31) when extended
cooCut & concurrentSplit yes (Corollary 6.32) when extended
interleavedCut & Split yes (Lemma 6.30) when extended

236

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

Base Cases

As none of the constructs requires a base-case extension over IM, we reuse its base cases.

Fall Throughs

As none of the constructs requires any other fall through than IM, we reuse its base cases.
Notice that the emptyTraces fall through takes care of discovering �pτ, . . .q constructs.

Summary

To summarise, the Inductive Miner - all operators (IMa) implements the functions of
the IM framework as follows:
function baseCaseIMa(L)

return baseCaseIM

end function
function findCutIMa(L)

if ε R L then
p`,Σ1 . . .Σkq Ð xorCutp�pLqq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutStrictp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð interleavedCutpLq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð cooCutpLq end if
if k ¥ 2 then return p`,Σ1 . . .Σkq
else return loopCutp�pLqq
end if

end if
return l

end function
function splitLogIMa(L, p`,Σ1, . . . ,Σnq)

if ` � � then return xorSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � _ then return orSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return concurrentSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � Ø then return interleavedSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopSplitpL, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIMa(L)

return fallThroughIM

end function
In this section, we introduced IMa, which extends IM with handling of τ , _ and

Ø. Notice that IMa differs from IMf and IMc, as it refines IM with more advanced
cut detection mechanisms, while IMf and IMc saw extra checks introduced in case IM
failed to discover a cut.

6.4.3 Inductive Miner - infrequent - all operators (IMfa)
In the previous section, we introduced IMa, which extends IM with the process tree
constructs τ , Ø and _. However, IMa is unable to handle deviating and infrequent

237

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

behaviour. Therefore, in this section we adapt IMa in a new process discovery algo-
rithm Inductive Miner - infrequent - all operators (IMfa). IMfa reuses the base cases
and fall throughs of IMf, and combines cut detection functions of IMf with the ^
and _ detection of IMa. That is, interleavedCutFiltering and sequenceCut-
StrictFiltering first apply filter before applying respectively interleavedCut and
sequenceCutStrict. Similar to ^, for _ no behaviour can be identified as deviating
and hence no new log splitting function is necessary. Consequentially, the only new func-
tion necessary is a log splitting function that splits the event log using non-conforming
interleaved cuts: interleavedSplitFiltering.

Interleaved Log Splitting

To split a log L according to an interleaved cut IMfa aims to minimise the number
of events that are classified as deviating. Similar to sequenceSplitFiltering, the
interleaved log splitting function searches for a split point, such that the number of filtered
deviating events is minimised. An additional challenge is that, due to the semantics of
Ø, the sets of activities of the partition can appear in any order. These interleaved split
points are detected using a divide-and-conquer strategy: first, on the entire trace, the
two most efficient split points are detected, such that the trace in between them is the
maximal subtrace that can be attributed to a single Σi. The two split points divide the
trace in three subtraces: two outer ones and an inner one. The inner one is added to
the sublog corresponding to Σi (events not of Σi are removed), the two outer ones are
recursed upon (events of Σi are removed).

For instance, consider the trace t � xa, a, b, a, a, b, b, b, b, cy and the cut pØ, tau, tbu, tcuq.
In the first recursion, two optimal split points are discovered: xa, a, b, a, a, |b, b, b, b, |cy,
which belong to Σ2 � tbu. Using the two split points, the trace is split into three parts:
t1 � xa, a, a, ay (notice that the b occurring before the first split point is of Σ2 and is
removed), t2 � xb, b, b, by and t3 � xcy. Subtrace t2 is added to the sublog of Σ2, and
recursion continues on t1 and t3. In these recursions, xa, a, a, a, y is added to the sublog
of Σ1 and xcy is added to the sublog of Σ3.
function interleavedSplitFiltering(L, pÑ,Σ1, . . . ,Σnq)
@1¤i¤n sublogsrΣis Ð r s
for t P L do
@1¤i¤n subtracesrΣis Ð tεu
subtracesÐ splitTracepL, t,Σ1, . . .Σnq
@1¤i¤n sublogsrΣis Ð sublogsrΣis Y tsubtracesrΣisu

end for
end function
function splitTrace(L, t,Σ1, . . .Σn, subtraces)

σ, start, endÐ findSplitPointspt,Σ1, . . .Σnq
t1 Ð tr1 : start� 1s|ΣpLqzσ
t2 Ð trstart : end� 1s|σ
t3 Ð trend : |t|s|ΣpLqzσ
subtracesÐ splitTracepL, t1,Σ1, . . .Σn, subtracesq
subtracesrss Ð t2 such that σ � Σs
subtracesÐ splitTracepL, t3,Σ1, . . .Σn, subtracesq
return subtraces

end function
In the final function findSplitPoints, the split points are computed: startris holds

the start of the best sequence for a Σi, while valuesris holds the score, i.e. the number

238

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

of events in Σi minus the number of events not in Σi since startris.
function findSplitPoints(t,Σ1, . . .Σn)

maxStartÐ �1
maxEndÐ �1
maxSigmaÐH
maxV alueÐ �1
@1¤i¤n valuesris Ð 0
@1¤i¤n startris Ð 0
componentÐ �1
for e P t in order do

sÐ i such that e P Σi
if valuesrss 0 then

valuesrss Ð 1
startrss Ð position of e in t

else
valuesrss Ð valuesrss � 1

end if
for 1 ¤ i ¤ n, i � s do

valuesris Ð valuesris � 1
end for
if valuesrss ¡ maxV alue then

maxSigmaÐ Σs
maxStartÐ startrss
maxEndÐ position of t in t
maxV alueÐ valuesrss

end if
end for
return maxSigma,maxStart,maxEnd

end function

Summary

To summarise, the Inductive Miner - infrequent - all operators (IMfa) follows a similar
strategy as IMf, i.e. applies findCutIMa and if that fails, applies noise filtering. That
is, IMfa implements the functions of the IM framework as follows:
function baseCaseIMfa(L)

return baseCaseIM

end function
function findCutIMfa(L)

if ε R L then
p`,Σ1 . . .Σkq Ð findCutIMapLq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð xorCutFilteringp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutStrictFilteringp�pLqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð interleavedCutFilteringpLq end if
if k ¤ 1 then return loopCutFilteringp�pLqq
else return p`,Σ1 . . .Σkq
end if

end if
return l

end function

239

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

function splitLogIMfa(L, p`,Σ1, . . . ,Σnq)
if ` � � then return xorSplitFilteringpL, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceSplitFilteringpL, p`,Σ1, . . . ,Σnqq
else if ` � _ then return orSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return concurrentSplitpL, p`,Σ1, . . . ,Σnqq
else if ` � Ø then return interleavedSplitFilteringpL, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopSplitFilteringpL, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIMfa(L)

return fallThroughIM

end function

6.4.4 Guarantees
In this section, we discuss the guarantees provided by IMa and IMfa. Similar to IM
and IMf, IMa guarantees fitness while IMfa does not:

Corollary 6.33 (IMa guarantees fitness). As all steps of IMa are locally fitness pre-
serving, by Corollary 4.2 for any log L it holds that setpLq � LpIMapLqq.

Next, we show rediscoverability for IMa and IMfa, i.e. we show that if a system
model S is of class Ccoo, and a log L is given to IM that is fitting to S and has the same
directly follows graph and coo relations, then IMa and IMfa will return a model that is
language equivalent to S. In order to prove this, we first prove that the log splitting of
IMa preserves the log assumptions (Lemma 6.34), and second that IMa is abstraction
preserving (Lemma 6.35).

In the following, let abstraction AIMa denote the set of relations that combines the
directly follows graph � and the coo relations ^. The log assumptions function LAIMa

entails that the df and ^ graphs are correct and complete, i.e. L P LAIMa if and only
if �pLq � �pSq and ^pLq � ^pSq. However, we add a leniency: let S1 be the reduced
version of S according to Definition 5.1. Then, J�L K is only required if S1 � �pτ, . . .q.
For instance, for the process tree Ñ

�

bτ

�

aτ

, J�K does not need to be present in a log in

order for that log to satisfy the log assumptions, however it may be present nevertheless.

Lemma 6.34 (IMa: log splitting preserves log assumptions). Let S � `pS1, . . . Snq
with S P Ccoo, let c � p`,Σ1, . . .Σmq be a cut conforming to S, and let L1 . . . Lm �
splitLogIMapL, cq. Then, there exist subtreesM1 . . .Mm such that�p`pM1, . . .Mmqq �
�pSq, ^p`pM1, . . .Mmqq � ^pSq and @1¤i¤m Li P LAIMapMiq.

Proof. We prove this lemma by constructing trees M1 . . .Mm corresponding to S1 . . . Sn
as in Lemma 6.12 and showing that the log assumptions hold for these M1 . . .Mm,
i.e. that the sublogs returned by splitLogIMa are fitting to their respective Mi and
have the same directly follows graph and coo relations. As Lp`pM1, . . .Mmqq � LpSq,
^p`pM1, . . .Mmqq � ^pSq.

Apply case distinction on `:

` � � As in Lemma 6.12, @1¤i¤m setpLiq � LpMiq and �pLiq ��pMiq.

240

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

Let AbS B be a coo relation that holds in S for sets of activities A and B. By
Definition 5.47 and semantics of �, A,B � ΣpMiq for some i. Thus, ^pSq �
Y1¤k¤m ^pMkq. As L P LAIMapSq, AbLB holds and consequently as setpLiq �
setpLq, AbLi

B holds for some i. Hence, ^pMiq � ^pLiq. As this holds for all i,
@1¤i¤m Li P LAIMapMiq.

` � Ñ As in Lemma 6.12, @1¤i¤m setpLiq � LpMiq and �pLiq ��pMiq.
Let AbS B be a coo relation that holds in S for sets of activities A and B. As
L P LAIMapSq, ^pLq � ^pSq and AbLB holds. Perform case distinction on
whether A,B � ΣpMiq for some i.

AYB � ΣpMiq By Definition 5.47 and semantics of Ñ, AbMi
B holds. By con-

struction of sequenceSplit, AbLi
B holds.

AYB �� ΣpMiq As A and B are not part of the same ΣpMiq, then neither of the
relations AbMi

B nor AbLi
B holds.

Hence, @1¤i¤m Li P LAIMapMiq.

` � Ø Let 1 ¤ i ¤ n and t P Li. By construction of interleavedSplit, there must be
a trace t1 � x. . . t . . .y P L. As L P LAIMapSq, t1 P LpSq. By Requirement Cb.2, the
activities of t1 in t can only be produced byMi. Therefore,Mi must have produced
t1 and hence setpLiq � LpMiq.
Left to prove: 1) �pLiq � �pMiq, which holds by an argument similar to the
` � Ñ case in Lemma 6.12, and 2) @1¤i¤m ^pLiq � ^pSiq, which holds by an
arguments similar to the ` � Ñ case of this lemma.

` � ^ As in Lemma 6.12, @1¤i¤m setpLiq � LpMiq and �pLiq ��pMiq.
Left to prove: @1¤i¤m ^pLiq � ^pMiq. Let 1 ¤ i ¤ m and let A`Li

B be a coo
relation holding for sets of activities A and B. By concurrentSplit, A`LB.
As L P LAIMapSq, A`S B. By semantics of ^, A`Mi

B. The reverse direction is
similar, hence @1¤i¤m Li P LAIMapMiq.

` � _ Similar to the ` � ^ case.

` � 	 As in Lemma 6.12, @1¤i¤m setpLiq � LpMiq and �pLiq ��pMiq.
Left to prove: @1¤i¤m ^pLiq � ^pMiq. Let 1 ¤ i ¤ m and let A`Li

B be a coo
relation holding for sets of activities A,B � ΣpLiq. Perform case distinction on `
to prove that A`LB:

` � ?̂ By construction of loopSplit, all activity set traces of Li are also present
in L. The definitions of ?,ñ, _ and ^ only involve A and B, and are upward
closed, i.e. adding behaviour cannot negate a relation. Hence, A`LB.

` � ?̂ Towards contradiction, assume that A �̂ ? LB. By reasoning similar to the
` � ?̂ case, ?LA and AñLB. Hence, there must exist a C � ΣzpA Y Bq
such that B �ñ C ^CñB^@aPAYB,cPC a� c^ c� aq. As A ?̂Li B, such a
C XΣpLiq � H, i.e. C consists of non-Li activities. Perform case distinction
on whether i � 1:

i � 1 By semantics of 	 and Requirement Cb.3 of Ccoo, there is no back-
and-forth connection between all activities of A Y B and C. That is,
 @aPAYB,cPC a� c ^ c� a, which contradicts that there exists such a
C.

i ¡ 1 By semantics of 	, C �ñ B, which contradicts that there exists such a
C.

241

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

There exist no such C, hence A ?̂LB.

Hence, A`LB. As L P LAIMapSq, A`S B. By semantics of 	, A`Mi
B.

Hence, subtrees M1 . . .Mm exist such that AIMap`pM1, . . .Mmqq � AIMapSq and
@1¤i¤m Li P LAIMapMiq.

Lemma 6.35 (IMa is abstraction preserving). IMa is abstraction preserving, i.e. the
combination of the class of process trees Ccoo, the directly follows abstraction �, the
combined relations AIMa, the log assumptions function LAIMa, and the algorithm IMa
implementing the IM framework with baseCaseIMa, findCutIMa, splitLogIMa and
fallThroughIMa, is abstraction preserving.

Proof. We discuss the requirements of Definition 4.8:

AP.1 An activity base case preserves the abstraction.
See the proof of Lemma 6.13.

AP.2 A τ base case preserves the abstraction.
As L P LAIMapSq holds, setpLq � tεu. By code inspection, the fall through case
emptyTraces applies, which returns �pτ, IMapL1qq, with L1 being the empty log,
for which in a next recursion τ is discovered by the base case emptyLog. Hence,
ApbaseCaseIMapLqq � Apτq � Ap�pτ, τq � Apτq � ApSq.

AP.3 The base case parameter function preserves the abstraction.
If S � `pS1, . . . Snq, with S P Ccoo, then ΣpSq ¥ 2. As L P LAIMapSq holds, by
code inspection, no base case in baseCaseIMa applies. Therefore, the requirement
holds.

AP.4 Every cut that is detected conforms to S.
As L P LAIMapSq, �pSq � �pLq and ^pSq � ^pLq. By lemmas 5.37, 5.42,
5.48 and 5.49, �pLq and ^pLq contain a cut c � `pΣpS1q, . . .ΣpSnqq. By Corol-
lary 5.54, no other footprint is present in �pLq and ^pLq. By code inspection of
findCutIMa, this cut c is returned, hence findCutIMapLq conforms to S (Defini-
tion 5.16).

AP.5 Log splitting preserves the log assumptions.
This requirement follows from Lemma 6.34.

AP.6 A fall through preserves the abstraction.
By the previous requirements, the only systems S of Ccoo for which neither
baseCaseIMa nor findCutIMa apply have τ P LpSq and J�L K. For these sys-
tems, the fall through emptyTraces applies. Let S1 be the reduced version of S
according to Definition 5.1. We consider two cases:

• S1 is of the form �pτ, S2q. By construction of emptyTrace, IMapLq �
�pτ, IMapL1qq with L1 � Lztεu. By semantics of � and ^, L1 P LAIMapS

2q.
By assumption of Requirement AP.6, AIMapIMapL1qq � AIMapS

2q. Then,
AIMapIMapLqq � AIMapIMapL1qq Y J�K � AIMapS

2q Y J�K � ApSq.

• S1 is not of the form �pτ, . . .q. By construction of emptyTrace, IMapLq �
�pτ, IMapL1qq with L1 � Lztεu. By construction of LAIMa, L1 P LAIMapS

2q.
By assumption of Requirement AP.6, AIMapIMapL1qq � AIMapS

2q. Then,
AIMapIMapLqq � AIMapIMapL1qq Y J�K � AIMapS

2q Y J�K � ApSq.

Hence, AIMapLq � AIMapSq.

242

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.4 Handling More Constructs: τ , Ø and _

We show that IMa is language-class preserving (Definition 4.10), i.e. that the discov-
ered model is of Ccoo:

Lemma 6.36 (IMa is language-class preserving). For all systems S P Ccoo and logs L
such that L P LAIMapSq, it holds that IMapLq P Ccoo.

Proof. We consider the requirements of Ccoo separately:

Cb.2 No duplicate activities.
This requirement is guaranteed by the cuts discovered by findCutIM, which guar-
antee that all Σi are disjoint, and splitLogIMa being fitting (Requirement AP.5.

Cb.3 The body of a loop has disjoint start and end activities.
As S P Ccoo, the only fallThroughIMa function that is reached is emptyTraces,
i.e. if a loop operator is discovered, then this is discovered by the cut detection, and
the log is split into sublogs L1 . . . Ln. By the previous requirements, findCutIMa

only selects a 	 if S � `pS1, . . . Snq. As S P Ccoo, StartpS1q X EndpS1q � H.
By Requirement AP.5 and the log assumptions LAIMa, StartpL1qXEndpL1q � H.
By lemmas 6.13 and 4.9, �pIMapL1qq � �pIMapS1qq, hence StartpIMapLqq X
EndpIMapLqq � H.

Ccoo.2 No redo child of a loop can produce the empty trace.
As S P Ccoo, if a loop operator is discovered, then this is discovered by cut de-
tection, and the log is split into sublogs L1 . . . Lm. By Lemma 6.34, there exist
M1 . . .Mm such that �p	pM1, . . .Mmqq � �pSq and @1¤i¤m Li P LAIMapMiq.
Then, by Requirement Ccoo.2, @2¤i¤m ε R LpMiq, thus @2¤i¤m ε R Li. By
Lemma 6.35, ε R IMapLiq.

Ccoo.3 Interleaving cannot be nested using optionality.
By code inspection, if anØ is discovered, this happens by cut detection, and the log
is split into sublogs L1, . . . Lm. By Lemma 6.34, there exist M1 . . .Mm such that
�p	pM1, . . .Mmqq ��pSq and @1¤i¤m Li P LAIMapMiq. Towards contradiction,
without loss of generality, assume that M1 is optional, i.e. M1 � �pτ,M 1q, and
that M 1 � ØpM 1

1, . . .M
1
nq. Let setpL1q � LpM 1q be the sublog created by IMa for

the recursive step on L1. Then, by reasoning similar to the previous requirement,
S R Ccoo, which contradicts the initial assumption. Hence, Requirement Ccoo.3
holds for S.

Ccoo.4 An inclusive choice child of an interleaving has at least one child with disjoint
start and end activities,

Ci.2 An interleaving has at least one child with disjoint start and end activities,

Ci.3 An interleaving has no interleaved child, and

Ci.4 A concurrent child of an interleaving has at least one child with disjoint start
and end activities. The proofs for these last four requirements are similar to the
proof of the two requirements before them.

Then, by Theorem 4.11, IMa guarantees rediscoverability for Ccoo. Rediscoverability
is guaranteed by IMfa as well, as IMfa first applies the cut detection of IMa before at-
tempting filtering (and this is not necessary in case the preconditions for rediscoverability
hold).

243

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

Theorem 6.37 (IMa & IMfa rediscoverability). Let L be a log and S P Ccoo be a system
such that setpLq � LpSq ^�pSq � �pLq ^ ^pLq � ^pSq. Then, LpIMapLqq � LpSq
and LpIMfapLqq � LpSq.

In this section, we extended the IM algorithm to discover the remaining process-tree
constructs τ , Ø and _. We introduced a basic version (IMa) and a second version
(IMfa) to handle infrequent and deviating behaviour. We showed that IMa guarantees
fitness, but to guarantee that needs a dedicated pass over the event log for Ø. Notice
that in IMfa, we did not apply deviation filtering to coo-cut detection, i.e. detecting ^
and _ behaviour. This might be an interesting area of future research:

Future work 6.38: Extend IMfa to apply deviation filtering to the detection of ^ and
_.

In the remainder of this chapter, we study two more properties of event logs for
which new discovery techniques are necessary: non-atomic event logs and exceptionally
large event logs. Furthermore, we give an overview of and a way to choose between the
discovery algorithms presented in this chapter.

6.5 Handling Non-Atomic Event Logs

In some real-life event logs, activity executions take time and hence are non-atomic.
As described in Section 2.3.2, we assume that each non-atomic execution of an activity
consists of two events: one event denoting the start of the execution, and one denoting
the completion of the execution. For instance, the trace xas, bs, bc, acy denotes that during
execution of activity a, an execution of activity b occurred. We assume that each non-
atomic trace in a non-atomic event log is consistent (Definition 2.13).

In this section, we first illustrate how the techniques presented before treat non-atomic
traces and why they could fail (Section 6.5.1). Second, we introduce several algorithms
that deal with non-atomicity by considering the life cycle information of events. We
introduce three algorithms: a basic fitness guaranteeing one, Inductive Miner - life cycle
(IMlc) in Section 6.5.2, one to handle infrequent and deviating behaviour, Inductive
Miner - infrequent - life cycle (IMflc) in Section 6.5.3, and one to handle incomplete
behaviour, Inductive Miner - incompleteness - life cycle (IMclc) in Section 6.5.3.

All these three algorithms implement the IM framework, and reuse parts of respec-
tively the IM, IMf and IMc algorithms. The key step in the three new algorithms is the
construction of the directly follows relation, which is computed while being aware of the
life cycle information contained in events. These non-atomic directly follows graphs were
introduced in detail in Section 5.7.3. We finish this section with some brief comments
on the implementation of IMlc, IMflc and IMclc in Section 6.5.4, and a discussion of
the guarantees provided by these algorithms in Section 6.5.5.

6.5.1 Non-Atomic Event Logs
In case the event log contains non-atomic behaviour, the previously introduced algorithms
will misinterpret this behaviour. For instance, consider the event log consisting of a single
trace

~L110 � rxas, bs, bc, acys

244

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

a b

(a) � of L110
1.

a b

(b) �̃ of ~L110.

a b

(c) ‖ of ~L110.

The algorithms presented before, e.g. IM, are not aware of life-cycle information and
will either ignore it (L110

1 � rxa, b, b, ays) or treat the life-cycle information as part of
the activity name (rxa� start, b� start, b� complete, a� completeys), depending on the
chosen classifier (see Section 6.5.4). The directly follows graph of this log is shown in
Figure 6.16a. When applied to L110

1, IM performs the following steps:

IMpL110
1q � 	pIMpL111

1q, IMpL112
1qq

L1111 � rxay
2s

L1112 � rxb, bys

IMpL111
1q � a

IMpL112
1q � 	pb, τq

and discovers the model 	pa,	pb, τqq.
This model does not cover the original event log L110 well, which contains just two

executions of activities: one of a and one of b. Alternatively, one could filter L110 by
removing all start events, on which IM would discover the model Ñpb, aq, which does
not describe the event log well either.

The algorithms that are introduced in the next sections compute the non-atomic
directly follows graph that is shown in Figure 6.16b, according to Definition 5.57, which
states that a �̃ b if there is no full activity instance between the completion of a and the
start of b. In contrast, in the atomic directly follows graph (shown in Figure 6.16a), b
is neither a start nor an end activity, as the trace in L110

1 does not start or end with
a b. From this graph, the default directly follows footprints of �, Ñ and 	 apply. For
concurrency, the new algorithms use the extra information of the concurrency graph. In
our example, the concurrency graph is shown in Figure 6.16c, which shows that a and b
should be concurrent, as there is a connection a ‖ b (which denotes that activity instances
of a and b overlap in time).

Thus, in our example event log ~L110, the concurrent footprint is present and IMlc
would discover ^p~a,~bq and thus discover a model that resembles ~L110 much better than
the model discovered by IM.

In the remainder of this section, we describe three algorithms that are aware of
the non-atomicity of activities: IMlc, IMflc and IMclc, after which we discuss the
guarantees provided by them.

6.5.2 Inductive Miner - life cycle (IMlc)
In this section, we discuss how the IMlc algorithm implement the IM framework, i.e.
we discuss their cut detection, log splitting, base cases and fall throughs. We discuss
local fitness and log-precision preservation, as well as a new property that every log on
which the algorithms recurse should be consistent (assuming that the input event log

245

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

is consistent). We will discuss this property for fall throughs and combinations of cut
detection functions and log splitters.

Cut Detection

For � and Ñ, cut detection of IMlc resembles cut detection of IM. That is, after
construction of a non-atomic directly follows graph (see Section 5.7.3, the cut detection
of IM is applied. For these functions, see Section 6.1.2.

The cut detection functions for ^, Ø and 	 however need some adjustments from
IM.

Concurrency. For detecting concurrent cuts for non-atomic event logs, the function
takes both the directly follows graph (Definition 2.14) and the concurrency graph (Defi-
nition 5.58) into account. That is, in a concurrent cut, all activities should be connected
by either a double directly follows edge or an edge in the concurrency graph:
function nonAtomicConcurrentCut(�̃, ‖)

P � tP1 . . . Pnu Ð ttau|a P Σp�̃qu

� merge not-fully connected or not-concurrent sets
for all a, b P Σp�̃q, a � b do

if a �‖ b^ pa ˜�� b_ b ˜�� aq then
let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu

end if
end for

� merge sets without start or end activities
for all Pc P P do

if Pc X Startp�̃q � H_ Pc X Endp�̃q � H then
let Px�c be an arbitrary set in P , then P Ð P ztPc, Pxu Y tPc Y Pxu

end if
end for
return p^, P1 . . . Pnq

end function

Interleaved. For the interleaved cut detection function nonAtomicInterleaved-
Cut, we reuse the algorithmic idea of interleavedCut, however as the üü-relation is
not defined for non-atomic event logs, its corresponding merge-loop is omitted.

Notice that nonAtomicInterleavedCut implicitly takes the concurrency graph
into account, as the fitness guarantee prevents concurrent activities from being divided.
For instance, consider the trace xas, bs, bc, acy, in which a and b are concurrent, i.e. a ‖ b.
Then, a and b are merged into the same Pi by the last for-loop of the function. In this
last for loop, we denote an event of a (either start or completion) with a?.
function nonAtomicInterleavedCut(~L)

P Ð ttau|a P Σp�̃qu
for all a R Startp~Lq, b P Σp~Lq such that b �̃ a in ~L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all a R Endp~Lq, b P Σp~Lq such that a �̃ b in ~L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu

246

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

end for
for all a P Startp~Lq, b P Endp~Lq such that a ˜�� b in ~L do

let a P Px and b P Py, then P Ð P ztPx, Pyu Y tPx Y Pyu
end for
for all ~t P ~L do � guarantee fitness

if DP1,P2PP Da,cPP1,bPP2
~t � x. . . a? . . . b? . . . c? . . .y then

P Ð P ztP1, P2u Y tP1 Y P2u merge P1 and P2 in P
end if

end for
return pØ, P1 . . . Pnq

end function

Loop. Furthermore, also the loop cut detection takes the concurrency graph footprint
into account, i.e. activities in a concurrent relation cannot be split by a loop cut. In
the following algorithm, the start and end activities are taken separate in the body P1

(Requirement 	.1), and the remaining activities are divided such that only unconnected
parts remain (Requirement 	.3). Second, the divided sets that cannot be redo parts are
merged with the body. Third, the divided sets that do not have all required connections
(i.e. from end and to start) are merged with the body (Requirement 	.4).
function nonAtomicLoopCut(�̃, ‖)

P1 Ð Startp�̃q Y Endp�̃q
P2 . . . Pn Ð partition of Σp�̃qzP1 such that @2¤i j¤n,aPPi,bPPj a

˜�� b^ b ˜�� a^ a �‖ b
and @2¤i¤n @a,bPPi a! b

� exclude sets that are connected from a start activity
for all a P Startp�̃qzEndp�̃q do

for all b such that a �̃ b_ a ‖ b do
P1 Ð P1 Y set of b

end for
end for

� exclude sets that are connected to an end activity
for all b P Endp�̃qz Startp�̃q do

for all a such that a �̃ b_ a ‖ b do
P1 Ð P1 Y set of a

end for
end for

� sets should have all connections
for all 2 ¤ i ¤ n, a P Pi do

if DbPStartp�̃q a �̃ b^ @bPStartp�̃q a �̃ b then
P1 Ð P1 Y set of a

end if
if DbPEndp�̃q b �̃ a^ @bPEndp�̃q b �̃ a then

P1 Ð P1 Y set of a
end if

end for
return p	, P1, . . . Pnq

end function

247

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

Log Splitting

Given a cut and an event log, the life cycle algorithm IMlc splits the event logs into
sublogs. For these log splitting functions, we reuse the log splitting functions of IMfa
without modifications.

Local Guarantees for IMlc. Fitness and log-precision preservation are defined on
combinations of cut finders and log splitters (Definition 4.1). Given a cut p`,Σ1, . . .Σnq,
for each event these log splitting functions consider the Σi belonging to the event. Thus,
for the log splitting functions it is only relevant in which Σi the event belongs and hence,
the local fitness and log precision preservation result also hold for non-atomic event logs
and process trees, using that nonAtomicConcurrentCut, nonAtomicInterleaved-
Cut and nonAtomicLoopCut return cuts according to the footprints of Lemma 5.10.

The following table summarises these local guarantees:

locally fitness locally log precision
preserving preserving

xorCut & Split yes (Lemma 6.5) yes (Lemma 6.6)
sequenceCut & Split yes (Lemma 6.7) when extended
nonAtomicConcurrentCut
& concurrentSplit yes (Lemma 6.8) when extended

nonAtomicInterleavedCut
& interleavedSplit yes (Lemma 6.30) when extended

nonAtomicLoopCut
& loopSplit yes (Lemma 6.9) no (see Section 4.1.4)

Another desirable local guarantee is that the sublogs that result from log splitting
should be consistent. For �,Ñ, ^ andØ, this property follows from local fitness preser-
vation, as log splitting using cuts according to Lemma 5.10 does not remove or reorder
events, and consistency is defined on events of the same activity (see Section 2.3.2).
Hence, if the input event log is consistent, all sublogs are consistent as well.

For 	, an inconsistent sublog can only appear if a start event and its corresponding
completion event get separated in different subtraces, e.g. the trace xas, bs, bc, acy would
be split using the cut p	, tau, tbuq into L1 � rxasy, xacys and L2 � rxbs, bcys. Both traces
in L1 are inconsistent. However, notice that in such cases, the activities a and b are in a
concurrent relation (a ‖ bq, and therefore nonAtomicLoopCut will put both a and b in
Σ1 and not discover a loop cut. Therefore, also for 	 cuts, if the input log is consistent,
all sublogs are consistent as well.

Base Cases

The base cases of IMlc resemble the base cases of IM: singleNonAtomicActivity
applies when the event log contains only traces having a single activity instance, i.e. the
combination of a start event and a corresponding completion event. Similar to the atomic
base case singleActivity in IM, the non-atomic base case singleNonAtomicActiv-
ity in IMlc is locally fitness preserving and locally log-precision preserving.

locally fitness locally log precision
preserving preserving

singleNonAtomicActivity yes yes

Notice that the base cases do not recurse and thus consistency preservation of the
event logs is irrelevant.

248

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

Fall Throughs

We discuss the fall throughs of IM, i.e. we argue whether they apply and what changes
are necessary when these fall throughs are applied to non-atomic event logs:

• emptyTraces applies without modifications to IMlc: non-atomic and atomic
empty traces are equivalent.

• nonAtomicActivityOncePerTrace applies when an activity a has a single
activity instance, i.e. a pair of start and completion events (instead of single events)
in every trace of the event log.

• activityConcurrent applies without modifications.

• strictTauLoop and tauLoop apply when looping behaviour is present, i.e. the
occurrence of an end activity followed by a start activity. These fall throughs need
modification to be applicable to non-atomic event logs, as the IMlc algorithms
assume that the event log is consistent, and all sublogs on which they are applied
recursively need to be consistent as well. For instance, consider the trace t1 �
xas, bs, bc, cs, cc, bs, bc, cs, cc, acy, which is consistent. Splitting this trace after each
end activity followed by a start activity would yield t2 � xas, bs, bc, cs, ccy and
t3 � xbs, bc, cs, cc, acy, both of which are not consistent, as as and ac have been
separated over different sub traces. Therefore, strictNonAtomicTauLoop and
nonAtomicTauLoop only split traces if this would not introduce inconsistencies,
i.e. each start event before the split point has a corresponding completion event
before the split point.

• flowerModel is the last resort of the fall throughs and applies to all event
logs. However, as described in Section 5.7.2, a non-atomic flower model might not
describe all behaviour of an event log. For instance, the trace xas, bs, as, bc, ac, acy
does not fit the flower model 	

τ�

~b~a

(a is executed concurrently with itself), even

though all activities of the trace are contained in the flower model.

Therefore, we introduce the concurrentFlowerModel, which counts the max-
imum number of concurrent activities in an event log, and returns a concurrent
model accordingly. In our example, this fall through would return ^

	

bτ

	

aτ

	

aτ

, i.e.

two repeatable a’s and one repeatable b concurrently, and this model fits the trace
xas, bs, as, bc, ac, acy.

Notice that all activities in these fall throughs are non-atomic.

Local Guarantees. The following table restates the preservation guarantees of these
fall throughs:

249

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

locally fitness locally log precision
preserving preserving

emptyTraces yes yes
nonAtomicActivityOncePerTrace yes when extended
activityConcurrent yes when extended
strictNonAtomicTauLoop yes no
nonAtomicTauLoop yes no
concurrentFlowerModel yes no

All fall throughs preserve consistency: emptyTraces does not alter any nonempty
trace, nonAtomicActivityOncePerTrace and activityConcurrent remove an ac-
tivity from each trace and thus do not influence consistency of the remaining activities,
and nonAtomicTauLoop and concurrentFlowerModel have been discusses before.

Summary

We summarise IMlc, which implements the functions of the IM framework as follows:
function baseCaseIMlc(~L)

if ε R L then
bcÐ emptyLogpLq
if bc � l then bcÐ singleNonAtomicActivitypLq end if
if bc � l then return bc end if

end if
return l

end function
function findCutIMlc(~L)

if ε R L then
p`,Σ1 . . .Σkq Ð xorCutp�̃p~Lqq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutp�̃p~Lqq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð nonAtomicConcurrentCutp�̃p~Lq, ‖pLqq

end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð nonAtomicInterleavedCutp~Lq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð nonAtomicLoopCutp�̃p~Lq, ‖pLqq end if
if k ¥ 2 then return p`,Σ1 . . .Σkq end if

end if
return l

end function
function splitLogIMlc(~L, p`,Σ1, . . . ,Σnq)

if ` � � then return xorSplitp~L, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceSplitp~L, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return concurrentSplitp~L, p`,Σ1, . . . ,Σnqq
else if ` � Ø then return interleavedSplitp~L, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopSplitp~L, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIMlc(~L)

ftÐ emptyTracesp~Lq
if ft � l then ftÐ nonAtomicActivityOncePerTracep~Lq end if
if ft � l then ftÐ activityConcurrentp~Lq end if
if ft � l then ftÐ strictNonAtomicTauLoopp~Lq end if

250

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

if ft � l then ftÐ nonAtomicTauLoopp~Lq end if
if ft � l then return ft
else return concurrentFlowerModelp~Lq
end if

end function

6.5.3 Inductive Miner - infrequent - life cycle (IMflc) &
Inductive Miner - incompleteness - life cycle (IMclc)

In the previous section, we introduced IMlc, that takes non-atomicity of activity exe-
cutions into account and guarantees fitness. In this section, we adapt IMlc to handle
two types of challenges: infrequent and deviating behaviour, and incomplete behaviour.
For each of these challenges, we introduce a new discovery algorithm: Inductive Miner
- infrequent - life cycle (IMflc) to handle deviating and infrequent behaviour, and In-
ductive Miner - incompleteness - life cycle (IMclc) to handle incomplete behaviour. We
describe the changes in the four function parameters of the IM framework: cut detection,
log splitting, base cases and fall throughs.

Cut Detection

Cut detection for IMflc and IMclc resembles the cut detection functions of IMfa and
IMc. That is, both first try to detect a cut using the cut detection of IMlc. If that fails,
then IMflc filters the non-atomic directly follows graph using the function filter, after
which again the cut detection of IMlc is applied. If cut detection fails for IMclc, then
the cut with the highest probability is selected. We adapt the activity relations defined
in Section 5.3 to take the concurrency graph ‖ into account, i.e. if for two activities a and
b it holds that a ‖ b, they are considered to be in a concurrent activity relation: a^ b.

Log Splitting

Given a cut and an event log, the life cycle algorithms IMflc and IMclc split the event
logs into sublogs. For these log splitting functions, we reuse the log splitting functions of
IMfa without modifications.

Local Guarantees. Similar to IMf and IMc, neither IMflc nor IMclc guaran-
tee local fitness or log-precision preservation for cut detection and log splitting. As cut
detection and log splitting might classify events as deviating and remove them, neither al-
gorithm guarantees that all sublogs are consistent. Therefore, we apply a post-processing
step to these sublogs that makes the sublogs consistent. The post-processing step was
described in Section 2.3.2, and introduces a completion event right after each start event
without a corresponding completion event. Notice that this post-processing step is only
necessary for Ñ, Ø and 	, as � will only remove deviating start and completion events
together, and ^ does not remove any deviating event.

Base Cases

IMflc combines techniques from IMf and IMlc, i.e. the base case singleNonAtom-
icActivityFiltering applies the base case if “enough” traces consisting of a single
activity execution (i.e. a start and a completion event of the same activity) are present

251

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

(see singleActivityFiltering in Section 6.2). This base case is neither locally fitness
nor log-precision preserving:

locally fitness locally log precision
preserving preserving

singleNonAtomicActivityFiltering no no

Notice that this base case does not recurse and thus consistency preservation of the
event logs is irrelevant.

Fall Throughs

IMclc and IMflc reuse the fall throughs of IMlc and IMf. Notice that empty-
TracesFiltering applies without modification: non-atomic and atomic empty traces
are equivalent. This fall through is neither locally fitness nor log-precision preserving,
however it preserves consistency: no nonempty trace is altered.

locally fitness locally log precision
preserving preserving

emptyTracesFiltering no yes

Summary

We summarise how IMflc and IMclc implement the IM framework. Notice that both
combine IMlc with IMf and IMc.

IMflc. We start with IMflc, which filters infrequent and deviating behaviour:
function baseCaseIMflc(~L)

if ε R ~L then
bcÐ emptyLogp~Lq
if bc � l then

bcÐ singleNonAtomicActivityFilteringp~Lq
end if
return bc

end if
return l

end function
function findCutIMflc(~L)

if ε R ~L then
p`,Σ1 . . .Σkq Ð findCutIMp�̃p~Lqq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð xorCutFilteringp�̃p~Lqq end if
if k ¤ 1 then
p`,Σ1 . . .Σkq Ð sequenceCutFilteringp�̃p~Lqq

end if
if k ¤ 1 then
p`,Σ1 . . .Σkq Ð nonAtomicConcurrentCutFilteringp�̃p~Lqq

end if
if k ¤ 1 then
p`,Σ1 . . .Σkq Ð nonAtomicInterleavedCutFilteringp�̃p~Lqq

end if

252

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

if k ¤ 1 then
return nonAtomicLoopCutFilteringp�̃p~Lqq

else
return p`,Σ1 . . .Σkq

end if
end if
return l

end function
function splitLogIMflc(~L, p`,Σ1, . . . ,Σnq)

if ` � � then return xorSplitFilteringp~L, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return

sequenceSplitFilteringp~L, p`,Σ1, . . . ,Σnqq made consistent
else if ` � ^ then return concurrentSplitp~L, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return

interleavedSplitFilteringp~L, p`,Σ1, . . . ,Σnqq made consistent
else if ` � 	 then return loopSplitFilteringp~L, p`,Σ1, . . . ,Σnqq made con-

sistent
end if

end function
function fallThroughIMflc(~L)

bcÐ emptyTracesFilteringp~Lq
if bc � l then return bc
else return fallThroughIMlcp~Lq
end if

end function

IMclc. Then, we summarise IMclc, which handles incomplete behaviour:
function baseCaseIMclc(~L)

return baseCaseIMlc

end function
function findCutIMclc(~L)

if ε R ~L then
return cut p`,Σ1,Σ2q of ΣpLq with highest p`pΣ1,Σ2q; ` P t�,Ñ,^,	u

end if
end function
function splitLogIMclc(~L, p`,Σ1, . . . ,Σnq)

return splitLogIMflc

end function
function fallThroughIMclc(~L)

ftÐ emptyTracesp~Lq
if ft � l then return ft
else return concurrentFlowerModelp~Lq
end if

end function

6.5.4 Implementation
We finish the description of IMlc, IMflc and IMclc with a brief description of their
implementation in the ProM framework. At the moment of writing, IMlc and IMflc

253

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

have been implemented.
In the descriptions of IMlc, IMflc and IMclc in this section, it was assumed that

each trace in the event log is consistent, i.e. each start event in the trace corresponds to a
single completion event and vice versa (see Section 5.7.1). However, the implementation
is more lenient: in the implementation, we pose this requirement only on the start events,
i.e. we require that for each start event there is a corresponding completion event, but
we allow completion events without corresponding start events. This leniency allows
the implemented algorithms to handle both non-atomic and atomic event logs without
preprocessing steps, as the atomic events in atomic event logs are typically considered to
be (or explicitly defined to be) completion events.

The output of the implementations of IMlc and IMflc is a process tree. Thus,
there is no observable difference between an atomic activity a in a process tree returned
by an atomic-log algorithm and a non-atomic activity ~a in a process tree returned by
a non-atomic-log algorithm, due to a lack of compatible suitable output formats in the
ProM framework (and hence there are no other tools to interpret and use such models
correctly). Therefore, unfortunately, it is up to the user of the model to interpret the
activities in the correct way.

We provide a plug-in, “Expand collapsed process tree”, that transforms a process tree
into a process tree with explicit non-atomicity, e.g. this plug-in transforms the process
tree �

ba

into �

Ñ

b+completeb+start

Ñ

a+completea+start

, such that it can be processed fur-

ther in techniques that are not non-atomic aware. In ProM, for further processing users
should ensure to use an XEventClassifier that adds the +start/+complete parts. Ideally,
conformance checking, log enhancement and other process mining techniques would sup-
port non-atomic event logs and process trees without the need for manually expanding
models and selecting classifiers.

In the Inductive visual Miner, users need not to be aware of this, as it supports
non-atomic event logs and process trees in a transparent manner (see Section 9.1).

6.5.5 Guarantees

As all parameter functions of IMlc are locally fitness preserving, IMlc itself guarantees
fitness by Corollary 4.2:

Corollary 6.39 (IMlc guarantees fitness). For any log L it holds that setpLq �
LpIMlcpLqq.

Not all parameter functions of IMflc and IMclc are locally fitness preserving, so
these algorithms do not guarantee fitness. Similar to the atomic algorithms, neither
IMlc nor IMflc nor IMclc guarantees log-precision.

As all parameter functions guarantee consistency preservation, we have shown that
if the input event log is consistent, then in every recursion of these three algorithms, the
event log under consideration is consistent.

Next, we prove rediscoverability, using the framework introduced in Section 4.2.2.
That is, we first show that log splitting preserves the directly follows graph and con-
currency graph abstractions (Lemma 6.40). Second, we show that IMlc preserves these
abstractions (Lemma 6.41). Third, we prove rediscoverability (Theorem 6.43).

254

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

Lemma 6.40 (IMlc: log splitting preserves log assumptions). Let S � `pS1, . . . Snq
with S P Clc, let c � p`,Σ1, . . .Σmq be a cut conforming to S, and let L1 . . . Lm �
splitLogpL, cq. Then, there exist subtrees M1 . . .Mm such that �p`pM1, . . .Mmqq �
�pSq, ‖p`pM1, . . .Mmqq � ‖pSq and @1¤i¤m Li P LAIMlcpMiq.

Proof. We prove this lemma by constructing trees M1 . . .Mm corresponding to S1 . . . Sn
as in Lemma 6.12 and showing that the log assumptions hold for these M1 . . .Mm,
i.e. that the sublogs returned by splitLogIMlc are fitting to their respective Mi and
have the same directly follows graph and concurrency graph (similar to Figure 6.4).
By construction, Lp`pM1, . . .Mmqq � LpSq, therefore �p`pM1, . . .Mmqq � �pSq and
‖p`pM1, . . .Mmqq � ‖pSq.

As in Lemma 6.12, @1¤i¤m setpLiq � LpMiq and �pLiq � �pMiq. Left to prove:
@1¤i¤m ‖pLiq � ‖pSiq. Take such an Li andMi, and a pair of activities a, b P ΣpLiq such
that a ‖Li

b. Then, there is a trace t in Li such that an execution of a and an execution
of b overlap in t. By construction of the split functions and semantics of the process tree
operators, this overlap is present in a trace t1 in L, hence a ‖L b. As L P LAIMlcpSq,
t1 P LpSq and therefore a ‖S b. Similarly, t PMi, hence a ‖Mi

b.
To prove the other direction, consider an Mi and activities a, b P ΣpMiq such that

a ‖Mi
b. By construction of Mi and semantics of the process tree operators, a ‖S b. As

L P LAIMlcpSq, a ‖L b. Then, there must be a trace t P LpLq such that some executions of
a and b overlap in t. Without loss of generality, assume that t � x. . . as, bs, . . .1 ac, bc, . . .y.
For all activities d that have an execution (i.e. an event) in . . .1, it holds that a ‖L d and
b ‖L d. As cut c conforms to S, by Lemma 5.60, d P ΣpLiq. Hence, for the process tree
operators �, Ñ, ^ and 	, t P Li and hence a ‖Li

b.
Hence, subtrees M1 . . .Mm exist such that �p`pM1, . . .Mmqq � �pSq, ‖p`pM1,

. . .Mmqq � ‖pSq and @1¤i¤m Li P LAIMlcpMiq.

Lemma 6.41 (IMlc, IMflc and IMclc are abstraction preserving). IMlc, IMflc
and IMclc are abstraction preserving, i.e. the combination of the class of process trees
Clc, the directly follows abstraction �, the log assumptions function L P LAIMlcpSq �
setpLq � LpSq^�pSq ��pLq^‖pSq � ‖pLq, and the algorithms IMlc implementing the
IM framework with baseCaseIMlc, findCutIMlc, splitLogIMlc and fallThroughIMlc

is abstraction preserving.

Proof. We show that each requirement of Definition 4.8 holds:

AP.1 , i.e. an activity base case preserves the abstraction. As L P LAIMpSq holds,
setpLq � txas, acyu. By code inspection, in IMlc the base case singleNonAtom-
icActivity applies, which returns ~a.
Hence, �pbaseCaseIMlcpLqq ��p~aq.

AP.2 , i.e. a τ base case preserves the abstraction. As τ R Clc, this case cannot occur
and the requirement holds.

AP.3 , i.e. the base case parameter function preserves the abstraction. If S � `pS1, . . . Snq,
with S P Clc, then ΣpSq ¥ 2. As L P LAIMlcpSq holds, by code inspection, no
base case in baseCaseIMlc applies and the requirement trivially holds.

AP.4 , i.e. every cut that is detected conforms to S. As L P LAIMlcpSq, �pSq �
�pLq and ‖pSq � ‖pLq. By lemmas 5.21 and 5.60, �pLq and ‖pLq contain a cut
c � `pΣpS1q, . . .ΣpSnqq. By Corollary 5.64, no other footprint is present in the
combination of �pLq and ‖pSq. By code inspection of findCutIMlc, this cut c is
returned, hence these three cut detection functions conform to S (Definition 5.16).

255

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.5 Handling Non-Atomic Event Logs

AP.5 , i.e. log splitting preserves the log assumptions. This requirement follows from
Lemma 6.40.

AP.6 , i.e. fall throughs preserve the abstraction. By the previous requirements and
Lemma 5.10, for all systems S P Clc, either baseCaseIMlc or findCutIMlc ap-
plies, i.e. fallThroughIMlc is never reached for S P Clc. Therefore, this case
cannot occur and the requirement holds.

We show that IMlc is language-class preserving (Definition 4.10), i.e. that the dis-
covered model is of Clc:

Lemma 6.42 (IMlc is language-class preserving). For all non-atomic systems S P Clc

and logs ~L such that ~L P LAIMlcpSq, it holds that IMap~Lq P Clc.

The proof of this lemma is similar to the proofs of lemmas 6.14 and 6.36, i.e. for each
requirement of Clc it is shown that there exists subtrees M1 . . .Mm such that each of
the sublogs Li adheres to the log assumptions of Mi (Lemma 6.40). By Lemma 6.41, the
non-atomic directly follows graph is preserved by IMlc, and as the requirement of Clc

holds for Mi, this requirement holds for S as well.
Finally, by Theorem 4.11, IMlc guarantees rediscoverability for Clc: Rediscover-

ability is guaranteed by IMflc and IMclc as well, as these algorithms first apply the
cut detection of IMlc before attempting filtering (and this is not necessary in case the
preconditions for rediscoverability hold).

Theorem 6.43 (IMlc, IMflc & IMclc rediscoverability). Let L be a log and S P Clc be
a system such that setpLq � LpSq^�̃pLq � �̃pSq. Then, LpIMlcpLqq � LpIMflcpLqq �
LpIMclcpLqq � LpSq.

In this section, we introduced three algorithms that use life cycle information in event
logs, i.e. in non-atomic event logs, to distinguish concurrency and looping behaviour. One
of these algorithms is the basic fitness-guaranteeing IMlc, one the infrequent and devi-
ating behaviour handling IMflc, and the third, IMclc, handles incomplete behaviour.
We have shown that all three algorithms provide rediscoverability on process trees of
Clc. Furthermore, we have shown that IMlc guarantees fitness. Both IMlc and IMflc
have been implemented in the ProM framework [58] (see Section 6.7). Implementing and
evaluating IMclc remains part of future work:

Future work 6.44: Implement and evaluate IMclc.

An interesting area of further research is to combine the life cycle handling capabilities
of IMlc with the concurrency detection using the üü-relation of IM, and to extend
support for the interleaved operator Ø.

Future work 6.45: Combine life cycle handling capabilities with the minimum self-
distance relation üü.

Future work 6.46: Include support for Ø in IMlc and IMflc.

256

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

6.6 Handling Large Event Logs

In the previous sections, we introduced several algorithms that use the IM framework to
discover process models. In Chapter 8, we will show that these algorithms (except IMc)
can be applied to event logs with millions of events and thousands of traces. Handling
even larger event logs, the algorithms of the IM framework face the problem that they
need to pass through the event log in every recursion and copy the event log in each
recursion, which increases run time and memory consumption by the algorithms that use
the IM framework. In this section, we will introduce a new family of algorithms that
is able to handle logs with tens of millions of events and thousands of activities. These
new algorithms pass through the event log once to construct a directly follows graph,
and then recurse on this directly follows graph only instead of on the event log, thereby
avoiding to copy the event log. Therefore, we adapt the IM framework to pass over the
event log once: four steps are applied to the directly follows graph, similar to the IM
framework: it detects a cut of the graph, splits the directly follows graph in subgraphs,
and recurses on these subgraphs until it encounters a base case, and if no cut can be
detected it chooses a fall through. We refer to this adapted framework as the Inductive
Miner - directly follows based framework (IMd framework).

We introduce three algorithms that implement the IMd framework: a basic one
called Inductive Miner - directly follows (IMd), one to handle infrequent and deviating
behaviour, called Inductive Miner - infrequent - directly follows (IMfd), and one to
handle incomplete behaviour Inductive Miner - incompleteness - directly follows (IMcd).

We start with an example, after which we introduce the IMd framework, and the
three algorithms implementing it (IMd, IMfd and IMcd). We conclude the section
with a discussion of the guarantees provided by the IMd framework and the introduced
algorithms.

6.6.1 Example
We illustrate the IMd framework and the basic algorithm IMd with an example, using
the event log

L113 � rxa, b, c, f, g, h, iy, xa, b, c, g, h, f, iy xa, b, c, h, f, g, iy,

xa, c, b, f, g, h, iy, xa, c, b, g, h, f, iy, xa, c, b, h, f, g, iy,

xa, d, f, g, h, iy, xa, d, e, d, g, h, f, iy, xa, d, e, d, e, d, h, f, g, iys

The directly-follows graph of L113 is shown in Figure 6.17.
To this graph, IMd first tries to apply a base case, which does not apply. Second, the

IMd applies cut detection, and detects the cut pÑ, tau, tb, c, d, eu, tf, g, hu, tiuq. Using
this cut, the directly follows graph is split into four subgraphs, shown in Figure 6.18, by,
for each part of the cut, taking the nodes and edges within that part, and converting the
inter-edges into start and end activities (depending on the process tree operator). Notice
the difference with IM, which would split the event log, and in the recursion recompute
the subgraphs; IMd avoids this step. The intermediate result is recorded:

IMdp�pL113qq � ÑpIMdpD114q, IMdpD115q, IMdpD116q, IMdpD117qq

On these four subgraphs, IMd recurses. Two of these subgraphs, i.e. D114 and D117,
are base cases:

IMdpD114q � a

IMdpD117q � i

257

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a b

c

d

e

f
g

h

i

(a) � graph.

� a b c d e f g h i K
J 9
a 3 3 3
b 3 1 1 1
c 3 1 1 1
d 3 1 1 1
e 3
f 6 3
g 6 3
h 6 3
i 9

(b) Cardinalities of the � graph.

Figure 6.17: Directly follows graph of L113, with cardinalities denoted in a
table. The red lines denote the cut pÑ, tau, tb, c, d, eu, tf, g, hu, tiuq.

Once IMd recurses on D115, it detects the cut p�, tb, cu, td, euq, splits the graph into
D118 and D119 (see Figure 6.19), and records the intermediate result

IMdpD115q � �pIMdpD118q, IMdpD119qq

For D118, IMd discovers the tree ^pb, cq, while for D119, IMd discovers the tree
	pd, eq.

Recursing on D116, having nodes f , g and h (see Figure 6.18), IMd detects neither
a base case nor a cut. Therefore, a fall through must be used: IMd performs a fall
through similar to strictTauLoop of IM. Where strictTauLoop splits traces on
every transition from an end to a start activity, IMd removes all edges from an end to
a start activity. On our example, IMd thus obtains the directly follows graph D120, and
records the intermediate result

IMdpD116q � 	pIMdpD120, τqq

On D120, IMd discovers the model �pf, g, hq. The end result of IMd applied to
�pL113qq is Ñ

�

i	

τ�

hgf

	

ed

^

cb

a

.

258

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a
9

9

(a) D114.

b
c

d

e

3

3

3

3

3

3 3

3

3

3

(b) D115.

f

g

h

6
66

3

3
3

33

3

(c) D116.

i
9

9

(d) D117.

Figure 6.18: Sub � graphs of L113. The red line denotes the cut
p�, tb, cu, td, euq.

b c
3

3

3

3

3

3

(a) D118.

d e
3

3

3

3

(b) D119.

g

h
i

3

3 3

33

3

(c) D120.

Figure 6.19: Further sub � graphs.

259

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

6.6.2 Inductive Miner - directly follows based framework
(IMd framework)

In this section, we introduce the IMd framework, which consists of four steps: first, a
cut is detected, second, the directly follows graph is split into smaller subgraphs and
third, the IMd framework recurses on these subgraphs until a base case is encountered.
If no cut can be found, a fall through is returned, i.e. a process tree is discovered such
that recursion can continue. These four steps are parameters of the IMd framework and
have to be provided as plug-ins by a process discovery algorithm: each algorithm that
implements the IMd framework should provide each of these four functions. That is, for
a directly follows graph �, the parameter function baseCase detects base cases of the
recursion. The parameter function findCut searches for a cut, i.e., findCutp�q searches
for a cut in directly follows graph � and returns that cut if it exists. The parameter
function splitDfg splits the directly follows graph into smaller directly follows graphs:
splitDfgp�, cq splits � according to cut c and returns the remaining subgraphs. The
parameter function fallThroughp�q returns a fall through for �. This function must
not fail and always return a process tree.

Formally, let D be a directly follows relation:
function IMd frameworkbaseCase,findCut,splitDfg,fallThrough(D)

bcÐ baseCasepDq
if bc � l then

return bc
end if
p`,Σ1, . . . ,Σnq Ð findCutpDq
if p`,Σ1, . . . ,Σnq � l then

D1 . . . Dn Ð splitDfgpD, p`,Σ1, . . . ,Σnqq
return `pIMdframeworkpD1q, . . . , IMdframeworkpDnqq

else
return fallThroughpDq

end if
end function

In the remainder of this section, we introduce three algorithms that implement this
framework.

6.6.3 Inductive Miner - directly follows (IMd)

The first algorithm we introduce is a basic one: the Inductive Miner - directly follows
(IMd) algorithm. This algorithm resembles the IM algorithm, i.e. uses the same concepts.
We discuss its four parameter functions: cut detection, directly follows graph splitting,
base cases and fall throughs.

Cut Detection

Cut detection of the IMd algorithm is identical to cut detection of IM. That is, xorCut,
sequenceCut, concurrentCut and loopCut of IM are applied until one returns a
cut.

260

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a

b
c

(a) D121.

a

(b) D122.

b
c

(c) D123.

Figure 6.20: A directly follows graph, split by the cut denoted by a red line.

a

b
c

(a) D124.

a

(b) D125.

b
c

(c) D126.

Figure 6.21: A directly follows graph, split by the cut denoted by a red line.

Directly Follows Graph Splitting

After finding a cut, the IMd framework splits the directly follows graph into several
subgraphs, on which recursion continues. The IMd algorithm uses several log splitting
functions. The idea is to keep the internal structure of each of the clusters of the cut by
projecting a graph on the cluster.

Exclusive Choice and Concurrency. For exclusive choice and concurrency, a
simple projection suffices. That is, all inter-edges of a cluster are kept, and all intra-
cluster edges are removed. For instance, consider the directly follows relation shown in
Figure 6.20: starting with D121, this graph is split using the cut p�, tau, tb, cuq into D122

and D123. Similarly, Figure 6.21 shows a directly follows graph, the cut p^, tau, tb, cuq
and the directly follows graphs that result from splitting.

Formally:
function simpleDfgSplit(D,`,Σ1 . . .Σn)
@i : Di Ð ra� b|a, b P Σi Y tJ,Ku ^ a�D bs
return D1, . . . , Dn

end function

Sequence and Loop. For 	 and Ñ, the start and end activities of a child might be
different from the start and end activities of its parent. Therefore, every edge that enters
a cluster is counted as a start activity, and an edge leaving a cluster is counted as an
end activity. For Ñ, an edge bypassing a cluster is counted as an empty trace (J�K,
denoted as ε in the directly follows graphs). For instance, the directly follows graph D127

in Figure 6.22 is split using the cut pÑ, tau, tbu, tcuq in the graphs D128, D129 and D130.

261

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a b c
2

2

(a) D127.

a
2

2

(b) D128.

b ε

(c) D129.

c
2

2

(d) D130.

Figure 6.22: A directly follows graph, split by the cut denoted by the red
lines.

Σ1

Σ2
(b) (a)

. . .

Σn

(c)

Figure 6.23: Three possible bypasses of the body part in a loop.

Formally:
function sequenceDfgSplit(D,`,Σ1 . . .Σn)

@i : Di Ð ra� b|a, b P Σi ^ a�D bs

Z rJ� b|b P Σi ^ a P Σj i Y tJu ^ a�D bs

Z ra�K|a P Σi ^ b P Σj¡i Y tKu ^ a�D bs

Z rJ�K|a P Σj i Y tJu ^ b P Σk¡i Y tKu ^ a�D bs
return D1, . . . , Dn

end function
The function for loop cuts is similar: it takes the clusters of the cuts and keeps the
internal �-edges of these clusters. For the first (body) cluster, empty traces are added
in three cases, as illustrated in Figure 6.23: (a) a redo cluster contains a start activity,
which means that execution of the body left no trace in the directly follows graph, thus
an empty trace should be added to the body (b) similarly, for each end activity an empty
trace is added, and (c) a directly follows edge between two redo clusters indicates that
the execution of the body resulted in an empty trace. For the non-first (redo) clusters,
start and end activities are added according to the directly follows edges between the
body cluster and the redo cluster.

Notice that for 	, the cut detection routines of IMd, IMfd and IMcd guarantee

262

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a

b

c
d

30

10
10

9

11 10

10

(a) D131.

a

b

30

ε
30

30

(b) D132.

c
10

10

(c) D133.

d
10

10

(d) D134.

Figure 6.24: Example of directly follows graph splitting. The red lines denote
the loop cut p	, ta, bu, tcu, tduq.

that only case (c) might occur. Figure 6.24 shows an example: D131 is split into D132,
D133 and D134. The edge c� d violates the red loop cut and appears an as empty trace
in D132.
function loopDfgSplit(D,`,Σ1 . . .Σn)

D1 Ð ra� b|a, b P Σ1 Y tJ,Ku ^ a�D b^ pa � J^ b � Kqs

Z rJ�K|a P
¤

1 i¤n

Σi Y tJu ^ b P
¤

1 j¤n,i�j

Σi Y tKu ^ a�D bs

for 2 ¤ i ¤ n do
Di Ð ra� b|a, b P Σi ^ a�D bs

Z rJ� b|a P Σ1 Y tJu ^ b P Σi ^ a�D bs

Z ra�K|a P Σi ^ b P Σ1 Y tKu ^ a�D bs
end for
return D1, . . . , Dn

end function

Base Cases

We identified two base cases for IMd: no activities and single activities.
The emptyDfg base case applies when the directly follows graph contains no activ-

ities. In that case, τ is returned.
The singleActivityDfg base case applies when the directly follows graph contains

a single activity, and that activity has no self-edges. In case the activity has self-edges,
the base case does not apply, as a self-edge implies that the log underlying the directly
follows graph contains a trace with more than one execution of the activity, e.g. xa, ay
(this case is handled by the fall through strictDfgTauLoop that will be introduced
below).

Fall Throughs

The IMd algorithm uses fewer fall throughs than the IM algorithm. For each of the fall
throughs of IM, we discuss whether they are used by IMd as well, and how they were
adapted to directly follows relations:

• The IM fall through emptyTraces applies to directly follows relations, though

263

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

a

b
c

(a) � relation D135.

a

b
c

(b) D136 on which strictDfgTauLooppD135q recurses.

Figure 6.25: A � relation, and the filtered � relation on which strictDfg-
TauLoop recurses.

needs to be adapted: instead of probing the event log for empty traces, it probes
a directly follows relation D for relations J�D K. We refer to this adapted fall
through as emptyTracesDfg.

• The IM fall through activityOncePerTrace does not apply to directly follows
relations, as from such a relation, it cannot always be derived whether an activity
was executed once in each trace.

• The IM fall through activityConcurrent could be adapted to directly follows
relations by removing an activity from the relation and trying whether in the
remaining graph a cut is present. However, given the time-consuming nature of
this fall through and the focus of IMd on scalability, we chose not to include this
fall through in IMd.

• The IM fall through strictTauLoop can be adapted to directly follows relations:
every edge from an end activity to a start activity is removed. We refer to the
adapted fall through as strictDfgTauLoop. The fall through applies if this step
actually removes at least an edge. For instance, Figure 6.25 shows a directly follows
relation and the filtered relation on which strictDfgTauLoop recurses. That is,
strictDfgTauLoop returns 	pIMdpD136q, τq.

• The IM fall through tauLoop can be adapted to directly follows relations, in a way
similar to strictDfgTauLoop, to obtain dfgTauLoop. That is, of a directly
follows graph D, all incoming edges of start activities are removed to obtain a new
directly follows graph D1, i.e. IMdpDq � 	pIMdpD1q, τq.

• The IM fall through flowerModel applies to directly follows relations without
changes.

Summary

To summarise, the IMd algorithm implements the parameter functions of the IMd frame-
work as follows:
function baseCaseIMd(D)

if J�K R D then
bcÐ emptyDfgpDq
if bc � l then bcÐ singleActivityDfgpDq end if
if bc � l then return bc end if

end if
return l

264

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

end function
function findCutIMd(D)

if J�K R D then
p`,Σ1 . . .Σkq Ð xorCutpDq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutpDq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð concurrentCutpD,Hq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð loopCutpDq end if
if k ¥ 2 then return p`,Σ1 . . .Σkq end if

end if
return l

end function
function splitDfgIMd(D, p`,Σ1, . . . ,Σnq)

if ` � � then return simpleDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return simpleDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopDfgSplitpD, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIMd(D)

ftÐ emptyTracesDfgpDq
if ft � l then ftÐ strictDfgTauLooppDq end if
if ft � l then ftÐ dfgTauLooppDq end if
if ft � l then return ft
else return flowerModelpDq
end if

end function
In Section 6.6.6, we will discuss the guarantees offered by IMd: rediscoverability, but

not fitness.

6.6.4 Inductive Miner - infrequent - directly follows (IMfd)
In the previous sections, we introduced the IMd algorithm, which splits directly follows
graphs recursively. In this section, we combine the concepts of the IMd and IMf al-
gorithms to handle infrequent and deviating behaviour. We introduce a new algorithm,
Inductive Miner - infrequent - directly follows (IMfd), and describe how it implements
the four parameter functions of the IMd framework, i.e. cut detection, directly follows
graph splitting, base cases and fall throughs.

Cut Detection

Cut detection of the IMfd resembles cut detection of IMf and IMd, i.e. first the cut
detection of the basic IMd is attempted. If that fails, the graph is filtered using the
filter function (see Section 6.2.2), after which the IMd cut detection is applied again.

Directly Follows Graph Splitting

As fitness is not guaranteed by the basic IMd algorithm, its directly follows graph split-
ting functions were designed to handle non-perfect cuts. Therefore, these log splitting
functions of the IMd algorithm suffice for IMfd.

265

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

Base Cases

We consider how to adapt the two base cases of IMf to IMfd: emptyDfg applies to
empty logs, and there is not much to filter, so this fall through is included unchanged. The
singleActivityDfg fall through is sensitive to only one type of infrequent behaviour:
self edges. That is, if a directly follows graph consists of a single activity a, then the only
possible extra information is a self edge of a, indicating that a was executed multiple
times in a trace. In such cases, the IMf algorithm needs to decide whether there are
enough traces to justify the model 	pa, τq or the more precise model a.

In IMf, the fall through singleActivityFiltering assumes a geometric distribution
with parameter p, which is estimated as pp � |L|{p||L|| � |L|q, in which |L| is the number
of traces in log L and ||L|| is the number of events in L. If the log contains only traces
with a single a, then pp � 0.5. If this pp is ‘close enough’ to 0.5, i.e. |pp � 0.5| ¤ f , the
activity a is returned as a leaf. The IMfd algorithm applies a similar strategy with the
singleActivityDfgFiltering, and derives |L| by the number of times a was a start
activity, and ||L|| by the total weight of incoming edges of a, i.e. the number of times a
is a start activity and the weight of the self edge of a.

Fall Throughs

Most fall throughs of the IMd algorithm apply to IMfd without change. However,
similar to the IMf algorithm, the fall through emptyTraces is adapted to not apply
when just a few empty traces are present. Thus, the fall through emptyTracesDfg-
Filtering applies if “enough” empty traces, i.e. |J�D K| ¥ |StartpDq| � f , the model
�pτ, IMfpD without J�Kqq is returned and recursion continues on a directly follows
graph without the empty traces. Otherwise, the empty traces are filtered out and recur-
sion continues, i.e. IMfdpD without J�Kq.

Summary

To summarise, the IMfd algorithm implements the parameter functions of the IMd
framework as follows:
function baseCaseIMfd(D)

if J�K R D then
bcÐ emptyDfgpDq
if bc � l then bcÐ singleActivityDfgFilteringpDq end if
if bc � l then return bc end if

end if
return l

end function
function findCutIMfd(D)

if J�K R D then
p`,Σ1 . . .Σkq Ð findCutIMdpDq
if k ¤ 1 then p`,Σ1 . . .Σkq Ð xorCutFilteringpDq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð sequenceCutFilteringpDq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð concurrentCutFilteringpD,Hq end if
if k ¤ 1 then p`,Σ1 . . .Σkq Ð loopCutFilteringpDq end if
if k ¥ 2 then return p`,Σ1 . . .Σkq end if

end if
return l

266

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

end function
function splitDfgIMfd(D, p`,Σ1, . . . ,Σnq)

if ` � � then return simpleDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � Ñ then return sequenceDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � ^ then return simpleDfgSplitpD, p`,Σ1, . . . ,Σnqq
else if ` � 	 then return loopDfgSplitpD, p`,Σ1, . . . ,Σnqq
end if

end function
function fallThroughIMfd(D)

ftÐ emptyTracesDfgFilteringpDq
if ft � l then ftÐ strictTauLooppDq end if
if ft � l then ftÐ tauLooppDq end if
if ft � l then return ft
else return flowerModelpDq
end if

end function

6.6.5 Inductive Miner - incompleteness - directly follows
(IMcd)

In the previous sections, we introduced the IMd framework to increase scalability, and
the IMd and IMf algorithms. In this section, we describe how the concepts of the
incompleteness-handling algorithm IMc can be applied in the IMd framework, i.e. we
introduce a new algorithm Inductive Miner - incompleteness - directly follows (IMcd)
that handles incomplete behaviour. We discuss cut detection, log splitting, base cases
and fall throughs, after which we summarise the algorithm. Notice that even though the
IMd framework focuses on speed, the IMcd algorithm that is presented in this section is
exponential in the number of activities. We nevertheless included it as it illustrates the
flexibility of the IM framework and IMd framework: without much effort, we can reuse
existing techniques, implementations and proofs.

Cut Detection

The activity relations described in Section 5.3 are defined using a directly follows graph.
Hence, IMcd can reuse the cut detection of IMc with a small adjustment, i.e. it first
constructs the activity relations and computes probabilities for them. In these probabil-
ities, the number of occurrences of an activity is used, which is derived from the sum
of incoming edges in the directly follows graph. For instance, if activity a has several
incoming directly follows edges whose weights sum up to 10, activity a was executed 10
times. Second, several SMT problems are constructed whose solutions correspond to the
cuts with maximum accumulated probabilities, and the cut with the highest probability
is returned. For more details, please refer to Section 6.3.5.

Directly Follows Graph Splitting

As fitness is not guaranteed by the basic IMd algorithm, its directly follows graph split-
ting functions were designed to handle non-perfect cuts. Therefore, these log splitting
functions of the IMd algorithm suffice for IMcd.

267

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

Base Cases

Similar to IMc, which reuses the base cases of IM, IMcd reuses the non-filtering base
cases of IMd.

Fall Throughs

Similar to IMc, IMcd always discovers a cut, thus a fall through is only necessary if the
event log consists of a single activity, or if the event log contains empty traces ε. That
is, emptyTracesDfg and flowerModel.

Summary

To summarise, the IMcd algorithm implements the parameter functions of the IMd
framework as follows:
function baseCaseIMcd(D)

return baseCaseIMdpDq
end function
function findCutIMcd(D)

if J�K R D then
return cut p`,Σ1,Σ2q of ΣpDq with highest p`pΣ1,Σ2q; ` P t�,Ñ,^,	u

end if
end function
function splitDfgIMcd(D, p`,Σ1, . . . ,Σnq)

return splitDfgIMdpDq
end function
function fallThroughIMcd(D)

ftÐ emptyTracesDfgpDq
if ft � l then return ft
else return flowerModelpLq
end if

end function

6.6.6 Guarantees
In the previous sections, we introduced the IMd framework that discovers process trees
by recursing on directly follows graphs, and three algorithms implementing it, i.e. the
basic IMd, the the infrequent and deviating behaviour handling IMfd, and the incom-
pleteness handling IMcd. In this section, we discuss the guarantees provided by the IMd
framework and the three algorithms. We start with an explanation why we chose to not
guarantee fitness. Second, we lift the rediscoverability framework of the IM framework to
the IMd framework. Third, we show that all three algorithms provide rediscoverability
for selected subclasses of models.

Fitness

A desirable property of discovery algorithms is the ability to return a fitting model,
i.e. guarantee fitness. For directly follows based algorithms without recursion, this is
challenging. For instance, Figure 6.26 shows the directly follows graph of the process

268

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

^

cÑ

ba

(a) Tree M137.

rxa, c, b, c, a, by, xcys

(b) Log L138.

a

b

c

(c) �pM137q ��pL138q.

Figure 6.26: Example of a tree and non-fitting log with the same � graph.

tree M137 � ^

cÑ

ba

. However, it is also the directly follows graph of the event log L138 �

rxa, c, b, c, a, by, xcys. Thus, any directly follows algorithm that aims to return a fitting
model should return a model that includes the behaviour ofM137 as well as the behaviour
of L138, as the directly follows graph that the algorithm considers cannot distinguish
between the behaviour of M137 and L138.

Hence, a directly follows based algorithm that guarantees fitness can never return
tree M137. Specifically, a fitness-guaranteeing algorithm would need to return a model
that allows for any possible path through the directly follows graph. Therefore, such
an algorithm has to seriously underfit/generalise, and we chose the basic algorithm IMd
to not guarantee fitness, in contrast to the basic IM, which is aided by its log splitting
in detecting the difference between M137 and L138. Furthermore, this example shows
that a fitness-guaranteeing directly follows-based discovery algorithm cannot guarantee
rediscoverability on any class of process models that includes M137, e.g. Cb.

This challenge holds for any pure directly-follows based process discovery algorithm,
such as IMd and α. The algorithms of the IM framework do not suffer from this as due
to their recursion, these algorithms use more information from the event log. The trees
returned by IM and IMd for M137 and L138 are as follows:

log or � of M137 L138

IM ^

cÑ

ba

^

�

	

τÑ

ba

τ

	

τc

IMd ^

cÑ

ba

^

cÑ

ba

269

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

Rediscoverability in the IMd framework

The IMd framework provides several guarantees: the model returned is a process tree
and hence is sound, and furthermore algorithms that implement the IMd framework can
guarantee rediscoverability.

In Section 4.2.2, we introduced a formal framework for rediscoverability and expressed
its requirements in terms of the IM framework functions. As the IMd framework differs
from the IM framework, we adapt the rediscoverability framework as well. In the redis-
coverability framework we used a discovery algorithm ♦, a log-assumption function LA,
a language abstraction A and a class of models C. We defined the property abstraction
preservation, which expresses that the algorithm chooses sensible cuts, base cases and
fall throughs, and never performs a step that causes the discovered model to have a dif-
ferent abstraction than the system model (see Definition 4.8). Furthermore, we defined
the property language-class preservation, which expresses that the output model should
be of class C. For both properties, one may assume that the system is of class C, and
that the log adheres to the log-assumption function LA. From these two properties,
rediscoverability follows, as proven in Theorem 4.11.

For the IMd framework, we adapt this formal framework as follows. In order not to
repeat large parts of Section 4.2.2, we restate properties and requirements of the IMd
framework while referring to similar proofs of the IM framework. We introduce two
properties: one corresponding to abstraction preservation and one similar to language-
class preservation.

Definition 6.47 (directly follows preservation). Let C be a class of process trees, let
DA : C Ñ 2directly follows relation be a directly follows relation assumption function, let D
be a directly follows relation, and let ♦ be a discovery algorithm implementing the IMd
framework with baseCase♦, findCut♦, splitDfg♦ and fallThrough♦. Then, ♦ is
abstraction preserving if for every tree S P C:

DAP.1 The directly follows relation of an activity is preserved: for all reduced systems
a P C such that a is an activity, and for all directly follows relations D P DApaq,
it holds that �pbaseCase♦pDqq ��paq.

DAP.2 The directly follows relation of a τ step is preserved: for the reduced system τ P C
and for all directly follows relations D P DApτq, it holds that�pbaseCase♦pDqq �
�pτq.

DAP.3 If the algorithm applies a base case, then the directly follows relation is preserved:
let S � `pS1, . . . Snq, with S P C be a reduced system, and let D P DApSq be
a directly follows relation. Assume that for all S1 such that |S1| ¤ |S| and D1 P
DApS1q, it holds that �pbaseCase♦pD1qq � �pS1q. Then, if baseCase♦pDq
applies, then �pbaseCase♦pDqq ��pSq.

DAP.4 If the algorithm detects a cut, then this cut conforms to the system: for all
reduced systems S � `pS1, . . . Snq with S P C and for all directly follows relations
D P DApSq for which baseCase♦pDq does not apply, it holds that findCut♦pDq
conforms to S (Definition 5.16).

DAP.5 If a conforming cut is found, then the directly follows assumptions hold for the
subgraphs (for the next recursive step): for all reduced systems S � `pS1, . . . Snq
with S P C, and all cuts c � pb,Σ1, . . .Σmq that conform to S (Definition 5.16,
notice that n and m may be different due to the reduction rules of Definition 5.1),
let D1 . . . Dm � splitDfgpD, cq, then there exist trees M1 . . .Mm such that
�p`pM1, . . .Mmqq ��pSq, and @1¤i¤m Di P DApMiq.

270

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

DAP.6 If the algorithm uses a fall through, the directly follows relation is preserved: let
S � `pS1, . . . Snq with S P C be a reduced system, and let D P DApSq be a
directly follows relation, but neither baseCase♦pDq nor findCut♦pDq applies.
Assume that for all S1 such that |S1| ¤ |S| and D1 P DApS1q, it holds that
�p♦pD1qq ��pS1q.
Then, �pfallThrough♦pDqq ��pSq.

An algorithm having this property preserves the abstraction of a system, i.e.

Lemma 6.48 (Directly follows rediscoverability of the IMd framework). Let C be a
class of process trees, DA be a directly follows assumption function, and let ♦ be an
algorithm that implements the IMdframework with baseCase♦, findCut♦, splitDfg♦
and fallThrough♦, such that ♦ is directly follows preserving (Definition 6.47). Then,
for all reduced systems S P C and directly follows relations D P DApSq, it holds that
�p♦pDqq ��pSq.

The proof of this lemma is similar to the proof of Lemma 4.9.
The second property expresses that the discovered model should be of class C, in

terms of C and LA:

Definition 6.49 (language-class preservation). A combination of a class of process trees
C, a directly follows assumption function DA and an algorithm ♦ is language-class
preserving if and only if for all reduced systems S P C and directly follows relations
D P DApSq, it holds that ♦pDq P C.

Finally, we prove the main theorem, i.e. an algorithm that is abstraction preserving
and language-class preserving has rediscoverability:

Theorem 6.50. Let C be a class of process trees, DA be a directly follows assumption
function, and ♦ � IMd frameworkbaseCase♦,findCut♦,splitDfg♦,fallThrough♦ , such that
the combination of C, DA and ♦ is directly follows preserving (Definition 6.47), such
that the combination of C, DA and ♦ is language-class preserving (Definition 6.49), and
such that the combination of � and the set of languages represented by C is language
unique (Definition 4.4).

Let SM and S be process trees such that LpSMq � LpSq, SM P C and S P C. Then,
♦ has rediscoverability (Definition 4.3): for each directly follows relation D P DApSq, it
holds that LpSMq � Lp♦pDqq.

For the proof of this theorem, we refer to the proof of Theorem 4.11.

Rediscoverability of IMd, IMfd and IMcd

Theorem 6.51 (IMd rediscoverability). Take a system S P Cb (Definition 5.7) and a
log L such that setpLq � LpSq and �pLq ��pSq. Then, LpIMdp�pLqqq � LpSq.

Proof. In order to prove the theorem, we prove that the directly follows relation is pre-
served (Definition 6.47), and that the model discovered by IMd is of class Cb (Defini-
tion 6.49). Then, by Theorem 6.50, the theorem holds.

We prove that the parameter functions of IMd are directly follows preserving: let
�pLq � D P DAIMd if and only if �pSq � D.

DAP.1 Let S � a, with a being an activity. By DAIMd, �pLq ��pSq. By construction
of baseCaseIMd, �pbaseCaseIMdp�pLqqq ��paq.

271

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.6 Handling Large Event Logs

DAP.2 Let S � τ . By DAIMd, �pLq ��pSq. By construction, neither
baseCaseIMdp�pLqq nor findCutIMdp�pLqq apply. Then, by construction of
baseCaseIMd, �pbaseCaseIMdp�pLqqq ��paq.

DAP.3 This case never applies, i.e. if S � `pS1, . . . Snq, then baseCaseIMdp�pLqq does
not apply.

DAP.4 As IMd reuses the cut detection of IM, the proof of Requirement AP.4 of
Lemma 6.13 applies.

DAP.5 Let S � `pS1, . . . Snq with S P Cb, let c � p`,Σ1, . . .Σmq be a cut conforming to
S, and let D1 . . . Dm � splitLogpD, cq. To prove: there exist subtrees M1 . . .Mm

such that �p`pM1, . . .Mmqq � �pSq and @1¤i¤m Di P DApSiq. We prove this
by constructing trees M1 . . .Mm corresponding to S1 . . . Sn and showing that the
log assumptions hold for these M1 . . .Mm, i.e. that the subgraphs returned by
splitDfgIM are fitting to their respective Mi and have the same directly follows
graph.
As c is conforming, each Σ1 . . .Σm is the union of one or more ΣpSiq. Let each
M1 . . .Mm be the trees corresponding to the subtrees Si, combined with ` if
necessary. (for instance, if S � Ñpa, b, cq and c � pÑ, ta, bu, tcuq, then M1 �
Ñpa, bq and M2 � c).
We prove the directly follows assumptions DAIM for these subgraphs, i.e. @1¤i¤m

�pMiq � Di by case distinction on `. As of Requirement Cb.1, we do not need
to consider J�K.

` � � and ` � ^ By construction of simpleDfgSplit and Requirement Cb.2,
for any activities a, b P ΣpDiq, a�Di b^a�Mi b. Furthermore, for a and b in
different ΣpDiq, ΣpDj�iq, by construction of simpleDfgSplit, a ��Di

b and
a ��Mi

b. Similarly, StartpDiq � StartpMiq and EndpDiq � EndpMiq. Hence,
Di ��pMiq.

` � Ñ and ` � 	 By reasoning similar to the � case, for any activities a, b P
ΣpDiq, a�Di b � a�Mi b and for a and b in different ΣpDiq, ΣpDj�iq,
a ��Di

b and a ��Mi
b. Left to prove: StartpDiq � StartpMiq and EndpDiq �

EndpMiq. We consider the start activities (the end activities are symmetri-
cal). For i � 1, StartpMiq � StartpSq � StartpDq. For i ¡ 1, take an activity
b P StartpMiq, then as �pSq � D, there exists an activity a P Σi�1 such
that a�D b. By construction of sequenceDfgSplit and loopDfgSplit,
b P StartpDiq. Hence, StartpDiq � StartpMiq and by a symmetrical argu-
ment, EndpDiq � EndpMiq.

Hence, subtreesM1 . . .Mm exist such that�p`pM1, . . .Mmqq ��pSq and @1¤i¤m

Di P DApSiq.

DAP.6 This case never applies, i.e. if S � `pS1, . . . Snq, then findCutIMdp�pLqq applies
and fallThroughIMd is never executed.

By reasoning similar to Lemma 6.14, IMdp�pLqq P Cb, i.e. IMd is abstraction pre-
serving. Then by Theorem 6.50, IMd provides rediscoverability if �pLq � �pSq and
S P Cb.

Both IMfd and IMcd as a first step apply IMd cut detection, IMd log splitting and
IMd base cases before applying filtering and SMT-cut detection. Therefore, IMfd and
IMcd provide rediscoverability as well:

272

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.7 Tool Support

Theorem 6.52 (IMfd & IMcd rediscoverability). Take a system S P Cb and a log L
such that setpLq � LpSq and�pLq ��pSq. Then, LpIMfdp�pLqqq � LpIMcdp�pLqqq �
LpSq.

6.7 Tool Support

The algorithms described in this chapter have been implemented as plug-ins of the ProM
framework The algorithms of the IM framework are accessible via the plug-ins “Mine
Petri net with Inductive Miner” and “Mine process tree with Inductive Miner”. The
algorithms of the IMd framework are accessible via the plug-ins “Mine Petri net with
Inductive Miner - directly follows” and “Mine process tree with Inductive Miner - directly
follows”. In this section, we provide a user manual and describe its architecture.

In this chapter, two types of algorithms were introduced: the algorithms of the IM
framework, and the algorithms of the IMd framework. The difference between these
algorithms is their input: the IM framework algorithms take an event log as input, while
the IMd framework algorithms take a directly follows graph as input.

For event logs, two plug-ins are available, that produce either a Petri net (“Mine
Petri net with Inductive Miner”) or a process tree (“Mine process tree with Inductive
Miner”). A process tree is suitable for fast further processing using for instance the
plug-in “Visualise deviations on process tree”, while a Petri net is widely supported in
other plug-ins. On activation, both plug-ins show a graphical user interface in which the
settings for the miner can be set (see Figure 6.27a) for a screenshot. In this interface,
the following parameters can be set:

1. The specific mining algorithm can be chosen (’Variant’), please refer to earlier in
this chapter for a discussion on these algorithms.

2. If a filtering threshold is relevant for the mining algorithm, this threshold can be
set (’Noise threshold’).

3. The classifier selector controls what determines the event types (i.e. activities) of
events: events in XES-logs can have several data attributes [77], and this selector
determines which one of these data attributes determines the activities. One can
choose either one of the classifiers defined in the event log, or use any combination
of attributes of the event log.
By default, the first defined classifier of the event log is chosen. If the log does
not define a classifier, the concept:name extension of XES is used. If that is not
present, then an arbitrary attribute of the event log is used.

4. For more information a (clickable) link to the relevant paper is provided.
Notice that when choosing the algorithms IMlc, IMflc or IMclc, the “lifecy-

cle:transition” attribute should not be in the classifier, as these algorithms take this
attribute into account independent of the classifier.

Directly follows graphs can be obtained by using the plug-in “Convert log to directly
follows graph”, a screenshot is shown in Figure 6.27b. The parameters of this plug-in
entail a classifier (see before), and whether to take life cycle transitions into account.
Given a directly follows graph, the plug-ins “Mine process tree with Inductive Miner -
directly follows” and “Mine Petri net with Inductive Miner - directly follows” provide
access to the algorithms IMd and IMfd. Figure 6.28 shows the graphical user interface
in which the two parameters can be set, i.e. the variant (specific algorithm) and, if
applicable, the noise threshold. Figure 6.29 shows the result of applying IMf to a real-
life log of a road fine management process: as a process tree, as a process tree in the

273

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.7 Tool Support

(a) Parameter settings for the IM framework algorithms in the ProM framework.

(b) Parameter settings for the conversion from log to directly follows graph.

Figure 6.27: Parameter settings of Inductive Miner plug-ins.

274

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.8 Summary: Choosing a Miner

Figure 6.28: Parameter settings for the IMd framework algorithms in the
ProM framework.

notation used by the Inductive visual Miner (see Section 9.1) and as a Petri net. In
Chapter 8, we will evaluate this and other models.

The IM framework has been implemented as a plug-in of the ProM framework [156].
The implementation resembles the formal definition given in Chapter 4, i.e. a developer
can provide new functions to implement new algorithms easily, i.e. the base cases, cut
detection, log splitters and fall-throughs can be changed. Furthermore, there is a post-
processing step that is executed on each node before that node is returned.

For developers, the Inductive Miner framework allows for easy extension and adap-
tion: all steps taken by any algorithm can be adjusted using the MiningParameters class.
It is possible to implement this interface, but we would recommend to simply create
an instance of an existing algorithm (for instance, MiningParametersIMi), and change
the parameters as necessary. Base cases, cut detection, log splitters, fall-throughs and
post-processing steps all have their own self-explanatory interfaces.

The source code of the IM framework is available at https://svn.win.tue.nl/repos
/prom/Packages/InductiveMiner/Trunk. The implementation of IMc uses the SAT4j
SAT solver [28].

6.8 Summary: Choosing a Miner

In the previous sections, several algorithms have been introduced. In this section, we
provide an overview and guidance which algorithm to choose in which situation. Fig-
ure 6.30 shows a flow chart containing each of the discovery algorithms that have been
introduced in this chapter, and guides the choice. As described in Section 3.1, finding
the best discovery algorithm might depend on the use case and the event log, and might
be an iterative process. Therefore, the flowchart might guide this iterative process: if an
algorithm does not work, one might take a different choice somewhere and try another

275

https://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/Trunk
https://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/Trunk

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.8 Summary: Choosing a Miner

(a) As a process tree.

(b) As a process tree in the notation of the Inductive visual Miner (see Section 9.1).

(c) As a Petri net.

Figure 6.29: The result of applying IMf to a real-life log [96].

276

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.8 Summary: Choosing a Miner

Table 6.3: Guarantees provided by the algorithms introduced in this chapter.
fitness guaranteed rediscoverability proven for

IM yes (Corollary 6.11) Cb (Theorem 6.15)
IMf no Cb (Theorem 6.18)
IMc no Cb (Theorem 6.23)
IMa yes (Corollary 6.33) Ccoo (Theorem 6.37)
IMfa no Ccoo (Theorem 6.37)
IMlc yes (Corollary 6.39) Clc (Theorem 6.43)
IMflc no Clc (Theorem 6.43)
IMclc no Clc (Theorem 6.43)
IMd no Cb (Theorem 6.51)
IMfd no Cb (Theorem 6.52)
IMcd no Cb (Theorem 6.52)

algorithm 2.
Furthermore, Table 6.3 summarises the guarantees that the algorithms of this chapter

provide, i.e. whether each algorithm guarantees fitness and for which class of process trees
rediscoverability was proven in this chapter.

In this chapter, we have introduced several algorithms, focusing on and combining
several dimensions. One such dimension is to guarantee fitness (IM, IMa, IMlc), to
handle infrequent and deviating behaviour (IMf, IMfa, IMflc, IMfd), or to handle
incomplete behaviour (IMc, IMclc, IMcd). Another dimension is the type of input
data, i.e. atomic event logs (IM, IMf, IMc, IMa, IMfa), non-atomic event logs (IMlc,
IMflc, IMclc) and directly follows graphs (IMd, IMfd, IMcd). These dimensions and
the variety of algorithms introduced in this chapter illustrate the flexibility of the IM
framework.

Even though the algorithms presented in this chapter apply different strategies, the
IM framework allowed us to focus on strategies to find the most important behaviour in
an event log (i.e. the root operator and root activity partition), instead of searching for
the entire behaviour while worrying about soundness. In future work, many advanced
techniques might be designed to handle specific events, specific use cases and unstructured
behaviour. All of these techniques might benefit from the ideas of the IM framework.

For instance, a hybrid process model combine block-structured process trees and
declarative models hierarchically in a single formalism: whenever a part of the system is
structured enough, it is represented by process tree constructs, while if it is not struc-
tured enough, or the discovery technique cannot find this structure, it is represented as
e.g. a Declare model. In this Declare model, certain structured parts can be represented
by process trees again [109, 151]. Such an approach could use the fall through concepts
of the IM framework.

Future work 6.53: Develop cut detection, log splitting, base case detection and fall
through techniques further.

Furthermore, in this chapter we described the implementation of the described algo-

2Recommender systems have been proposed that suggest process discovery techniques for a
given event log, e.g. [138].

277

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.8 Summary: Choosing a Miner

IMf
Section 6.2.2

IM
Section 6.1.2

IMc
Section 6.3.2

IMfd
Section 6.6.4

IMd
Section 6.6.3

IMcd
Section 6.6.5

IMa
Section 6.4.2

IMfa
Section 6.4.3

IMflc
Section 6.5.3

IMlc
Section 6.5.2

IMclc
Section 6.5.3

log contains
deviating
behaviour

log contains
all behaviour

log contains
deviating
behaviour

log contains
all behaviour

log is too
large for other
algorithms

log contains
deviating
behaviour

model would
need Ø, τ or _

log contains
deviating
behaviour

log contains
all behaviour

start & com-
pletion events
in the log

log not
supported

both yes

no
yes

no

only start

only completion
or neither

yes

no

yes

no

yes yes

no

no

yes

no

yes

no

no

yes

Figure 6.30: Flowchart to choose an Inductive Miner.

278

6

D
is
co
ve
ry

A
lg
or
it
h
m
s

6.8 Summary: Choosing a Miner

rithms and provided a user manual. We could imagine a graphical user interface that
would allow an end user to compose a discovery algorithm by manually choosing the
four parameter functions, however it remains future work to make such an interface
understandable and user friendly.

Future work 6.54: Engineer a do-it-yourself graphical user interface to compose an
algorithm in the IM framework.

In the next chapter, we introduce our approach for conformance checking. In Chap-
ter 8, we evaluate the newly introduced discovery and conformance checking techniques.

279

280

7Conformance Checking

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

?

system

system model

event log model

enhanced modelenhanced log measures

process discovery

log-conformance
checking

model-conformance
checking

implementation

recording

enhancement enhancement

Figure 7.1: Conformance checking in a process discovery context.

In the previous chapters, a framework for process discovery algorithms was introduced,
abstractions analysed and new algorithms introduced. In this chapter, we discuss confor-
mance checking. As described in Chapter 3, conformance checking plays an important
role in evaluating new process discovery techniques. Moreover, conformance checking is
also used to check compliance of actual process executions with respect to some normative
model. In such cases, an event log is compared to a given model. In other process mining
projects, model-model comparison can be used for instance to detect concept drift, to
detect relations between processes, and to retrieve process models from large collections
(e.g. to ease implementation). Furthermore, a useful technique to evaluate process dis-
covery algorithms is to take a process model, generate an event log from it, discover a
model and compare the original and the discovered model. Using an appropriate measure
for model-model equivalence, robustness of discovery algorithms against noise, infrequent
behaviour and incompleteness can be tested, which will be done in Chapter 8. Figure 7.1
shows the context of log-model and model-model conformance checking; see Section 3.4
for more details.

In line with existing process and data mining literature, we consider two measures
for each use case (as discussed in Section 3.2): in model-model conformance checking

282

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

recall describes how much behaviour of the system is present in the discovered model
and system precision describes how much behaviour of the discovered model is present
in the system. In log-model conformance checking fitness describes how much behaviour
of an event log is allowed by the model and log precision describes how much behaviour
of the discovered model is present in the event log.

In sections 3.2.4 and 3.4.3, we discussed several formal and practical requirements for
conformance checking techniques. For instance, a desirable property of log-conformance
measures is that its measures coincide with language equivalence, i.e. fitness and log
precision are both 1 if and only if model and log are language equivalent, and, in the
model-model case, recall and system precision are both 1 if and only if both models are
language equivalent (requirements CR3 and CR2). Notice that log precision can only
be 1 if the model does not contain a loop. Furthermore, the measures should accept
all weakly sound models (Requirement CR1), work fast on real-life models (Require-
ment CR4), provide insights on summarative, model and log level (Requirement CR5),
be normalisable (Requirement CR6), and symmetric (Requirement CR7).

In this chapter, we introduce a technique, the Projected Conformance Checking
framework (PCC framework), that supports both log-model and model-model compar-
isons and performs these comparisons on language. It applies to all process model for-
malisms with executable semantics, i.e. a language, and only requires that this language
is regular (bounded). For clarity of presentation, we will show the PCC framework for
process trees and Petri nets; the latter is included as most process discovery algorithms we
discussed in Chapter 3 use it. Using the properties described in Chapter 5, we will prove
for a particular class of models that the model-model measures of the PCC framework
coincide with language equivalence.

In the remainder of this chapter, we first introduce the framework in Section 7.1, then
give an extensive example and illustrate how intermediate steps of the framework might
provide more insight into conformance in Section 7.2, and prove the language-equivalence
property in Section 7.3. We finish the chapter with a description of the implementation
(Section 7.4), conclude the chapter in Section 7.5 and describe ideas to extend the PCC
framework to handle unbounded and weakly unsound Petri nets (Section 7.6).

7.1 Projected Conformance Checking Framework

Requirement CR4 states that a conformance checking technique should preferably be
fast and able to handle large real-life event logs. In Chapter 8, we will illustrate that
existing techniques have difficulties to handle real-life event logs in reasonable time and
memory. Therefore, the PCC framework applies a divide-and-conquer strategy, shown
in Figure 7.2: for each k-subset of activities (for a user-specified value of k), it projects
the logs or models to the activities in the k-subset, and constructs a deterministic finite
automaton for the behaviour of both. For each of these deterministic finite automata,
precision and recall with respect to these k activities are computed; the final result of
either measure is the average over all subsets. Due to the use of DFAs, we assume that
the languages of all process models are regular languages, which can thus be represented
by minimal DFAs [101].

Due to the divide-and-conquer strategy, the PCC framework avoids creating a state
space of the entire model: it trades state explosion for a, in case of low k, limited number
of smaller state spaces. For k � 1, the number of smaller state spaces is linear in the
number of activities, for k � 2 quadratic and for variable k factorial (O

�
n
k

�
). A further

reduction of computation time is achieved by all k-subsets being completely independent

283

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

model 1

projected model

deterministic
finite

automaton

model 2

projected model

deterministic
finite

automaton

event log

projected log

project projectproject

construct state space

construct state space

recall/fitness

precision

Figure 7.2: The PCC framework: compare either a log or model 2 to a model
1.

284

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

a

b

b
a

(a) NFA of L139|ta,bu.

s1 s2

s3s4

a

bb

a

(b) The DFA of L139|ta,bu.

Figure 7.3

and therefore computing measures is highly parallelisable.
In the remainder of this section, we introduce each step of the PCC framework in

detail, and provide formal definitions: we start with the projection of an event log,
and transforming the projected log into a DFA (Section 7.1.1). Second, we describe
how models can be projected and transformed to DFAs in Section 7.1.2. Third, in
Section 7.1.3, we show how these DFAs are compared and measured. We finish the PCC
framework with a description how the final recall/fitness and precision are computed
(Section 7.1.4).

7.1.1 Log to Projected Log to DFA

A log can straightforwardly be projected on a set of activities A by removing all events
that are not in A. For instance,

L139 � rxa, by, xb, ay, xc, d, cy, xc, d, c, d, cys

L139|ta,bu � rxa, by, xb, ay, ε
2s

Second, the log is translated into an NFA by, for each trace in the log, extending the
NFA with an explicit path accepting the trace. For our example log L139 and the subset
ta, bu, this NFA is shown in Figure 7.3a. Third, the NFA is converted into a DFA and
the resulting DFA is reduced; for our example this is shown in Figure 7.3b. Reducing
the DFA ensures that the reduced DFA is language-unique [101].

7.1.2 Model to Projected Model to DFA

Any formalism with executable semantics can be transformed to DFA and be used by
the PCC framework, as long as the resulting models have a regular language, i.e. their
behaviour can be captured in a finite state space. In this section, we show this projection
and translation for process trees and Petri nets.

285

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

1 2 3

4 5

a

b

a

b

a

b

Figure 7.4: The DFA of M140 � �pÑpb, bq,	pa, b, τqq.

Process Trees

A process tree can be projected on a set of activities A � ta1 . . . aku by replacing every
leaf that is not in A with τ (in which ` is any process tree operator):

a|A � if a P A then a else τ
τ |A � τ

`pM1 . . .Mnq|A � `pM1|A . . .Mn|Aq

The projected process tree is likely full of τ leafs. Therefore, after projection a ma-
jor problem reduction (and speedup) can be achieved by applying structural language-
preserving reduction rules to the process tree, such as the rules described in Section 5.1.
For instance, the process treeM140 � Ñ

d�

	

cba

Ñ

bb

projected on ta, bu becomes Ñ

τ�

	

τba

Ñ

bb

,

which after reduction becomes �

	

τba

Ñ

bb

.

Translating to a DFA. In Section 2.2.5, we defined the semantics of process trees
using regular expressions, thus every process tree can straightforwardly be transformed
into an NFA. Notice that for the translation of ^, we used the shuffle (interleaving)
operator [72]. Second, a simple procedure transforms the NFA into a DFA [101], and
minimises the DFA. For instance, applying this procedure to the tree �

	

τba

b

yields the

DFA denoted in Figure 7.4.

286

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

a

a

b

d

c

(a) A Petri net M141

a

a

b

(b) M141|ta,bu

1 2 3
a

a

b

a

b

(c) DFApM141|ta,buq

Figure 7.5: A Petri net, its projection and the DFA of that projection.

Petri nets

A Petri net can be projected onto a subset of activities A, i.e. transitions, by removing
every label not in A, i.e., replacing each transition that is not in A with a silent transition.
In complex models and for smaller k values, this step introduces a lot of silent transitions
in the projection. However, many of these τ -transitions might be removable without
changing the language of the projected model. Therefore, language-preserving reduction
rules could be applied to reduce the size of the Petri net, and hence the computation
times required. For instance, a subset of the Murata rules [124] could be applied, or
(adaptions of) the rules described in [65, 147].

A Petri net can be translated to an automaton using state space exploration. The
more the net was reduced, the smaller the state space will be in this step. For instance,
Figure 7.5 shows a Petri net, its projection on ta, bu and the DFA of that projection.

A necessary condition for the translation to a DFA is that the language of the Petri
net can be described by a DFA, as described in Section 2.2.1. A definition of a language
requires the notion of start and acceptance of traces, and a finite state space, thus the
model needs to be bounded, and provide an initial marking and a set of final markings.
As sound workflow nets are bounded [2] and have clear initial and final markings, all
sound workflow nets can be handled by the PCC framework. However, for general Petri
nets, a translation to a DFA is impossible as we could use such a translation to decide
language inclusion, which is undecidable for general Petri nets [66]. Therefore, we decided
to only support Petri nets having languages that can be described by DFAs, i.e. bounded
Petri nets with initial and final markings. Nevertheless, in Section 7.6, we will describe
some heuristics to handle Petri nets that do not satisfy these conditions.

287

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

log or model (S) model (M)

Figure 7.6: A venn diagram illustrating precision: the green region denotes un-
fitting or unrecalled behaviour, the blue region denotes log- or model-imprecise
behaviour.

7.1.3 Comparing DFAs & Measuring

Given two DFAs of a model and a log/model, i.e. recall, fitness, log precision and system
precision, can be computed.

As defined in Section 3.2.2, precise behaviour is the behaviour that is present in S and
is also present in M . Thus, the measures log- and model-precision capture the amount of
precise behaviour compared to the imprecise behaviour (the blue region in Figure 7.6),
and precision is the part of the behaviour of M that is precise, i.e. “ |S X M |{|M |”.
Similarly, we defined recall and fitness as the part of the behaviour of S that is in M ,
i.e. “|S XM |{|S|”. In the remainder of this section, we show how the PCC framework
uses these concepts to compute precision and recall measures by defining these informal
formulae step by step. We first explain precision and recall, after which we explain fitness.

Log Precision, System Precision and Recall

We first define the conjunction of two DFAs (“S XM ”), after which we map the states
of the conjunction to corresponding states of S or M . Finally, we compute log-precision,
model-precision and recall by counting corresponding states (“|S XM |” and “ |S|”). In
these explanations, we use our running example consisting of the process tree M140 �

Ñ

d�

	

cba

Ñ

bb

and the Petri net M141 given in Figure 7.5.

Conjunction. The conjunction of two DFAs is a DFA that accepts any and all traces
that both input DFAs accept.

Definition 7.1 (DFA conjunction). Let D � pS, s0, F,Aq and D1 � pS1, s10, F
1, A1q be

minimal deterministic finite automata. Then, DXD1 denotes the conjunctive DFA such
that LpD XD1q � LpDq X LpD1q.

288

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

1 2 3

4 5

a

b

a

b

a

b

(a) DFApM140|ta,buq

1 2 3
a

a

b

a

b

(b) DFApM141|ta,buq

1 2 3

4

a a

b
b

a

a

(c) DFApM140|ta,buqXDFApM141|ta,buq

Figure 7.7: DFAs for the models M140 and M141 of our example, projected to
ta, bu and reduced, and their conjunction.

A conjunctive DFA D XD1 � pS2, s20, F
2, A2q could be constructed as follows:

S2 � S � S1

s20 � ps0, s
1
0q

F 2 � F � F 1

A2 : pS � S1q � Σ Ñ S � S1

such that @s,pPS,s1,p1PS1,aPΣpDqXΣpD1q ,

A2pps, s1q, aq � pp, p1q ô Aps, aq � p^A1ps1, aq � p1

Without loss of generality, we assume that the conjunctive DFA is minimal. For
instance, the conjunction could be minimised after construction using the algorithm
described in [101].

For instance, Figure 7.7 revisits the DFAs of M140 and M141 used in our previous
examples; Figure 7.7c shows their conjunctive DFA.

Mapping. The states denoted in Figure 7.7c link the conjuctive DFA to states in
M140 and M141. While constructing the conjunction, such a state mapping is easily
constructed using a little bookkeeping. However, as the conjunction is minimised, this
mapping might get lost. Therefore, we introduce a function to recompute this mapping.

Given two minimal DFAs D and D1 such that LpDq � LpD1q, the function map
returns the mapping between the states of the automata. In this function, m keeps track
of the mapped states, starting with mapping the initial states. Using the head of the
state queue q, all outgoing edges are followed in both DFAs and the resulting states (b
and b1) are mapped, until all combinations of states have been mapped. While following
the edges, we use the fact that D is a subset of D1, i.e. D1 can follow any step that D
takes.
function map(D � pS, s0, F,Aq, D

1 � pS1, s10, F
1, A1q)

mÐ tps0, s
1
0qu

q Ð tps0, s
1
0qu

while q � H do
ps, s1q Ð remove and return an element of q
for b � Aps, aq do

b1 Ð A1ps1, aq

289

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

if pb, b1q R m then
mÐ mY tpb, b1qu
q Ð q Y tpb, b1qu

end if
end for

end while
return m

end function
For instance, when applying the function map to DFApM140|ta,buqXDFApM141|ta,buq

and DFApM141|ta,buq, the following mapping is returned:

tp1, 1q, p2, 2q, p3, 3q, p4, 3qu

Outgoing edges. Let S be a log or a model, let M be a model and let A be a set
of activities. In the PCC framework, precision is measured similarly to several existing
precision metrics, such as in [19]. That is, we count the outgoing edges of all states
in the projected automaton DFApM |Aq, and compare that to the outgoing edges of
corresponding states in the conjunctive automaton DFApS|Aq XDFApM |Aq.

Given the focus of this thesis on end-to-end languages, the PCC framework takes the
final states into account. That is, besides the steps that can be taken from a state in the
automaton, we consider acceptance of a state to be an extra outgoing edge as well.

Definition 7.2 (post set). Let D � pS, s0, F,Aq be a deterministic finite automaton,
and let s P S be a state. Then, s denotes the post set of s, i.e. the steps that can be
performed from s, appended with K if s is an accepting state:

s � tpb, s1q|Aps, bq � s1u Y tK|s P F u

For instance, in our example DFApM141|ta,buq of Figure 7.7b, the post set of state 3,
i.e. 3, is tpa, 3q, pb, 3q,Ku.

Precision. Then, precision is computed by counting edges. Let S be an event log or
(a model with) a regular language (S P EY L), M be (a model with) a regular language
(M P L), and X is a subset of activities (X � ΣpSq Y ΣpMq).

Consider a state s in the automaton of the projected M . The post set of s is the
behaviour that M allows from s. The mapping obtained using the map function maps s
to zero or more states in the conjunction of projected S and M . Precision measures the
behaviour of M that is also present in S, thus we compare the post set of s with the post
sets of the mapped states. That is, we count the behaviour at s (the size of its post set)
and the behaviour of the mapped states.

If s maps to multiple states in the conjunction, we count multiple occurrences of s in
the conjunction accordingly (“count states in the mapping”). If s does not map to any
state in the conjunction, we count s anyway, as precision covers the behaviour inM (and
thus in s) that does not appear in S (“count states not in the mapping”).
function precision(M1,M2, X)

D Ð pS, s0, F,Aq Ð DFApM1|Xq XDFApM2|Xq
D1 Ð pS1, s10, F

1, A1q Ð DFApM2|Xq
mÐ mappD,D1q
c, c1 Ð 0, 0
for s1 P S1 do

for ps, s1q P m do � count states in the mapping

290

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

Table 7.1: System precision for ta, bu on M140 and M141.
state in DFApM141|ta,buq post-set size state in conjunction post-set size

1 1 1 1
2 2 2 2
3 3 3 3
3 3 4 1

c1 Ð c1 � |s1|
cÐ c� |s|

end for
if Dps,s1qPm then � count states not in the mapping

c1 Ð c1 � |s1|
end if

end for
if c1 � 0 then

return 1
else

return
c

c1
end if

end function
As the conjunctive DFA D is a subset of D1, the precision measure is a number

between 0 and 1 (both inclusive), which satisfies Requirement CR6, which favours nor-
malised measures, such that measures on different models can be compared.

For instance, Table 7.1 shows the counting on our example projected process tree
M140|ta,bu and Petri net M141|ta,bu. In this example, state 3 of DFApM141q is counted
twice, as it is mapped to both states 3 and 4 of the conjunction. Therefore, system
precision is 1�2�3�1

1�2�3�3
� 0.778.

Recall. For a model S, a model M and a set of activities X, recall is defined as the
part of behaviour in S|X that is not in M |X , i.e. the opposite of system precision:
function recall(S,M,X)

return precision(M,S,X)
end function
This satisfies the requirement that these measures should be symmetric (Require-

ment CR7). In our example projected process tree M140|ta,bu and Petri net M141|ta,bu
(see Figure 7.7), the mapping computed by map is as follows:

tp1, 1q, p2, 2q, p3, 2q, p4, 3qu

Recall for this example, as shown in Table 7.2, is 1�2�3�1
2�3�3�1�1�1

� 0.636. Notice that
state 2 of DFApM140|ta,buq has been included twice, as two states of the conjunction are
mapped to it. Furthermore, states 4 and 5 of DFApM140|ta,buq are not mapped to states
in the conjunction, but are included nevertheless in the denominator, as they represent
behaviour in M140|ta,bu.

291

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.1 Projected Conformance Checking Framework

Table 7.2: Recall for ta, bu on M140 and M141.
state in DFApM140|ta,buq post-set size state in conjunction post-set size

1 2 1 1
2 3 2 2
2 3 3 3
3 1 4 1
4 1 - 0
5 1 - 0

Fitness

The fitness measure could be measured like recall and precision, however this would have
a downside: these measures do not take the frequency of traces into account. That is, the
repeated occurrence of behaviour makes no difference in the DFAs, and a trace that occurs
once would have the same influence as a trace that occurs 1,000,000 times. Therefore,
even though we do not satisfy Requirement CR7, we apply a different strategy to measure
fitness: instead of building automata and taking their conjunction, we construct the DFA
of the projected model as described before. Next, we replay each projected trace of the
event log on this DFA, and record whether the projected trace is accepted by the DFA.
The reported fitness measure is the fraction of projected traces that is accepted. Notice
that even though the fitness is computed as a 0/1 value on the projected traces: if the
trace cannot be replayed due to even a single event, 0 is reported. However, the final
result will be fine-grained nevertheless as the average over many projected traces is taken.

Definition 7.3. Let S be an event log, let M a model with a regular language and let X
be a set of activities. Then,

fitnesspS,M,Xq �
|rt | t P S|X ^ t P LpDFApM |Xqqs|

|rt | t P S|X s|

Notice that typical fitness measures [144, 19] avoid taking full traces into account.
For instance, consider a trace of 100 events, of which the first 99 events fit the model and
the last event does not fit the model. Then, a fitness measure that considers full traces
will classify the trace as non-fitting, while intuitively most of the trace corresponds to
the model. Consequently, if the entire event log contains many such traces, a full-trace
measure will report a fitness value that is intuitively too low. The PCC framework
computes fitness over subsets of traces, thus already considers non-full-trace behaviour,
so we deemed a more detailed approach not necessary. However, other techniques such
as token-based replay [144] or alignments [19] could be used as well.

7.1.4 Measuring over All Activities

In the previous section, we defined how precision, recall and fitness between a model
or log S and a model M are measures for a chosen subset of k activities. To measure
precision, recall and fitness for entire S and M , the previous steps are repeated for each
set of activities ta1 . . . aku � Σ of size k and the results are averaged:

292

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

kΣpSq � tA | A � ΣpSq Y ΣpMq ^ |A| � ku

precisionpS,M, kq �

°
a1...akPk

ΣpSq precisionpS,M, a1 . . . akq

|kΣpSq|

with S P LY E
recallpS,M, kq � precisionpM,S, kq

with S P L

fitnesspS,M, kq �

°
A�ΣpSqYΣpMq^|A|�k fitnesspS,M, a1 . . . akq

|tA | A � ΣpSq Y ΣpMq ^ |A| � ku|

with S P E

As the intermediate measures all result in a number between 0 and 1 (inclusive),
the average over these measures also results in a normalised measurement, satisfying
Requirement CR6. Furthermore, by construction, recall/fitness is symmetric to precision
(Requirement CR7), i.e. recallpS,M, kq � precisionpM,S, kq.

Notice that we assume a closed world here, i.e. the alphabet Σ is assumed to be the
same for S and M . If an activity is missing from M , we therefore consider M to express
that the activity can never happen, by construction of the DFAs.

In this section, we introduced the PCC framework and explained its steps in detail
for process trees and Petri nets. In the next section, we give an example and show how
the intermediate results, i.e. the results for the individual k-subsets, might be used. In
Section 7.3, we prove that the PCC framework guarantees reliable detection of language
equivalence for certain classes of models.

7.2 An Example of Non-Conformance and Diag-
nostic Information

In this section, we illustrate the PCC framework using some examples, and illustrate
how the intermediate measurements can be used to gain more detailed insight in the
differences between model and log/model.

In this example, we will compare the process tree M142 � Ñ

e^

	

dc

ba

to an event log

L143 of 160 fitting traces of M142, and the non-fitting trace xa, b, c, c, ey. This non-fitness
of the trace compared to the model can be explained in two ways: either an extra c was
executed, or a d is missing. We illustrate how this case manifests in the PCC framework
(for k � 2). The PCC framework computes fitness and precision of all subsets of 2
activities (as k is 2). We illustrate one of these computations, i.e. on the subset tc, du.

• First, the log is projected to tc, du and transformed to a DFA. For instance, the
trace xa, b, c, c, ey is projected to xc, cy. The minimised DFA of the entire log is
shown in Figure 7.8a. This DFA illustrates that in the event log, the loop of c and
d was executed up to six times in the event log.

293

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

l1 l2 l3 l4 l5 l6

l7l8l9l10l11l12

c d c d c

d

cdcdc

c

(a) DFA of the projected log L143|tc,du.

m1 m2

c

d

(b) DFA of the projected tree M142|tc,du.

m1l1 m2l2 m1l3 m2l4 m1l5 m2l6

m1l7m2l8m1l9m2l10m1l11m2l12

c d c d c

d

cdcdc

(c) Their conjunction DFApM142|tc,duq XDFApL143|tc,duq.

Figure 7.8: DFAs of an example run of the PCC framework. The labels of
the states were added to keep track of corresponding states.

294

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

• Second, the process tree is projected and transformed into a DFA: projectingM142

to tc, du yields Ñ

τ^

	

dc

ττ

, which is reduced to 	

dc

using the reduction rules of

Definition 5.1. This reduced tree is transformed to the minimal DFA shown in
Figure 7.8b.

• Third, the minimal conjunction of both DFAs is computed: the result is shown in
Figure 7.8c. This conjunction DFA accepts all languages that are in both DFAs,
i.e. of the projected log and of the projected tree.

• Fourth, log precision is computed. For each combination of state in the DFA of
the tree and state in the DFA of the conjunction, we count the outgoing edges:

state in tree-DFA post-set size state in conjunction post-set size
m1 1 m1l1 1
m1 1 m1l3 1
m1 1 m1l5 1
m1 1 m1l7 1
m1 1 m1l9 1
m1 1 m1l11 1
m2 2 m2l2 2
m2 2 m2l4 2
m2 2 m2l6 2
m2 2 m2l8 2
m2 2 m2l10 2
m2 2 m2l12 1°

1 18
°

2 17

• Fifth, the log precision for this subset is the sum of outgoing edges of the states
of the conjunction (

°
2) divided by the sum of outgoing edges of the states of the

DFA of the tree (
°

1): 17{18 � 0.9444

• Sixth, fitness is computed. That is, all traces are projected onto the activities tc, du
and replayed onto the DFA of the model (Figure 7.8b). This results in 160 traces
being accepted (the fitting traces) and one trace not being accepted (the unfitting
trace xc, cy), thus leading to a fitness of 160

161
� 0.994.

This procedure is repeated for all subsets of 2 activities. Table 7.3a shows the in-
termediate measures for all these subsets. As a final step, the PCC framework returns
the average over these measures: fitness being 0.9993 and log precision being 0.9481.
This matches our intuition, as 160 traces were fitting and 1 was not fitting, so we expect
a fitness value being close to but not equal to 1. Furthermore, log precision matches
intuition as well, as even though the model has an unbounded number of traces and the
event log is bounded, the loop in the model was executed up to six times in the log1,
which intuitively leads to a log precision close to but not equal to 1, which is reflected
by the measured log precision.

The intermediate computations provide insights into where the model and the event
log deviate. For instance, the measurements show that for fitness, the only activity subset

1Log precision approaches one as the number of times the loop was taken in the log increases.

295

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

Table 7.3: Intermediate results of the PCC framework on M142 and L143.
(a) As computed.

fitness log precision
a b c d e a b c d e

a
b 1.000 1.000
c 1.000 1.000 0.926 0.926
d 1.000 1.000 0.994 0.917 0.917 0.944
e 1.000 1.000 1.000 1.000 1.000 1.000 0.929 0.923

(b) Averaged by activity.

fitness log precision
a 1.000 0.961
b 1.000 0.961
c 0.998 0.931
d 0.998 0.925
e 1.000 0.963

(c) Averaged.

fitness log precision
0.999 0.948

296

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

1 2
e

(a) DFApM144|teuq

1

(b) DFApM145|teuq

1

(c) DFApM144|teuqXDFApM145|teuq

Figure 7.9: DFAs computed by the PCC framework for k � 1 and teu.

for which perfect fitness was not measured, was the pair tc, du, which corresponds to the
non-fitting trace we inserted, which has either an extra c or a missing d.

In our example, the subset tc, du stands out because it is the only one subset without
a perfect fitness score. However, for real-life event logs and use cases, several pairs might
have lower fitness scores, which might make detection of problematic activities more
difficult. For instance, for the precision pairs it might be more challenging to spot the
problematic parts of the model. To ease detection of problematic subsets of activities,
consider the intermediate computations grouped by activity, i.e. for each activity, the
average fitness/precision is computed over all k-subsets in which that activity is involved
(see Table 7.3b).

In this table, the problematic activities in terms of fitness are clearly c and d, and it
is also easier to see that c and d also have the lowest precision scores, which in this case
indicates that they are involved in loop behaviour. In Section 7.4, we will describe the
implemented visualisation of these results.

Example with edge cases and different k. As a final example, we compare two
process trees using several k’s: M144 � �

Ñ

edc

^

ba

and M145 � �

_

dc

^

fba

. Table 7.4 shows

the results of applying the PCC framework to these trees, using every k from 1 to 6.
We illustrate edge cases using a few intermediate computations.
First, we consider k � 1. The teu represents an edge case as e does not appear

in M145. The corresponding projected trees are M144|teu � �pτ, eq and M145|teu �
τ . Figures 7.9a and 7.9b show their DFAs and Figure 7.9c shows their conjunction.
For recallpM144,M145, teuq, there are in total 3 outgoing edges in DFApM144|teuq and 1
outgoing edge in the conjunction, thus the mentioned recall is 0.333. With this recall
measure, the PCC framework captures that in M144, e can be executed but is not
mandatory, which matches M145, in which e is not present.

Reversely, when computing precisionpM144,M145, teuq, the PCC framework consid-
ers DFApM145|teuq and the conjunction. As these DFAs are equivalent, precision is 1.

Second, we consider k � 6. As there are 6 activities in the two trees, projecting
does not remove any behaviour and directly compares the DFAs shown in figures 7.10a
and 7.10b. By not projecting, the PCC framework compares the two trees on their traces
and as they have no traces in common, the conjunction 7.10c is empty. Therefore, recall
and system precision are 0.

Finally, this example illustrates the influence of k: for k � 1, the PCC framework
considers all activities in isolation and is unable to detect many behavioural differences
between the process trees: only if an activity is absent, the measure drops below 1. In

297

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.2 An Example of Non-Conformance and Diagnostic Information

Table 7.4: Intermediate results for M144 and M145.
(a) k � 1. Average recall is 0.889, average system precision is 0.889.

recall system recall system recall system
precision precision precision

tau 1.000 1.000 tbu 1.000 1.000 tcu 1.000 1.000
tdu 1.000 1.000 teu 0.333 1.000 tfu 1.000 0.333

(b) k � 2. Average recall is 0.722, average system precision is 0.578.

recall system recall system recall system
precision precision precision

ta, bu 1.000 1.000 ta, cu 1.000 0.750 ta, du 1.000 0.750
ta, eu 0.667 0.667 ta, fu 0.333 0.167 tb, cu 1.000 0.750
tb, du 1.000 0.750 tb, eu 0.667 0.667 tb, fu 0.333 0.167
tc, du 1.000 0.500 tc, eu 0.250 0.333 tc, fu 1.000 0.750
td, eu 0.250 0.333 td, fu 1.000 0.750 te, fu 0.333 0.333

(c) k � 3. Average recall is 0.556, average system precision is 0.388.

recall system recall system recall system
precision precision precision

ta, b, cu 1.000 0.857 ta, b, du 1.000 0.857 ta, b, eu 0.833 0.833
ta, b, fu 0.167 0.071 ta, c, du 1.000 0.500 ta, c, eu 0.500 0.500
ta, c, fu 0.667 0.286 ta, d, eu 0.500 0.500 ta, d, fu 0.667 0.286
ta, e, fu 0.000 0.000 tb, c, du 1.000 0.500 tb, c, eu 0.500 0.500
tb, c, fu 0.667 0.286 tb, d, eu 0.500 0.500 tb, d, fu 0.667 0.286
tb, e, fu 0.000 0.000 tc, d, eu 0.200 0.125 tc, d, fu 0.750 0.375
tc, e, fu 0.250 0.250 td, e, fu 0.250 0.250

(d) k � 4. Average recall is 0.360, average system precision is 0.225.

recall system recall system recall system
precision precision precision

ta, b, c, du 1.000 0.636 ta, b, c, eu 0.714 0.714 ta, b, c, fu 0.333 0.133
ta, b, d, eu 0.714 0.714 ta, b, d, fu 0.333 0.133 ta, b, e, fu 0.000 0.000
ta, c, d, eu 0.400 0.250 ta, c, d, fu 0.750 0.273 ta, c, e, fu 0.000 0.000
ta, d, e, fu 0.000 0.000 tb, c, d, eu 0.400 0.250 tb, c, d, fu 0.750 0.273
tb, c, e, fu 0.000 0.000 tb, d, e, fu 0.000 0.000 tc, d, e, fu 0.000 0.000
(e) k � 5. Average recall is 0.176, average system precision is 0.102.

recall system recall system recall system
precision precision precision

ta, b, c, d, eu 0.625 0.455 ta, b, c, d, fu 0.429 0.158 ta, b, c, e, fu 0.000 0.000
ta, b, d, e, fu 0.000 0.000 ta, c, d, e, fu 0.000 0.000 tb, c, d, e, fu 0.000 0.000

(f) k � 6. Average recall is 0, average system precision is 0.

recall system
precision

ta, b, c, d, e, fu 0.000 0.000

298

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.3 Guarantees

1 2 3 4

5

6

c d e

a

b

b

b

(a) DFApM144|ta,b,c,d,e,fuq

1 2 3 4

5

6

7 8

9 10

a

b

f

b
f

f

a

f

b

a
b

a

c

d

d

c

(b) DFApM145|ta,b,c,d,e,fuq

1

(c) DFApM144|ta,b,c,d,e,fuq XDFApM145|ta,b,c,d,e,fuq

Figure 7.10: DFAs computed by the PCC framework for k � 6 and
ta, b, c, d, e, fu.

other examples, the measures might still be lower, e.g. if an activity is part of a loop in one
model and not part of a loop in the system, then system precision will be below 1 as well.
With the increase of k, PCC framework takes more and more inter-activity relations into
account. Once k reaches its maximum, i.e. the size of the combined alphabets, the PCC
framework requires that traces of the two models be equivalent: if there are no shared
traces, recall and system precision will be 0.

7.3 Guarantees

So far, we introduced the PCC framework and showed that it accepts all bounded models,
but not all weakly sound models (Requirement CR1), provides insights the on summar-
ative and model but not on the log level (Requirement CR5), is normalisable (Require-
ment CR6), and symmetric (Requirement CR7). In this section, we prove that the PCC
framework is able to reliably detect language equivalence between process trees of the
class Ci, i.e. the class of process trees that may contain interleaved operators but not
τ -leaves as defined in Section 5.4, using that for any two process trees of Ci with a dif-
ferent language, the directly follows relation is different, and this difference is visible in
projections if k ¥ 2. This theorem will be useful in our evaluation in Chapter 8, where
from recall and precision being 1 and the model being in Ci, we can conclude that the
system was rediscovered. In these evaluations, we will also discuss the relation to other
measuring techniques.

299

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.4 Tool Support

Theorem 7.4 (language decisive). Let S andM be process trees of Ci. Then, recallpS,M, 2q �
1^ precisionpS,M, 2q � 1 ô LpSq � LpMq.

Proof. As the PCC framework considers no structural properties of process trees but
only languages, assume without loss of generality that S and M are in normal form
according to Definition 5.1.

We prove the two cases ð and ñ separately.

ð Assume LpSq � LpMq. By Lemma 5.25, S � M . By construction of PCC frame-
work, @a,bPΣpSq recallpS,M, ta, buq � precisionpS,M, ta, buq � 1. Hence, recall
and precision are 1.

ñ Assume recallpS,M, 2q � precisionpS,M, 2q � 1. Then, as any difference in ac-
tivities would decrease recall or precision below 1, ΣpSq � ΣpMq. Take a set
of activities ta, bu with ta, bu � ΣpMq and a � b. As recallpS,M, ta, buq =
precisionpS,M, ta, buq � 1, it holds that DFApS|a,bq � DFApM |a,bq and thus by
definition LpS|a,bq � LpM |a,bq. Then, by lemmas 5.23 and 5.24, the lowest com-
mon parents of a and b in S and M are equivalent, and the relative order of a and
b matches (in case of 	 or Ñ). This holds for all sets ta, bu.
Towards contradiction, assume that S � M . Without loss of generality, assume
that S and M are reduced (Definition 5.1). Then, there must be a topmost dif-
ferent node S1 � `pS11, . . . S1nq and M 1 � bpM 1

1, . . .M
1
mq such that ` � b and/or

D1¤i¤n,m ΣpS1iq � ΣpM 1
iq, although S and M are reduced and we know that for all

pairs of activities, the lowest common parent is equivalent. By reasoning similar
to lemmas 5.11 and 5.12, such a topmost different node cannot exist, and hence
S �M and therefore, LpSq � LpMq.

Hence, recallpS,M, 2q � 1^ precisionpS,M, 2q � 1 ô LpSq � LpMq.

Unfortunately, this theorem does not hold for general process trees. For instance, take
S � �pa, b, c, τq and M � �pa, b, cq. For k � 2, the PCC framework will consider the
subtrees �pa, b, τq, �pa, c, τq and �pb, c, τq for both S and M , i.e. a τ will be introduced
by projection, which hides the “real” tau from the measures. Hence, the PCC framework
will not spot any difference: recall � 1 and precision � 1, even though the languages
of S and M are clearly different. Only for k � 3, the PCC framework will detect the
difference. A solution could be to treat projection-τ leafs and model-τ leafs separate to
distinguish these cases.

7.4 Tool Support

As described in the previous sections, the PCC framework compares models and logs to
models, in order to compute fitness, log precision, recall and system precision. The PCC
framework has been implemented in the ProM framework and is accessible using several
plug-ins. In this section, we describe these plug-ins. To use the PCC framework, choose
one of the plug-ins “Compute projected recall and precision” or “Compute projected recall
and fitness”. Both of these plug-ins come in several variants, each for particular inputs:
event logs, accepting Petri nets and process trees are supported. Figure 7.11 shows the
settings available after selecting the plug-in. The first setting is the size of the subsets
k (“size of projection”). Furthermore, a classifier can be chosen, which determines the
activity corresponding to an event, there are options to not compute fitness or precision
to save time, and there is a link to more information.

Once computations are finished, the results can be visualised in two ways:

300

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.4 Tool Support

Figure 7.11: The settings of the PCC framework plug-in in the ProM frame-
work.

301

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.4 Tool Support

(a) In full.

(b) Detail (in its gui).

Figure 7.12: Results of the PCC framework projected on a process model.

302

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.5 Conclusion

• The results can be projected on the system, as shown in Figure 7.12. The model
is visually laid out, and in each activity, the fitness/recall and precision measures
are shown. To ease detection of deviating activities, both fitness/recall and preci-
sion influence the colouring of the activities: the red-most activities are the most
deviating. Notice that this model projection shows only the first model, i.e. the
event log and second model are not shown.
The projected model can be exported as an image, its layout can be influenced and
dragging/scrolling the mouse influences its position. For more information, move
the mouse pointer to the question mark in the bottom right corner, and a popup
with information will appear.

• The results can be visualised in a table, as shown in figures 7.13 and 7.14. These
figures were obtained from applying the PCC framework to the BP11 log (see
Section 8.3.1, [55]) and a model discovered by IMf (see Section 6.2). In this visu-
alisation, first the average fitness/recall and precision values are shown as numbers,
which shows that the model represents almost all behaviour of the event log, i.e.
has a high fitness, however the rather low precision indicates that the model con-
tains more behaviour. Second, fitness/recall is given, averaged for each activity.
By the colouring, the more red an activity/pair is, the worse the measures fit-
ness/recall/precision, which makes it easy to spot activities with a high or low
fitness. In Figure 7.14, A_ACCEPTED had a particular low fitness. Third, fit-
ness/recall is given for each pair of activities, for more insight into the precise
measures. In our example figure, the pair of A_ACCEPTED and O_DECLINED
was particulary problematic. Finally, precision is shown in a similar way.

Implementation The implementation uses adapted automata from [120], and is mul-
tithreaded. Developers that wish to call the PCC framework programmatically can freely
choose k, using methods in one of the following classes:

• CompareLog2PetriNetPlugin,

• CompareLog2ProcessTreePlugin,

• ComparePetriNet2PetriNetPlugin or

• CompareProcessTree2ProcessTreePlugin

The code is available at https://svn.win.tue.nl/repos/prom/Packages/ProjectedRe
callAndPrecision/Trunk; for this thesis, revision svn revision 34642 was used. Further-
more, there is an option to not compute system precision or recall, as by default both
measures are computed (similar for log precision and fitness). Choosing this option if
one of the measures is not necessary for the use case at hand will save roughly half of
the computation time.

Other formalisms can be supported, for which large parts of the framework can be
reused. To support a new formalism, one should provide the framework with two pieces of
information: the activities used in a model, and how to project and automatise the model,
by extending either abstract class ModelModelFramework or LogModelFramework.

7.5 Conclusion

In this chapter, we introduced the PCC framework, a conformance checking technique
that supports both log-conformance and model-conformance checking, both for arbitrary

303

https://svn.win.tue.nl/repos/prom/Packages/ProjectedRecallAndPrecision/Trunk
https://svn.win.tue.nl/repos/prom/Packages/ProjectedRecallAndPrecision/Trunk

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.5 Conclusion

Figure 7.13: Tabular results of the PCC framework (1).

304

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.5 Conclusion

Figure 7.14: Tabular results of the PCC framework (2).

305

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.6 Ideas to Handle Unbounded & Weakly Unsound Petri Nets

process model formalisms. Notice that the PCC framework could support log-log com-
parisons with minimal changes, however we did not implement this. It considers all
subsets of activities of a user-choosable size k, and constructs DFAs from the behaviour
of the model and the log/model projected on the activities. Then, the conjunction of
these DFAs is used to compute recall and precision measures, by considering outgoing
edges of states. Furthermore, fitness is computed by replaying the projected traces of the
log on the projected model, and returning the fraction of traces that is accepted. These
measures on k-subsets provide detailed insight into the location of deviations in the
model, when averaged over activities. Furthermore, taking the average over all k-subsets
provides an aggregated recall or precision measure.

We described how process trees and Petri nets fit in the framework, and that the PCC
framework has been implemented in the ProM framework. Furthermore, we showed that
if two process trees of Ci are compared, choosing k � 2 will guarantee that the PCC
framework correctly identifies language equivalence of the two trees, i.e. the two trees
have the same language if and only if both recall and model-precision are 1. However, we
did not prove tightness of the class Ci, i.e. there might be more process trees for which
the PCC framework provides this guarantee. Further research should reveal this class of
models.

Future work 7.5: Investigate properties of the PCC framework on models outside of
Ci.

We finish this chapter with some ideas to extend the PCC framework to handle
unbounded and weakly unsound Petri nets.

7.6 Ideas to Handle Unbounded & Weakly Un-
sound Petri Nets

As expressed by Requirement CR1, a conformance checking technique ideally deals with
as many unsound Petri nets as possible. However, if the PCC framework could handle
all Petri nets, it would be able to decide language inclusion, which is undecidable for
unbounded models. Nevertheless, in this section we introduce several heuristics, while
making sure that the consistency of the framework is preserved when the heuristics are
applied to a sound workflow net, i.e. exact diagnostics should be returned. Notice that
these heuristics have not been included in the PCC framework.

Making a Petri net Bounded. To make the Petri net bounded, each place is given
an artificial capacity. During state-space exploration, a transition is only enabled if firing
it would not violate the bound of any place [15]. As sound workflow nets are bounded,
this heuristic will not influence their semantics. However, if the capacity is chosen too
low, not enough behaviour might be captured for a comparison, and language-preserving
reduction rules might influence the result. This limitation is inherent to using DFAs
and solving it would require other classes of models, for which the problem might be
undecidable.

This heuristic presumably influences the conformance checking results, i.e. it might
have influence on fitness or precision values. Therefore, if this heuristic would be used,
its influence on these results should be studied further.

306

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.6 Ideas to Handle Unbounded & Weakly Unsound Petri Nets

Heuristic for an Initial Marking. Some algorithms, such as the Heuristics Miner,
provide an initial marking. If no initial marking is present, we construct an initial marking
by putting a token into each place without incoming transitions. In sound workflow nets,
an initial marking is provided by the source place, which corresponds to our heuristic.

Heuristic for Final Markings. Only few discovery algorithms are capable of pro-
ducing Petri nets with a distinguished final marking. Some algorithms, such as ILP [173]
and α [4, p.130], might benefit from the addition of artificial start and end events before
discovery, which aids these algorithms in finding initial and final markings. In case no
final marking is given, it can be obtained as follows:

1. Manually inspect the model and define a final marking. This is usually infeasible
for complex models;

2. An approach taken in [19] is to consider each reachable marking to be a final
marking. This heuristic increases the size of the language, as each prefix of a trace
becomes a trace itself. In the PCC framework, this heuristic should be applied to
both sides of the comparison, i.e. a model-with-heuristic should not be compared to
a model-without-heuristic, as this would result in an overestimation of recall and an
underestimation of precision (the model-with-heuristic obviously has a much larger
language than the model-without-heuristic). Moreover, having each marking as a
final marking is not what is meant by current discovery algorithms: corresponding
to traces in the event log, algorithms aim to discover a model of a process with a
clear start and a clear end. Nevertheless, in use cases in which such behaviour is
intended [155], this strategy might be chosen (but must be chosen for both models
to ensure comparability).

3. Another approach is to consider each reachable conditional livelock to be a final
marking. A conditional livelock is a markingM in which for each enabled transition
t, one of the following conditions holds:

• t is not connected to any place, or

• firing t leads to a marking M 1 that is equal to or strictly larger than M .

Figure 7.15 shows an example of a Petri net in a conditional livelock: b is enabled
but firing it would leave the net in a strictly larger marking (as b produces a token
without consuming one), d is not connected to any place, and firing e would yield
an equal marking. In sound workflow nets, the only conditional livelock is the one
with a token in the sink place, which corresponds to this heuristic. A downside
of this strategy is that nets without conditional livelocks (e.g. with livelocks) are
considered to have the empty language.
In case the Petri net is discovered by the ILP miner [173] with the empty-after-
completion option enabled, the model can replay all traces of the event log and
ends in an empty marking, which is a conditional livelock.

We prefer the second strategy as it keeps the framework consistent. Ideally, the discovery
algorithm should provide an initial marking and final markings, and preferably a bounded
net (as unbounded nets can inherently not be captured by DFAs).

In the next chapter, we will evaluate the process discovery and conformance checking
techniques introduced in this thesis.

307

7

C
on

fo
rm

an
ce

C
h
ec
ki
n
g

7.6 Ideas to Handle Unbounded & Weakly Unsound Petri Nets

a

b c d e

Figure 7.15: An unbounded Petri net over transitions a, b, c, d and e in a
conditional livelock.

308

8Evaluation

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

8

E
va
lu
at
io
n

In the previous chapters, we identified requirements for process discovery techniques and
conformance checking techniques (Chapter 3), introduced process discovery techniques
(Chapter 6) and introduced conformance checking techniques (Chapter 7).

The introduced process discovery algorithms guarantee several properties such as
soundness, fitness and rediscoverability (requirements DR1, DR4 and DR2). In this
chapter, we experimentally evaluate the other quality criteria described in Chapter 3:
we evaluate scalability, log-conformance measures, soundness and handling of infrequent,
incomplete and deviating behaviour.

We introduced conformance checking techniques that handle all bounded weakly
sound models, guarantee returned measures being perfect bi-implies language equiva-
lence, provide insight at two levels (summarative numbers and projections on models),
and return normalised values that are symmetric and reflexive (requirements CR2, CR1
CR3, CR5, CR6 and CR7. In this chapter, we compare the PCC framework with
existing approaches. Next to evaluating the quality of models, we focus on speed. (Re-
quirement CR4).

In this chapter, we first evaluate process discovery techniques, after which we evaluate
conformance checking techniques. We perform these evaluations to answer the following
research questions:

RQ.1 What is the largest event log (number of events/traces or number of activities)
that process discovery algorithms can handle?
This research question relates to Requirement DR5.

RQ.2 How do algorithms balance log-quality criteria? Can the user influence the balance
between these criteria? How do the new algorithms of the IM framework and the
IMd framework compare to existing discovery techniques?
These research questions relate to Requirement DR4. In the execution of the
experiment to answer this research question, we will also check for soundness (Re-
quirement CR1).

RQ.3 Can discovery algorithms rediscover the system if the event log contains deviat-
ing or infrequent behaviour? What is the influence of increasing levels of such
behaviour on the quality of models discovered by discovery algorithms?
These research questions relate to Requirement DR3.

RQ.4 How is non-atomic behaviour in event logs handled by discovery algorithms? Do
the newly introduced algorithms IMlc and IMflc improve over existing tech-
niques?
These research questions relate to requirements DR4 and CR1 for non-atomic event
logs and process models.

RQ.5 How can the PCC framework be used for detailed analyses of the performance
of discovery algorithms in the presence of infrequent, deviating and incomplete
behaviour? Can the PCC framework handle larger event logs and models than
existing conformance checking techniques? How do the reported measures of the
PCC framework compare to the measures returned by other techniques, and can
they be used interchangeably?
These research questions relate to Requirement CR4.

We start with a discussion of the selection of discovery algorithms that we will eval-
uate (Section 8.1). The scalability of process discovery techniques (RQ.1) is evaluated

310

8
E
va
lu
at
io
n

8.1 Evaluated Process Discovery Algorithms

in Section 8.2, log-quality dimensions (RQ.2) in Section 8.3, the rediscoverability chal-
lenges (RQ.3) in Section 8.4. We evaluate conformance checking techniques (RQ.5) in
Section 8.5, non-atomic behaviour (RQ.4) in Section 8.6, and Section 8.7 concludes the
chapter.

8.1 Evaluated Process Discovery Algorithms

Table 8.1 shows the process discovery algorithms used in this evaluation. Unless stated
otherwise, all algorithms were applied with their default settings. We intended to include
all soundness guaranteeing discovery algorithms known to us (Evolutionary Tree Miner
(ETM), Constructs Competition Miner (CCM), Maximal Pattern Miner (MPM) and the
algorithms described in this thesis). However, there are no public implementations of
CCM and MPM available. Nevertheless, the authors of CCM kindly performed some
experiments for us.

As non-soundness guaranteeing algorithms, we included a broad selection of other
algorithms: the fitness and weak-soundness guaranteeing (Integer Linear Programming
(ILP), the well-known α-algorithm (α), the filtering Flexible Heuristic Miner (HM), and
the recent Fodina (FO) and Structured Miner (SM). Finally, we included the Tsinghua-α
algorithm (Tα) as it handles non-atomic behaviour. As commercial tools, we included
Fluxicon Disco (FD) and Celonis Process Mining (CPM), both of which were kindly
provided for this experiment by Fluxicon and Celonis.

As baselines, we included the Flower Miner (FM) and the Trace Model Miner (TM):
a flower miner returns a model that allows for any behaviour, while the trace model
miner returns a model that enumerates all traces. For instance, consider the event log
txa, b, cy, xb, c, ayu. Then, the flower and trace models would be respectively 	

cbaτ

and

�

Ñ

acb

Ñ

cba

.

In all experiments, standalone versions of the implementations were used wherever
possible, e.g. all graphical user interfaces were circumvented. Furthermore, all algorithms
were used with their default parameter settings.

As a log importer, the OpenLogFileDiskImplWithoutCachePlugin-importer was used,
as it caches the event log on disk (despite its name) and therefore has a small RAM
overhead, while still enabling random access [110]. To create a directly-follows graph
from a log and for FM and TM, the log was not imported or stored in memory at all,
but incrementally parsed instead using a custom straightforward script.

8.2 Scalability of Discovery Algorithms

In Section 6.6, we introduced the IMd framework and several algorithms that are aimed
at handling large event logs, i.e. logs with hundreds of activities and millions of events. In
this section, we aim to answer RQ.1, i.e. we test existing and newly introduced algorithms
on scalability. Event logs can be large on two dimensions: the number of activities and the
number of events. In [94], we identified relevant gradations for these dimensions: for the

311

8

E
va
lu
at
io
n

8.2 Scalability of Discovery Algorithms

Table 8.1: Discovery algorithms used in the evaluation.
ETM Evolutionary Tree Miner [39] in ProM 6.6, random generator seed fixed to

1, standard termination condition with 30 minutes timeout.
CCM Constructs Competition Miner [134]. Implementation not available: authors

kindly performed some tests for us.
SM Structured Miner [24]. Private version provided by authors.
IM Inductive Miner in ProM 6.6 svn revision 34642.
IMf Inductive Miner - infrequent in ProM 6.6 svn revision 34642, noise threshold

0.2.
IMa Inductive Miner - all operators in ProM 6.6 svn revision 34642.
IMfa Inductive Miner - infrequent - all operators in ProM 6.6 svn revision 34642,

noise threshold 0.2.
IMc Inductive Miner - incompleteness in ProM 6.6 svn revision 34642.
IMd Inductive Miner - directly follows in ProM 6.6 svn revision 34642.
IMfd Inductive Miner - infrequent - directly follows in ProM 6.6 svn revision 34642,

noise threshold 0.2.
IMcd Inductive Miner - incompleteness - directly follows in ProM 6.6 svn revision

34642.
IMlc Inductive Miner - life cycle in ProM 6.6 svn revision 34642.
IMflc Inductive Miner - infrequent - life cycle in ProM 6.6 svn revision 34642,

noise threshold 0.2.
FM flower model in ProM 6.6 svn revision 34642.
TM trace model in ProM 6.6 svn revision 34642.
ILP Integer Linear Programming Miner [173] in ProM 6.6, empty-after-

completion option set.
HM Flexible Heuristic Miner [167] in ProM 6.6.
FO Fodina [33] 20160706.
α [4] in ProM 6.6.
Tα Tsinghua-α [169] in ProM 5.2.
FD Fluxicon Disco [79] 1.9.7. Fluxicon provided us an unlimited version for the

purpose of these experiments.
CPM Celonis Process Mining [47] 4.0.1. Celonis provided us a stand-alone version.

312

8
E
va
lu
at
io
n

8.2 Scalability of Discovery Algorithms

number of activities, we identified complex logs, i.e. containing hundreds of activities,
and more complex logs, i.e. containing thousands of activities. For the number of
events we identified medium logs, i.e. containing tens of thousands of events, large logs,
i.e. containing millions of events, and larger logs, i.e. containing billions of events.

In principle, complexity (number of activities) and size (number of events) are in-
dependent: event logs can be not complex and still larger, and can also be more
complex and not medium. However, logs of higher complexity will need to contain
more events to reach several notions of completeness. For instance, in [94] we showed
that a system with 104 activities might need 105 traces to see all activities at least once,
and many more to be directly-follows complete.

Such numbers of events and activities might seem large for a complaint-handling
process in an airline, however processes of much larger complexity exist. For instance,
even simple software tools contain hundreds or thousands of different methods. To study
or reverse engineer such software, studies [86] have recorded method calls in event logs
(at various levels of granularity), and process mining and software mining techniques
have been used on small examples to perform the analyses [130, 86]. medium event logs
can for instance be found in hospitals: BP11 was recorded in the emergency department
of a Dutch hospital and contains over 600 activities [55]. Even though this log contains
just 600 activities and 150,291 events, current discovery techniques have difficulties with
this log (as we will show in this section). Other areas in which larger logs appear
are click-stream data from web-sites, such as the web-site of a dot-com start-up, which
produced an event log containing 3300 activities [84]. Even larger logs could be extracted
from large machines, such as the Large Hadron Collider, in which over 25,000 distributed
communicating components form just a part of the control systems [83], resulting in
complicated behaviour that could be analysed using scalable process mining techniques.

Therefore, this experiment illustrates the feasibility of applying discovery algorithms
to more complex (with up to 104 activities) and larger (with up to 1010 events) event
logs, given limited computing resources (e.g. a limited amount of RAM).

8.2.1 Set-up

All discovery algorithms (Section 8.1) were tested on the same set of randomly generated
logs and systems, which are iteratively increased in size and complexity (i.e. number of
events and number of activities), until an algorithm is not able to return process models
anymore.

For each algorithm, we first generate 10 random systems (process trees P Cb) of a
activities, starting a at 2. From these systems, we generate 10 event logs for each process
tree, each containing t traces, starting t at 4. Second, we apply the discovery algorithm
to these 10 logs with 2GB of RAM available for each run, and record how many of these
applications are successful. If the discovery algorithm does not crash, does not run out
of memory and returns a model within 5 hours, then we call the application successful.
If successful on at least one event log, we multiply a by 2 and t by 4, and repeat the
procedure (we refer to one such repetition as a round).

The number of successful applications per round, which is a number between 0 and
10, is recorded. Table 8.2 shows statistics describing the rounds, systems and event logs.
For instance, the following tree illustrates a model used in round 5:

313

8

E
va
lu
at
io
n

8.2 Scalability of Discovery Algorithms

Table 8.2: Experiment rounds to test scalability.
round activities traces events

µ σ
1 2 4 7 2
2 4 16 60 30
3 8 64 502 277
4 16 256 3,283 1,342
5 32 1,024 26,316 18,852
6 64 4,096 154,509 66,567
7 128 16,384 1,387,570 609,401
8 256 65,536 10,456,186 4,890,888
9 512 262,144 69,510,326 43,495,480
10 1024 1,048,576 472,610,224 278,769,395

^

�

a15a14

a13Ñ

a12^

a11a10

a9a8

a7a6a5�

a4a3

a2a1a0

.
Notice that the generated event logs were not necessarily directly follows complete

with respect to the randomly generated systems, however we verified that all were activity
complete. For the purpose of this experiment, i.e. evaluating scalability and not model
quality, stronger completeness notions than activity completeness were not necessary.

8.2.2 Results
Figure 8.1 shows the results. These have been split up in two graphs for readability
reasons, i.e. each graph shows the results for 10-11 miners.

8.2.3 Discussion
Most algorithms handle event logs of up to 32 activities (not even complex) and on
average 26,000 events (round 5, medium) without problems. We would argue that many
real-life processes seem to be well-handled by these algorithms (see Section 3.1). Excep-
tions in this experiment are SM, for which we used a preliminary version, ETM, and ILP.
The authors of SM kindly provided us several new versions while we were conducting the
experiments. For ETM, we believe this is due to the repeated application of alignments
to measure fitness, log-precision and generalisation. For ILP, we believe this is due to it
constructing large ILP problems with constraints for every prefix of every trace in the
event log.

Small event logs thus seem to pose little challenge for discovery algorithms. However,
as discussed earlier in this section, much larger event logs exist in practise. A little

314

8
E
va
lu
at
io
n

8.2 Scalability of Discovery Algorithms

2 4 6 8 10
0

2

4

6

8

10

nu
m
be
r
of

lo
gs

ha
nd

le
d

scalability

α
Tα
HM

IMcd
FO

IMlc, IMflc
ILP
ETM
FD

2 4 6 8 10
0

2

4

6

8

10

rounds, a � 2round, t � 4round

nu
m
be
r
of

lo
gs

ha
nd

le
d

IM
IMa
IMf
IMfa
SM

IMd, IMfd, FM
IMc
CPM
TM

Figure 8.1: Scalability results. Refer to Table 8.1 for information on the
abbreviated algorithms.

315

8

E
va
lu
at
io
n

8.2 Scalability of Discovery Algorithms

bit larger event logs, i.e. with 64 activities, 4096 traces and on average 154,000 events
(round 6, medium and not even complex) were not handled by α, HM, IMcd and
IMc anymore: all these algorithms have an exponential run time in the number of
activities. The single-pass algorithms HM, α and CCM (not tested) have been shown to
be applicable in map-reduce [68] or streaming [43, 135] settings, thus one would expect
that the used implementations would be scalable as well.

All remaining algorithms could handle the event logs of round 7, however in round 8
(256 activities, complex), the remaining algorithms of the IM framework start running
out of memory: the main cause being the many copies of the event logs these algorithms
have to keep in memory. Furthermore, the exponential Tα can handle only 1 of the 10
logs in round 7, and CPM still 9. The only algorithm remaining is Fodina (FO), which
handles all 10 event logs in round 8, only 1 log in round 9, and no logs in round 10.

The trace model TM shows the challenge that algorithms face keeping the entire log
in main memory: our implementation of TM keeps one integer per event and one integer
per trace. Nevertheless, in round 10, 3 of the 10 event logs could not be handled by TM.
Remarkably, FD could still handle 3 event logs in round 10, and could even visualise the
results (partially), as FD caches the entire event log to disk.

The only algorithms that managed to handle all event logs in this experiment (more
complex and larger) were the algorithms of the IMd framework, i.e. IMd and IMfd,
as these do not keep the event log in main memory at all, but traverse it once to construct
a directly follows graph. If we would have continued the experiment, these algorithms
would fail at some point as well, however only when the directly follows graphs do not
fit in main memory anymore. The other remaining algorithm is the baseline FM, that
does not keep an event log in memory at all.

In answer of RQ.1, we conclude that all algorithms except SM are able to handle
small event logs, i.e. logs of tens of activities and thousands of events (neither complex
nor medium), and most algorithms of the IM framework handle all logs up to a hundred
activities and a million events (comples and large). However, only the algorithms of
the IMd framework and the baseline flower model FM are able to handle a thousand
activities and hundreds of millions of events.

Notice that we evaluated the implementations of the techniques, rather than the
techniques themselves, and these implementations might be optimised in the future.
Nevertheless, this experiment illustrates the boundaries and potential of the techniques: if
event logs get too large to keep in main memory, single-pass algorithms like the algorithms
of the IMd framework might still be able to handle it.

In the future, we aim to extract such logs from real-life systems and apply our tech-
niques to them, but currently, we would only discover a model but would not be able to
process the discovered model further (no conformance checking and no visualisations are
available on these scales).

In this experiment, we increased the number of activities a and the number of traces t
synchronously, assuming that a more complex system (i.e. with a high a) needs a log with
more traces (i.e. a high t) to be represented well. In [94], we varied a and t independently,
which led to similar conclusions.

In the remainder of this chapter, we will evaluate the quality of the models returned
by the algorithms in more detail.

316

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

8.3 Log-Quality Dimensions

In Section 3.3, several challenges of process discovery were identified, one of them be-
ing that discovery algorithms inherently need to trade off log-quality criteria. Require-
ment DR10 states that discovery algorithms should provide a user-influenceable trade
off between log-quality criteria. In this section, we perform two experiments to evalu-
ate how process discovery algorithms balance the trade-off between log-quality criteria
(RQ.2) on their default settings. In the first experiment, we apply these algorithms to
several real-life logs using cross validation, and measure weak soundness, boundedness,
fitness, log-precision and simplicity of the discovered models. In the second experiment,
we apply the algorithms to the full event logs, and compare their results qualitatively.

We first describe the used event logs in Section 8.3.1, after which we describe the
quantitative experiment (Section 8.3.2) and the qualitative experiment (Section 8.3.3).

8.3.1 Event Logs

In the log-quality experiments, we use several real life event logs. All event logs are
publicly available.

BP11 The event log used in the Business Process Intelligence Challenge 2011 (BP11) [55]
represents the gynaecology department of a Dutch academic hospital. The traces
represent patients, for which medical activities are performed.
This event log has been challenging for discovery algorithms [89, 94, 97, 107], given
the large number of activities and the unstructured nature of the process. The
event log contains much more data elements than just the activities used in this
experiment: further research might reveal ways to use more data to aid discovery.
Traces: 1143, events: 150,291, activities: 624.

BP12 The event log used in the Business Process Intelligence Challenge 2012 (BP12) [56]
is derived from a personal loan application process of a Dutch financial institution.
The traces represent customers applying for loans, and the activities describe the
steps taken for the customers.
The BP12 log contains three subprocesses: the activities are distinguishable by
a prefix ‘A_’, ‘O_’ or ‘W_’. Two of these three subprocesses (A and O) in
isolation can be handled well by existing process discovery algorithms, as they are
relatively well structured. For instance, the A subprocess consists of 10 activities,
is rather structured and contains only three activities in concurrency. However, the
third subprocess (W) is more challenging: it contains start and completion events
(which most discovery and conformance algorithms simply ignore), and is rather
unstructured [89, 94, 118].
The entire event log contains the three subprocesses being executed. Not all traces
contain every subprocess, and there is no sequential relation between the subpro-
cesses. In this experiment, we use this full event log.
Traces: 13,087, events: 262,200, activities: 24.

RF The road fines event log is a real-life event log of an information system managing
Italian road traffic fines [96]. Each trace represents a fine, which can be objected,
and should eventually be paid. Penalties are applied when payment is late.
Traces: 150,370, events: 561,470, activities: 11.

317

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

RPW The WABO receipt phase log (RPW) [37] originates from a building permit
application process in a Dutch municipality. This log describes the first phase in
the process, in which the permit applications are received. Traces: 1,434, events:
8577, activities: 27.

WA1-5 The fiveWABO logs have been derived from a building permit application process
in five Dutch municipality, each executing another ‘flavour’ of the same process.
The differences between their processes have been studied in [36]. WA1 contains
434 traces, 13,571 events and 137 activities. WA2 contains 160 traces, 10,439 events
and 160 activities. WA3 contains 481 traces, 16,566 events and 170 activities. WA4
contains 324 traces, 9,743 events and 133 activities. WA5 contains 432 traces,
13,370 events and 176 activities.

8.3.2 Quantitative
In the quantitative experiment, we compare the algorithms using cross validation.

Set-up

Each event log L is split randomly into v sublogs (we chose v � 6, as 3 would not
yield cross validation and 9 would result in much more computations) and the following
procedure is applied: 2{3 of the sublogs form the discovery log Ld, while the other sublogs
form the test log Lt. We did not use a default k-fold cross validation scheme, as the test
log needs to be large enough to measure fitness as a generalisation measure. A process
discovery algorithm is applied to Ld and a process model is obtained. First, simplicity
is measured by taking the number of arcs, places and transitions in a Petri net (process
trees and BPMN models are translated to Petri nets first for a sensible comparison).
Second, weak soundness and boundedness are determined, as if a model is unbounded or
weak sound, the PCC framework cannot handle it. Third, if the model is weak sound
and bounded, then fitness and log precision are measured using the PCC framework with
k � 2. Fitness is measured on the test log, while log precision is measured on the full
unsplit log. Figure 8.2 illustrates this procedure, which is repeated for all combinations
of discovery and test logs. Average scores of the measures are recorded and reported.

The above procedure is applied with each algorithm that was mentioned in Section 8.1
except CCM and MPM, for which we had no implementations available.

As discussed in Section 3.2.3, all three measures, i.e. fitness, log precision and sim-
plicity, might be important in particular use cases of process mining. Therefore, we
summarise the findings using pareto optimality: a result a dominates another result b if
all measures of a are equal or better than the measures of b [36]. A result a is pareto
optimal in a set of results A if it dominates all other measures in A. In our case, both the
average fitness and log precision need to be equal or higher, and the average simplicity
needs to be equal or lower for a model to be dominating.

Checking Weak Soundness & Boundedness

In order to verify weak soundness and boundedness of models, as a first step the model
was reduced using the Murata rules [124], similar to [69]. Second, weak soundness is
checked by verifying that the final marking, i.e. a token in one of the places of the final
marking, and no tokens elsewhere, is reachable. Boundedness is computed by verifying
for each place that there is no reachable state with an unbounded number of tokens in
that place. Both properties are checked using the Lola tool [175]. Some of the discovered

318

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

event log

discovery log

test log

model

relaxed soundness
boundedness
simplicity

discover

fitness

log-precision

Figure 8.2: Set-up of the log-quality experiment.

models required Lola to traverse more than 200,000,000 markings and use more than
25GB of RAM, which would make performing any further computations on such a model
infeasible. Therefore, even though such models might be bounded in theory, we consider
them to be unbounded in practise, and we excluded them.

Models might be unbounded or weak unsound for several reasons: (1) the algorithm
did not return a model within a reasonable time. For instance, IMc and IMcd are
exponential in the number of activities and ran for over a week on the discovery logs
with 133 activities or more. After the first failure of these algorithms on an event log, we
sampled the remaining discovery logs: none of these samples succeeded and we did not
perform the remaining runs. In this case, no simplicity could be reported and the model
was left out. (2) the algorithm ran out of memory (we had 40GB of RAM available).
This happened only for SM. In this case, no simplicity could be reported and the model
was left out. (3) the algorithm produced models for which the Lola tool could not
verify boundedness or weak soundness in at most 200,000,000 states. (4) the algorithm
produced weak unsound or unbounded models. If any failure occurs, then the reported
fitness and log precision are averages taken over a subset of the folds, which makes these
measurements incomparable to measurements over all folds. Therefore, such measures
have been ((((

(striked out in the results.

Results

Tables 8.3 and 8.3 show the results: for each log and algorithm, it shows the average
fitness (f), log precision (p), simplicity (s) and fraction of bounded weak-sound models
(b) over the 15 folds. The pareto-optimal measures have been printed in a bold font.
Notice that the measures have been rounded, but pareto optimality was computed before
rounding.

The following table lists the number of times each algorithm was pareto optimal:

319

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

Table 8.3: Results of the log quality experiments, averaged over folds. f is
fitness, p is log precision, s is simplicity and b is boundedness & weak soundness.
Pareto-optimal results are shown in bold.

BP12 BP11 RPW
f p s b f p s b f p s b

α 70.0 0.0 0.0 195.3 0.0
ETM 0.36 0.72 92.6 1.0 0.86 1.00 13.8 1.0 0.95 0.98 59.1 1.0
FM 1.00 0.61 81.0 1.0 1.00 0.65 1672.4 1.0 1.00 0.59 88.6 1.0
FO 321.5 0.0 4576.3 0.0 0.73 0.60 156.0 1.0
HM 365.8 0.0 0.0 449.3 0.0
ILP 52.4 0.0 0.0 135.3 0.0
IM 1.00 0.67 166.7 1.0 1.00 0.65 1723.7 1.0 1.00 0.63 155.1 1.0
IMa 1.00 0.67 166.7 1.0 1.00 0.65 1725.6 1.0 1.00 0.63 155.7 1.0
IMc 1.00 0.67 313.0 1.0 0.0 1.00 0.63 290.1 1.0
IMcd 0.99 0.67 401.7 1.0 0.0 1.00 0.63 238.5 1.0
IMd 1.00 0.67 90.3 1.0 1.00 0.65 1681.8 1.0 1.00 0.63 101.4 1.0
IMf 0.96 0.69 187.5 1.0 0.98 0.84 1038.7 1.0 1.00 0.69 163.7 1.0
IMfa 0.96 0.69 195.8 1.0 0.98 0.84 1052.1 1.0 1.00 0.69 183.5 1.0
IMfd 1.00 0.67 90.3 1.0 1.00 0.79 2402.2 1.0 1.00 0.70 118.7 1.0
IMflc 1.00 0.68 90.6 1.0 0.98 0.84 1038.7 1.0 1.00 0.69 164.5 1.0
IMlc 1.00 0.68 80.0 1.0 1.00 0.65 1725.6 1.0 1.00 0.63 155.7 1.0
SM 672.0 0.0 0.0 ��0.97 ��0.71 214.9 0.2
Tα 173.9 0.0 611.8 0.0 42.1 0.0
TM 0.98 0.93 55654.1 1.0 0.93 1.00 5159.2 1.0 0.99 0.95 3579.6 1.0

RF WA1 WA2
f p s b f p s b f p s b

α 60.0 0.0 1118.6 0.0 1383.3 0.0
ETM 0.85 0.90 115.4 1.0 0.67 0.99 59.5 1.0 0.63 0.99 72.5 1.0
FM 1.00 0.59 42.0 1.0 1.00 0.68 485.4 1.0 1.00 0.66 461.0 1.0
FO 1.00 0.69 146.4 1.0 857.2 0.0 844.9 0.0
HM ��0.48 ��0.96 186.4 0.3 1623.3 0.0 1417.9 0.0
ILP 16.0 0.0 0.0 15815.5 0.0
IM 1.00 0.66 89.5 1.0 1.00 0.70 661.2 1.0 1.00 0.67 761.1 1.0
IMa 1.00 0.66 162.4 1.0 1.00 0.70 671.4 1.0 1.00 0.67 767.7 1.0
IMc 1.00 0.93 132.3 1.0 0.0 0.0
IMcd 0.76 0.93 108.1 1.0 0.0 0.0
IMd 1.00 0.66 50.0 1.0 1.00 0.69 532.1 1.0 1.00 0.66 483.1 1.0
IMf 0.99 0.92 109.3 1.0 0.99 0.78 778.1 1.0 0.99 0.72 747.9 1.0
IMfa 0.99 0.91 187.3 1.0 0.99 0.78 812.5 1.0 0.99 0.72 767.5 1.0
IMfd 0.83 0.89 123.7 1.0 1.00 0.79 767.8 1.0 1.00 0.76 629.9 1.0
IMflc 0.99 0.92 192.5 1.0 0.99 0.78 778.8 1.0 0.99 0.72 748.3 1.0
IMlc 1.00 0.66 122.5 1.0 1.00 0.70 661.2 1.0 1.00 0.67 761.1 1.0
SM 0.0 ��0.98 ��0.85 1546.5 0.5 0.99 0.76 781.5 1.0
Tα 0.0 203.1 0.0 184.9 0.0
TM 1.00 0.90 303056.4 1.0 0.93 0.99 2074.5 1.0 0.88 0.99 1326.3 1.0

320

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

Table 8.3: Results of the log quality experiments, averaged over folds. f is
fitness, p is log precision, s is simplicity and b is boundedness & weak soundness.
Pareto-optimal results are shown in bold.

WA3 WA4 WA5
f p s b f p s b f p s b

α 406.7 0.0 823.1 0.0 1601.9 0.0
ETM 0.69 0.99 68.3 1.0 0.65 0.98 73.9 1.0 0.69 0.99 59.0 1.0
FM 1.00 0.67 498.8 1.0 1.00 0.66 395.4 1.0 1.00 0.67 498.2 1.0
FO ��1.00 ��0.78 973.6 0.1 ��0.38 ��0.53 699.3 0.5 ��1.00 ��0.82 857.1 0.5
HM 1670.3 0.0 1252.1 0.0 1546.2 0.0
ILP 16456.4 0.0 8789.6 0.0 26975.2 0.0
IM 1.00 0.69 1034.5 1.0 1.00 0.68 630.3 1.0 1.00 0.68 949.5 1.0
IMa 1.00 0.69 1048.6 1.0 1.00 0.68 643.7 1.0 1.00 0.68 960.3 1.0
IMc 0.0 0.0 0.0
IMcd 0.0 0.0 0.0
IMd 1.00 0.69 606.9 1.0 1.00 0.68 447.1 1.0 1.00 0.68 531.5 1.0
IMf 0.99 0.78 791.3 1.0 0.99 0.76 682.9 1.0 0.99 0.82 844.5 1.0
IMfa 0.99 0.78 854.5 1.0 0.99 0.76 691.2 1.0 0.99 0.82 852.0 1.0
IMfd 1.00 0.77 1320.0 1.0 1.00 0.78 589.0 1.0 1.00 0.83 836.6 1.0
IMflc 0.99 0.78 794.5 1.0 0.99 0.76 683.1 1.0 0.99 0.82 847.4 1.0
IMlc 1.00 0.69 1036.4 1.0 1.00 0.68 637.9 1.0 1.00 0.68 960.3 1.0
SM ��0.99 ��0.78 1369.2 0.8 1.00 0.82 901.6 1.0 ��1.00 ��0.89 1397.6 0.9
Tα 206.5 0.0 163.2 0.0 197.3 0.0
TM 0.94 0.99 2395.2 1.0 0.91 0.99 1382.5 1.0 0.94 0.99 2078.8 1.0

pareto-optimal on event logs
FM, IMd 9
ETM, IMfd, IMa 8
IM 7
TM 5
IMf, IMlc 3
IMc, IMfa, SM 2
IMcd 1
α, FO, HM, ILP, IMflc, Tα 0

Discussion

We first discuss boundedness & weak soundness, after which we discuss the baselines
provided by this experiment. We finish the discussion with the performance of algorithms
on the quality measures fitness, log precision and simplicity.

Boundedness & Weak Soundness. In terms of returning a model, ETM, FM,
FO, IM, IMa, IMd, IMf, IMfa, IMfd, IMflc, IMlc and TM returned models for all
event logs. For BP11, WA1, WA2, WA3, WA4 and WA5, IMc and IMcd ran out of time
and did not return models, due to their exponential nature. α and HM did not return
models for BP11, and ILP did not return all models for BP11 and WA1. SM did not
return models for BP11 and RF. Tα did not return models for WA2 and RF. The inability
of SM and Tα to discover models for RF is remarkable. Even though RF contains over
500,000 events, it only contains 11 activities, and the most time-consuming step of SM

321

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

(after applying HM, which succeeded for some logs as shown by this experiment) is the
structuring step, which only depends on the number of activities, and in contrast to Tα,
α did return models.

In terms of boundedness and weak soundness, all models returned by ETM, FM, TM
and the algorithms of the IM framework and IMd framework were bounded and weakly
sound. HM, FO, and SM returned some bounded and weakly sound models: HM only for
5 logs of RF. FO returned bounded and weakly sound models for all logs of RPW, RF,
2 logs of WA3 and 8 logs of WA4 and WA5. SM returned bounded and weakly sound
models for 3 logs of RPW, 8 logs of WA1, all logs of WA2, 12 logs of WA3, all logs of
WA4 and 13 logs of WA5. These algorithms seem to be sensitive to variations in event
logs, even if these logs are derived from the same system. The algorithms α, ILP and Tα
did not return any bounded weakly sound model.

As discussed earlier, in the remainder of this discussion we will not consider incom-
plete measures, i.e. we will only consider combinations of algorithms and logs for which
the algorithm discovered bounded weakly sound models for all discovery logs.

Baselines. We first discuss these baseline algorithms. Due to the discovery and test
log set-up, TM did not necessary reach perfect fitness. In our experiment, for only one
log (RF), TM achieved perfect fitness, which indicates that the discovery and test log
division made sense: the test logs contained behaviour different from the behaviour of
the discovery logs. Thus, the cross validation and the measure on the trace miner (TM)
provide insight into the completeness and variety of the event log: if the fitness of TM
is high, the average test log contained many traces similar to traces in its corresponding
discovery log, thus the variety in the event log was low. For instance, TM got low fitness
for BP11 (0.40) and WA1-5 (0.56-0.70), hence it is to be expected that future behaviour
has a low likelihood to resemble behaviour already seen in the event log, and variety is
high. Given this insight, one might reconsider opting for a process model with a high
log precision (and a bit lower fitness) in use cases that require a good generalisation,
like prediction: on such logs, a high precision and low fitness will likely limit support of
future behaviour.

This conclusion is strengthened by the fitness of FM (the all-behaviour-allowing flower
model) for WA1, WA2 and WA5. On these logs, FM did not achieve perfect fitness, which
implies that in some cases, not all activities were present in the discovery logs, which
suggests that the log contains far from all behaviour.

In contrast, for RPW and RF, the TM fitness is 0.97 and 1 respectively, which is
rather high and indicates that these log contain repetitive behaviour. Therefore, a high
log precision would be desirable, as it is likely that such a model will represent all future
behaviour. For RPW, one could even consider using the trace model itself, although
that model contains 30 times more constructs than the models returned by all other
algorithms.

The set-up of this experiment resembles a set-up commonly used in process discovery
literature, for instance [39, 89, 90, 99, 134]. Often, these experiments measure fitness,
precision, generalisation and simplicity on an event log. Generalisation “assesses the
extent to which the resulting model will be able to reproduce future behavior of the
process” [40]. By the separation of discovery and test data, our fitness measure already
serves this role, thus we did not measure generalisation separately (as in [99]).

Fitness, Log Precision & Simplicity. In terms of fitness, log precision and sim-
plicity, algorithms need to strike a balance between FM (the all-behaviour-allowing flower

322

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

model) with perfect fitness, low precision and high simplicity, and TM (the trace model)
with perfect precision but high complexity.

Earlier in this section, we showed a frequency table that denotes how often each
algorithm achieved pareto optimality. FM returned pareto-optimal models for all event
logs, however the models returned by FM are inherently useless as they do not contain
more information than which activities were contained in the discovery logs. IMd is also
pareto optimal for all event logs, slightly improving over FM (up to 0.07 for RF) in terms
of log precision, at the cost of simplicity (up to 108 extra constructs for WA3). IMd
does not apply any infrequent behaviour filtering, and on the real-life event logs of this
experiment, discovers models with large flower parts.

The algorithms ETM and IMfd were both pareto optimal for 8 event logs. For all
these event logs, ETM used few Petri net elements), in some cases even less than FM,
e.g. for RPW and WA1 - WA5, which implies that not all activities were present in the
discovered models. While this might be a deliberate strategy, for WA1 - WA5, fitness
was remarkably lower than other algorithms: less than 0.7, while all other non-baseline
pareto-optimal algorithms got more than 0.9. Nevertheless, log precision was high: equal
up to or exceeding the log precision of TM. IMfd is the variant of IMd that filters
infrequent behaviour, which results in an improvement over IMd of 0.1 in log precision
for BP11, RF, WA1, WA2, WA4 and WA5, at the expense of simplicity (up to 721 extra
Petri net elements for BP11).

IM and IMa achieved pareto-optimality for 7 and 8 event logs, and both algorithms
had almost equal fitness and log-precision characteristics, and IMa needing less Petri net
constructs for all logs except RF. Their fitness and log-precision values also resembled
IMd.

The baseline TM lists all traces of the discovery log, and discovered the most complex
models, i.e. with the most Petri net constructs. Only for WA2 - WA5, ILP discovered
more complex models. For 5 logs, TM achieved pareto optimality, due to the high log
precision of its models. However, especially for the WA1 - WA5 logs, fitness was low,
as TM does not attempt to generalise over the behaviour seen in the event log, which
illustrates the need for discovery algorithms to generalise over the behaviour in the event
log. This also illustrates the need for a generalisation measure: without cross validation,
TM would have achieved perfect fitness and log precision for all event logs.

IMf and IMfa achieved similar fitness and log-precision values, with IMf discovering
models with a lower complexity for all event logs. These algorithms achieved a higher log
precision than IMfd for 2 event logs (BP12 and RF), and a higher fitness only for RF.
IMc was pareto optimal for RPW and RF, with IMc achieving a perfect fitness and log
precision of 0.93 for RF, which is even higher than TM. This illustrates the potential of
the incompleteness handling despite exponential run times of this algorithm.

Of the remaining algorithms, SM was pareto optimal for all logs on which it completed
the cross validation, i.e. WA2 and WA4, equalling (WA2) or outperforming (WA4) IMfd
on log precision, equalling on fitness but being more complex for both event logs, which
shows the potential of this algorithm. However, for two logs SM did not return any
models, and for 5 logs the models were either unbounded or not weakly sound.

Conclusion. In answer of RQ.2, FM and IMd were pareto optimal for 9 logs, ETM
and IMfd for 8 logs, IM and IMa for 7 logs, TM for 5 logs, IMf and IMlc for 3
logs, IMc, IMfa and SM for 2 logs, and IMcd for 1 log. The other algorithms did
achieve pareto optimality for any log. For almost all event logs that were included in
this experiment, the algorithms discovered different models, such that a human analyst
could try several algorithms to see which model suits the use case at hand best. In the

323

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

next section, we will study the discovered models qualitatively to provide more insight
into the discovery algorithms.

8.3.3 Qualitative

Thus far we evaluated scalability and model quality in terms of fitness, log precision and
simplicity. Now we evaluate the models qualitatively, i.e. we compare the models that
are discovered by discovery algorithms on their visual appearance and their structure.
As measures of log conformance express only how well the event log is represented and
are only obtainable for bounded and weakly sound models, we do not use such measures
in this experiment. Rather, we aim to illustrate the variety of process models that can be
discovered from event logs and the quirks of discovery algorithms. Therefore, we apply
the discovery algorithms to the event logs described in Section 8.3.1, and analyse the
models manually.

We translate every model to a Petri net and visualise this Petri net using GraphViz,
replacing the activity names by letters to save space. We use the Dot layout engine,
however if this leads to unreadably small graphs, in which case we use the Sfdp or Neato
engine. Some models by Tα(RF) could not be visualised. An exception to this are the
models discovered by FD and CPM, which cannot be translated to Petri nets.

On these visualised Petri nets, we assess whether the model possess an unclear lan-
guage. That is, whether the model, despite its Petri net semantics, does not give clear
indications about their final markings, and/or allow for many executions of transitions
without possibility to end in a final marking, which makes it harder for users to under-
stand the model. Furthermore, we assess fitness and log precision manually (as automated
measures are not available for weakly unsound or unbounded models), using the limita-
tions the model puts on its behaviour. Finally, for one of the logs (RF) we assess the
discovered models using information derived from the event log.

Notice that for this experiment, the authors of the CCM algorithm kindly provided
us with the models discovered by the CCM algorithm. The only algorithm not included
in this experiment is MPM, as its source code is not public and its authors chose not
to participate in our experiment. Furthermore, the baseline algorithms FM and TM are
not included in this experiment as the models they produce do not provide any insight
into the process.

We limit this experiment to the two smallest event logs, BP12 and RF, as for the other
event logs several issues challenged inclusion: not all algorithms succeeded in discovering a
model, not all models were correctly visualised by the graph layout algorithm (GraphViz),
and manual analysis on models containing over 100 activities is rather error-prone.

BP12

We start with BP12, the log of mortgage application process with 13,000 traces, 262,000
events and 24 activities. The activity names are replaced as follows:

324

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

m
gp

j

lks

n

r

t q
o

c

b

x w

if

d

e

u

v

h

a

Figure 8.3: ILP(BP12). The model returned by ILP expresses constraints for
only 5 of the 24 activities. This part is not bounded however it is weakly sound,
considering that the final marking is the empty marking. The other activities
are not connected, i.e. have no input or output places, thus can be executed at
any time.

j g
h

a

r

f

s

d

m

p
t

q

v

o

l

u

i

n

e

k

b

c

w

Figure 8.4: CCM(BP12). The model returned by CCM is sound and con-
sists of three sequential parts: the first part consists of 6 sequential activities
that can each be skipped or repeated, which expresses a rather lot of struc-
ture. The second sequential part expresses little and is language equivalent to a
flower model, except for a dependency between the topmost two activities. The
third sequential part consists of a rather structured mix of choice, sequence and
concurrency. There is 1 activity missing, and the 35 silent transitions in loop
structures make the model difficult to understand.

325

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

h t o j

f

t

p

a

g f

e

e

t

o

j

f

t

g t
o

j

f

t

r

f

ev
e

Figure 8.5: ETM(BP12). The model returned by ETM consists of 28 transi-
tions, but not all activities of the event log are present. This does not necessarily
decrease model usability: an easy to understand model that does not contain a
few infrequently executed activities might be preferable over a complex model
that includes these activities. However, this depends on the use case of the
analysis and analysts should be aware of this. The model is highly structured
and sequential, i.e. its intention and behaviour are clearly visible. However, the
model does not contain choices: all 28 transitions have to be executed precisely
once (the only freedom in execution is that there is some concurrency), even
though the number of events per trace in the model ranged from 3 to 175 with
an average of 20, and which seems in contrast with the models discovered by
all other algorithms.

326

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j g

r

h

s

t
w

e
d

u
k

b

i
c
n

x

a

q

v

l

o

f
m p

Figure 8.6: IM(BP12) = IMa(BP12). The model returned by both IM and
IMa contains all 24 activities and consists of several nested loops. The outer
loop allows for any behaviour of 3 activities. The inner loop consists of 5 activ-
ities in sequence with a near-flower model and another activity. The behaviour
of the outer loops are easily recognisable, however the inner flower model is
hidden by a chain of 4 silent transitions.

a

b
c

d

e

fg h

i

j

k
l

m

n

o

p

qr

s

t
u

v

w

x

Figure 8.7: HM(BP12). The model returned by HM contains all 24 activities,
is not bounded and not weakly sound. Even though the behaviour of activities
is seemingly restricted, it is difficult to truly grasp the behaviour of the model,
due the to many groups of silent activities that enable several combinations
of subsequent branches (this is not due to the layout). These branches again
divert and enable subsequent branches, which introduces a lot of concurrency.

327

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

g

m v

p

e

h

d

f

o

j
c

b

n

i

x

q

w

k
l

r

t

a

s

u

Figure 8.8: α(BP12). The model returned by α has 5 unconnected activities,
which means that the model poses no restrictions on these activities. Further-
more, the model contains many activities that only have output arcs, which
can be arbitrarily executed as well, but produce tokens nevertheless. These to-
ken generators impose only weak restrictions on subsequent activities, as these
become concurrent with the presence of multiple tokens in the net.

e

r

h

t
a

d

s

o

f
m

v

q

w l

x

b

u

n

j g

p

c
k

i

Figure 8.9: FO(BP12). The model returned by FO contains all 24 activities
and many silent activities. Most of the transitions in the net have a single input
and output place, thus the net seems to have little concurrency at first sight.
However, in the right half of the model, there are two silent transitions that have
two output arcs. These transitions make the net unbounded. Nevertheless, the
net is weakly sound and large parts are state machines, i.e. without concurrency,
which makes its behaviour easily recognisable.

328

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j g
a

v

u w

k

el

n
s

t
i

h

r
d

b

x
q

c

p

mf

o

Figure 8.10: IMc(BP12). The model returned by IMc contains all 24 ac-
tivities and seems rather structured, containing structured loops, concurrency,
sequence and choice, thus analysts might be able to gain insights from this model
by manual inspection. However, due to the many silent transitions, many traces
are possible, i.e. the model would have a low log precision (measured by the
PCC framework: fitness is 1 and log precision is 0.67). Nevertheless, the model
contains many inter-activity constraints, e.g. A_REGISTERED can only be
executed after execution of W_Completeren aanvraag.

j g

e

r

h

s

d t
u

q w

b

c

i

k x

o

f

l
v

m p

Figure 8.11: IMfa(BP12). The model returned by IMfa is similar to the
model returned by IMf, however poses a little more constraints as instead of
4 concurrent activities, expresses 3 concurrent activities in loop with another
activity.

329

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j g
a

u w

q

v

e

n
t

hr

s
l

d

x

b

i
c

k

m
o

f

p

Figure 8.12: IMcd(BP12). The model returned by IMcd contains all 24
activities. The process tree underlying the Petri net shown contains inclusive
choice operators, which are translated using rather many silent activities to Petri
nets, and which make the Petri net rather complicated. However, being aware
of the underlying structure of these constructs, the model is fairly structured
and contains many dependencies between activities.

vt

t

q

ad

p
r

a aa
m

woy

g

c

ac h

i

r

f

l

ae

b

z

e
s

u

js

ab

uk

d

w

vn

Figure 8.13: SM(BP12). The model returned by SM contains little infor-
mation, as no two tasks are connected. Moreover, the bottom-two activities
cannot be executed (W_Completeren aanvraag and W_Nabellen offertes). As
this model is different as the technique described in [24] would suggest, we
suspect an inaccuracy in the implementation.

330

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j g

e

r

h

s

d
t

u q

w

b

c

i

k x
m

o

f

l

vp

outer loop

inner loop

Figure 8.14: IMf(BP12). The model returned by IMf contains 22 of the 24
activities. Depending on the use case, this might be desirable or problematic.
The model consists of two nested loops, of which the outer one expresses that
one of four activities needs to be executed before the remainder of the process
(in subsequent iterations, all four activities can be executed arbitrarily). The
inner loop structure consists of three parts in sequence, which can all be skipped,
and due to the loop structure around it, arbitrarily executed. However, within
the sequential parts lots of structure is expressed, e.g. a concurrency between 4
activities.

j
g

w b
e

c

o
r

q
td

p
x
s

k

f
a
i

m

u
v
h
l n

Figure 8.15: IMd(BP12) = IMfd(BP12) = IMflc(BP12) = IMlc(BP12).
The model returned by IMd, IMfd and IMflc is almost a complete flower
model, as only two activities are not arbitrarily executable.

331

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j

t r

s

v

u

w

g

h
a

o

f

m

p
q

i

c

k

b

l

x

e

d

n

Figure 8.16: Tα(BP12). Similar to the model returned by α, in the model
returned by Tα many activities can be executed without restrictions. We argue
that this model has a limited use for both human and machine analysis due to it
containing unbounded behaviour, containing little structure and not containing
a final marking.

332

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

13,087

67

320

16,570

3,254

604

2,515

2,907

7,367

152

771

2,515

1,285

2,234

3,454

6,633

5,110

9,066

4,740

4

488

5,010

1,136

2

2,907

4,852 69

2,188

750

2,515

2,188

671

17,394

348 1,982

789

7,030

3,207

146

4,852

974

3,254

941

3,429

5,014

4,739

2,879

9,210

13,087

3,429

A_SUBMITTED\\COMPLETE
13,087

A_PARTLYSUBMITTED\\COMPLETE
13,087

A_PREACCEPTED\\COMPLETE
7,367

W_Completeren aanvraag\\SCHEDULE
7,371

W_Completeren aanvraag\\START
23,512

A_ACCEPTED\\COMPLETE
5,113

O_SELECTED\\COMPLETE
7,030

A_FINALIZED\\COMPLETE
5,015

O_CREATED\\COMPLETE
7,030

O_SENT\\COMPLETE
7,030

W_Nabellen offertes\\SCHEDULE
6,634

W_Completeren aanvraag\\COMPLETE
23,967

W_Nabellen offertes\\START
22,406

W_Nabellen offertes\\COMPLETE
22,976

O_SENT_BACK\\COMPLETE
3,454

W_Valideren aanvraag\\SCHEDULE
5,023

W_Valideren aanvraag\\START
7,891

A_REGISTERED\\COMPLETE
2,246

A_APPROVED\\COMPLETE
2,246

O_ACCEPTED\\COMPLETE
2,243

A_ACTIVATED\\COMPLETE
2,246

W_Valideren aanvraag\\COMPLETE
7,895

O_CANCELLED\\COMPLETE
3,655

W_Wijzigen contractgegevens\\SCHEDULE
12

A_DECLINED\\COMPLETE
7,635

A_CANCELLED\\COMPLETE
2,807

W_Afhandelen leads\\SCHEDULE
4,771

W_Afhandelen leads\\START
5,897

W_Afhandelen leads\\COMPLETE
5,898

O_DECLINED\\COMPLETE
802

W_Nabellen incomplete dossiers\\SCHEDULE
2,383

W_Nabellen incomplete dossiers\\START
11,400

W_Nabellen incomplete dossiers\\COMPLETE
11,407

W_Beoordelen fraude\\SCHEDULE
124

W_Beoordelen fraude\\START
270

W_Beoordelen fraude\\COMPLETE
270

Figure 8.17: FD(BP12). The model discovered by FD contains 36 activities
as the start, completion and schedule life cycle transitions are included in the
names of the activities. The model is highly understandable due its simplicity
and lack of concurrency. This model also contains a soundness issue: only from
the three activities in between the red lines, the end state is reachable.

333

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

Figure 8.18: CPM(BP12). Celonis discovers a model representing the most-
occurring activities, and thereby this model represents the most-occurring trace,
i.e. the trace which is rejected immediately. However, this leads to a model with
only 3 activities.

334

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

a A_ACCEPTED b A_ACTIVATED
c A_APPROVED d A_CANCELLED
e A_DECLINED f A_FINALIZED
g A_PARTLYSUBMITTED h A_PREACCEPTED
i A_REGISTERED j A_SUBMITTED
k O_ACCEPTED l O_CANCELLED
m O_CREATED n O_DECLINED
o O_SELECTED p O_SENT
q O_SENT_BACK r W_Afhandelen leads
y W_Afhandelen leads+SCHEDULE s W_Beoordelen fraude
z W_Beoordelen fraude+SCHEDULE t W_Completeren aanvraag

aa W_Completeren aanvraag+SCHEDULE u W_Nabellen incomplete dossiers
ab W_Nabellen incomplete

dossiers+SCHEDULE
v W_Nabellen offertes

ac W_Nabellen offertes+SCHEDULE w W_Valideren aanvraag
ad W_Valideren aanvraag+SCHEDULE x W_Wijzigen contractgegevens
ae W_Wijzigen contractgegevens+SCHEDULE

Figures 8.3 to 8.18 show the results. We conclude that the BP12 log is rather challenging
for current discovery algorithms: non-block structured algorithms return models and
assessing their behaviour might be difficult (α, HM, FO), which despite their Petri net
semantics do not give clear indications about their final markings, and/or allow for many
executions of transitions without possibility to end in a final marking) or models that
restrict behaviour little (ILP). Block-structured based algorithms improve over these
algorithms by offering clear languages at all times. However, for BP12, block-structured
based algorithms struggle to capture constraints on behaviour between activities and
return flower-like models.

335

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

RF

The event log RF was recorded in a road fines managing process and contains 150,000
traces, 5,600,000 events and 11 activities. The activity names are replaced as follows:

a Add penalty b Appeal to Judge
c Create Fine d Insert Date Appeal to Prefecture
e Insert Fine Notification f Notify Result Appeal to Offender
g Payment h Receive Result Appeal from Prefecture
i Send Appeal to Prefecture j Send Fine
k Send for Credit Collection

Some domain knowledge about this process was obtained, which entails that the
activity ’payment’ (’g’) may occur multiple times as people are allowed to pay their fines
in chunks (in 7,500 cases, this happens), and payment can occur during a large part of
the process, even before the fine is sent (we verified this in the event log). We focus our
analysis on whether this knowledge is reflected in the model. In the models, the payment
activity (g) are highlighted in blue, while loop patterns in which payment is involved are
denoted in red. Furthermore, we assess the complexity of the models. Figures 8.19 to
8.32 show the discovered models.

We conclude that many discovery algorithms discovered models in which the log
knowledge regarding payment is reflected, i.e. IM, IMa, IMc, IMcd, IMfd, IMlc and
HM. For IM and IMlc, log precision could be higher as a lot of extra behaviour is in-
cluded. Other algorithms discovered models reflecting our domain knowledge partially,
i.e. CCM, IMfa, IMflc and FO. The distinction between block-structured based algo-
rithms and non-block-structured based algorithms can be made for the RF log as well:
non-block-structured based models struggle to discover models with easy to spot be-
haviour, while block-structured based algorithms do not suffer from this. Exceptions are
FO, which is simple due to the absence of concurrency, and IM which is not, due to the
looping structure with many silent transitions. For block-structured models, simplicity
is hindered by inclusive choice constructs, which are elegant in process tree notation, but
which need to be represented by several silent transitions in a Petri net.

g

cd

i

e

f
k

h
j

a

b

Figure 8.19: SM(RF). SM returns a model without any useful connections or
places. Payment cannot be executed.

336

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

a

e

j

d

c

k g

Figure 8.20: ETM(RF). ETM returns a very simple model, which does not
match intuition of a fine-handling process, e.g. in reality, not every case gets a
penalty added. Furthermore, the model contains a choice between the creation
of a fine and initiating an objection against a fine, which does not make much
sense. This model is rather simple, as it contains only 7 of the 11 activities. We
would argue that this is an oversimplification.

c
j e

d
i bh f

a

k

g

Figure 8.21: CCM(RF). CCM returns a highly structured model that contains
all activities, however without any loops, and payment only occurs at the end
of the process. Even though this model contains 13 silent transitions, the block
structure makes it easy to recognise the intention of the model: most of the
silent transitions allow the skipping of parts of the model.

ca

id

hjkb

e

fg

Figure 8.22: ILP(RF). ILP returns a model without any useful connections
or places.

337

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

c

j

g

b

d

e
k

a

h

f
i

Figure 8.23: IM(RF). IM returns a model with payment being part of a
loop, however the loop spans all activities of the process except the first one,
thereby lowering the log precision of the other activities. Furthermore, the
loop obfuscates the behaviour of the model: the first part of the loop (including
Payment) can be arbitrarily executed, but only by executing 11 silent transitions
between each consecutive execution. It would have been better to put these four
activities concurrent to the remaining part of the process.

338

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

c
j

k

e

a

d

f
h

bg

i

(a) IMf(RF).

c
j

k

e
a

d
f

h

b

g

i

(b) IMflc(RF).

c
j k

e
a

d
f

h

b

i

g

(c) IMfa(RF).

Figure 8.24: IMf, IMflc and IMfa put payment concurrently with the rest
of the process, but not in a loop. The rather complicated inclusive choice struc-
ture, which was introduced by reduction rule C_, is elegant in process trees,
however rather many silent transitions are necessary in the corresponding Petri
net representation. The model returned by IMf contains 13 silent transitions,
however the block structure makes it easy to recognise the intention of the
model.

339

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

c

j

g

b

d

e
ka

h

f

i

Figure 8.25: IMa(RF). IMa discovers a model with several inclusive choice
constructs, similar to IM with respect to payment, and similar in complexity.

c

j

g

b

d

e

k
a

h

f

i

Figure 8.26: IMlc(RF). IMlc discovers a model in which payment is part of
a loop and can be executed throughout the process, however the loop spans all
but one activities, which makes log precision lower. Complexity resembles the
complexity of IM, however with an added inclusive choice construct.

340

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

c
g

i

kd

b

j e

a

f
h

(a) IMc(RF).

c i
g

k
bd

f

j e h

a
(b) IMcd(RF).

c k
i

j
d e h

f

a

b

g

(c) IMfd(RF).

Figure 8.27: IMc, IMcd and IMfd discover a model in which payment can
occur multiple times concurrently to the remaining parts of the process. IMcd
contains the least silent transitions, followed by IMc and IMfd.

341

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

j e

a

k

g

d
i

h
f

b

c

Figure 8.28: FO(RF). FO discovers a model in which payment can be executed
repeatedly and before/after many activities (i.e. concurrently), however this is
modelled by loopbacks, which the side effects that at points in the model where
such a loopback is not present, payment cannot occur. Furthermore, as soon
as payment occurs, the ‘state’ of the remaining part of the model is lost and
e.g. a new fine notification can be initiated. This model, even though it is not
block-structured and has 31 silent transitions, is easy to grasp as it does not
contain concurrency.

j g

e ka

h

d
bc

f
i

Figure 8.29: α(RF). α discovers a model in which payment is part of a struc-
tural loop, but nevertheless cannot be executed. The model seems simple, but
grasping its behaviour is challenging due to soundness issues.

342

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

a

b

c

d

e
f

g

hi

j

k

Figure 8.30: HM(RF). HM discovers a model in which payment is part of a
loop, and can be executed concurrently to some of the other activities. We con-
sider this model more complex than the preceding models, due to the complex
routing resulting from the 33 silent transitions: as the model is not block-
structured and contains both dead silent transitions and silent transitions with
duplicate effects, the behaviour and intention of the model are obfuscated.

Figure 8.31: CPM(RF). CPM discovers an oversimplified model in which
payment can be executed only once, in exclusive choice with sending the fine.

343

8

E
va
lu
at
io
n

8.3 Log-Quality Dimensions

103,392

2,933

46,952

79,757

606

72,334

3,327

829

391

57,182

290

281

2,915

16

1,538

150,370

67,201

Create Fine
150,370

Send Fine
103,987

Insert Fine Notification
79,860

Add penalty
79,860

Send for Credit Collection
59,013

Payment
77,601

Insert Date Appeal to Prefecture
4,188

Send Appeal to Prefecture
4,141

Receive Result Appeal from Prefecture
999

Notify Result Appeal to Offender
896

Appeal to Judge
555

Figure 8.32: FD(RF). FD discovers a model in which payment is part of a loop
(FD models do not represent concurrency). Due to the absence of concurrency,
the model seems easy to understand. However, conclusions should be drawn
with care. For instance, the model suggests that after (partial) payment, no
penalty can be added, as ’add penalty’ is outside the loop of ’payment’ denoted
by red lines. However, in 4,112 of the 150,000 cases, penalties are added after
payment. As conformance checking techniques cannot be applied, verifying the
absence of this behaviour involves filtering the log and disable all other model
filters.

344

8
E
va
lu
at
io
n

8.3 Log-Quality Dimensions

8.3.4 Conclusion

In this section, we aimed to answer RQ.2, i.e. whether discovery algorithms are able
to balance log-model quality criteria using their default parameters, and how discovery
algorithms handle real-life event logs. We performed two experiments: a quantitative
and a qualitative experiment.

In the quantitative experiment, we compared discovery algorithms using cross vali-
dation and measures fitness, log precision and simplicity. Of the 9 real-life event logs,
the directly follows-based algorithm IMfd and IMd performed well, being two of the
few algorithms that were pareto optimal for 9 and 8 logs, which might be due to these
algorithms using less information of the event log, i.e. only the directly follows graph of
the overall event log, than the algorithms of the IM framework. The best performing
algorithms of the IM framework were IM and IMa, which were pareto optimal for 7
event logs. SM was pareto optimal for one log.

However, pareto optimality does not necessarily correspond to useful models. For
instance, the trace model and flower model were pareto optimal in most cases as well,
even though they do not provide any new information. Therefore, we conducted a second,
qualitative, experiment, in which we applied the discovery algorithms to two of the nine
event logs, and evaluated the discovered models manually. We found that on complicated
real-life event logs, such as BP12, discovery algorithms struggle to discover process models
that pose many restrictions on the behaviour that is expressed by the model, i.e. models
with a high log precision, and are useful for human analysis. For instance, existing
approaches that do not guarantee soundness, e.g. α, ILP, HM and SM, discover models
that pose few constraints on their expressed behaviour (i.e. low log precision) and often
lack easy to understand languages (i.e. not having a proper flow from initial to final
marking, containing deadlocks, etc.). The algorithms of the IM framework and the IMd
framework have difficulties with BP12 as well, however have the advantage of having
well-defined and often easy to understand languages, i.e. clear initial and final markings,
and being free of deadlocks. That is, some algorithms of these frameworks discover
flower models, however every time that a flower model is avoided in recursion, the model
restricts behaviour a little bit more (i.e. has a higher log precision), without losing the
guarantees of a sound (and for some algorithms fitting) model. In contrast, non-soundness
guaranteeing often result in unreadable unclear models in such cases.

The event log RF seems to be easier for discovery algorithms: more algorithms re-
turn models that restrict behaviour. The distinction between block-structured based
algorithms and non-block-structured based algorithms can be made for this log as well:
non-block-structured based models struggle to discover sensible models with easy to un-
derstand languages, while block-structured based algorithms do not suffer from this.

In both experiments, we found that some discovery algorithms did not return bounded
and weakly sound models, or in some cases no models at all, e.g. the α algorithm did not
return a single model that was bounded and weakly sound in the quantitative experiment,
such that our measures could be applied.

In these experiments, we did not address human interaction with the algorithms,
nor the influence of parameter settings on the discovered models. To evaluate how well
algorithms are able to balance the log measures, a future experiment could include the
algorithms at different parameter settings. Such an experiment would also provide insight
in the variability in results depending on the parameter settings.

Future work 8.1: Perform experiment to investigate the influence of parameter settings
on discovery algorithms.

345

8

E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

In the next section, we will evaluate how discovery algorithms provide rediscoverabil-
ity under log containing deviating, infrequent or incomplete behaviour.

8.4 Rediscoverability & its Challenges

A large part of this thesis addresses challenges of rediscoverability. That is, Chapter 4
introduced a formal framework for the influence of rediscoverability on abstractions,
Chapter 5 studied these abstractions in more detail and in Chapter 6, we introduced
discovery algorithms and showed their rediscoverability. However, all the given redis-
coverability proofs assumed that the event log had the same abstraction as the system
model that underlies the event log. For instance, for the basic IM, if the system is of Cb

(i.e. consists of four basic operators and contains no duplicate activities, etc), and the
event log fits the system has the same directly follows graph as the system, then IM will
rediscover the system. Several factors might challenge these assumptions, as discussed in
Section 3.4.2: the system might not be of Cb, and the event log might contain infrequent
and deviating behaviour, or might not even be directly follows complete. In this section,
we evaluate how these types of behaviour influence rediscovery (RQ.3).

In the previous section, we reported on experiments performed using single real-life
logs with fixed characteristics whose underlying systems presumably are outside the class
of Cb. In this section, we perform a more controlled experiment: we use multiple event
logs generated from systems of Cb, in order to evaluate RQ.3. That is, we evaluate how
discovery algorithms handle the following event log anomalies: incomplete behaviour, i.e.
absence of information in the event log, deviating behaviour, i.e. presence of behaviour
that is not described by the system, and infrequent behaviour, i.e. little-used parts of the
system. We take systems of Cb and see how several discovery algorithms perform under
these challenges.

In the execution of these experiments, we found that non-block-structured algorithms
(e.g. α, Tα, SM, HM and FO) did not reliably return bounded weakly sound models,
which corresponds to our findings of Section 8.3 (see tables 8.3 and 8.3). Therefore, we
excluded these algorithms from this experiment. The models returned by FD and CPM
lack clear semantics, thus these tools were excluded as well. Furthermore, due to the
random nature of ETM and its limited scalability, this algorithm had to be excluded as
well. No implementations of CCM and MPM were available to us, so, unfortunately, in
this experiment we could only include the algorithms proposed in this thesis.

We discuss the incompleteness handling experiment in Section 8.4.1, and in Sec-
tion 8.4.2, we discuss the experiment of infrequent and deviating behaviour handling.

8.4.1 Incomplete Behaviour
To answer the first part of RQ.3, we investigate how incompleteness, i.e. the absence of
behaviour that is necessary for algorithms to rediscover systems, influences rediscovery.
To this end, we take a system, generate a base event log, add an increasing number of
traces, and assess at which log size the system is rediscovered.

Set-up

The test procedure is illustrated in Figure 8.33: we reuse the 10 randomly generated
systems having 32 activities of the scalability experiment (Section 8.2), as these trees can
be handled well by all algorithms.

346

8
E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

event logsystem model

discovergenerate

(increase size until recall is 1)

recall
system-precision

Figure 8.33: Set-up of the incompleteness experiments.

Let n denote the number of traces, which initially is 1. That is, from each system we
generate n traces and discover a model with all discovery algorithms under consideration.
Second, we apply the PCC framework to measure recall and system precision (see Sec-
tion 2) of the discovered models with respect to their randomly generated systems using
a model-model comparison. The reported recall and system precision are the averages
over all 10 logs and systems for a particular algorithm.

Finally, the experiment is repeated with n increasing 2-fold in each step, up to a
maximum of 213 � 8912 traces. We chose this maximum as this is the first step in which
all logs were directly follows complete and consequently all algorithms that rediscovered
all systems managed to do so at this number of traces. We are particularly interested in
the smallest n for which an algorithm scored 1 for both recall and system precision.

Figure 8.34 shows the completeness of the logs in terms of directly follows graphs.
That is, the sizes of the directly follows graph of the systems were compared to the
sizes of the directly follows graphs of the generated logs, in which the size of a directly
follows graph is the count of edges, start activities and end activities, while disregarding
edge/activity frequencies of the log. All event logs were directly follows complete to their
systems at 8912 traces.

Results

Figures 8.35 and 8.36 show the results of the incompleteness experiments. The results
for IMc and IMcd could not be obtained, as they timed out. Each graph shows the
influence of the number of traces on the discovered models, for a particular discovery
algorithm. The first time an algorithm scored perfect is denoted with a vertical dashed
line. Notice that the graphs have been truncated in the y-scale at 0.55 to better show
differences.

347

8

E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

number of traces

ac
tiv

ity
co
m
pl
et
en
es
s

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

number of traces

di
re
ct
ly

fo
llo
w
s
co
m
pl
et
en
es
s

Figure 8.34: Completeness of logs in the incompleteness experiment. The
dashed line denotes where the measure hit 1.

Discussion

The flower model (FM) and trace model (TM) provide baselines, and illustrate the com-
pleteness and behaviour restrictions of the systems. For instance, the recall of FM pro-
vides a measure for the activity completeness of the generated logs. From this, we derive
that 128 traces were necessary for all logs to contain at least each activity once. Fur-
thermore, FM provides a baseline for system precision, as a flower model allows for all
behaviour, and therefore FM shows how much behaviour the systems actually restrict
when compared to all behaviour: in this experiment, the systems on average allow for
about 60% of all behaviour (as measured by the PCC framework).

The recall of the trace model (TM) shows what part of the behaviour of the models
was present in the generated event logs, i.e. this indicates the completeness of the logs
generated in this experiment, and would reach 1 in the limit. This measure illustrates
the need and use cases for process discovery algorithms: choosing the trace model would
yield a high system precision, but just describes the event log and makes no attempt
to represent the system well. Consequently, comparing recall of other algorithms to
TM provides an idea of their generalisation, i.e. that these other algorithms are able
to rediscover the system without this behaviour. This illustrates the need for discovery
algorithms to generalise and not simply represent the behaviour in the event log: for
these systems of only 32 activities, event logs of even 10,000 traces do not contain all
behaviour.

The results for IM, IMf, IMa, IMfa, IMlcand IMflc are similar: fitness rises
quickly (as over-estimations of behaviour, i.e. fall throughs are discovered) with the num-
ber of traces, and system precision increases until 2048, when the languages of all systems
are rediscovered. In this experiment, the infrequent and deviating behaviour filtering of
IMf, IMfa and IMflc has little influence in presence of incomplete behaviour. That
is, filtering seems not to influence fitness negatively, even though incomplete logs could
contain behaviour that is prone to be filtered.

The directly follows based algorithms IMd and IMfd of the IMd framework need
more traces to rediscover all systems (8912 vs 2048), and require the directly follows

348

8
E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IM

100 101 102 103 104

0.6

0.8

1

IMf

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMa

100 101 102 103 104

0.6

0.8

1

IMfa

100 101 102 103 104

0.6

0.8

1

number of traces

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMlc

100 101 102 103 104

0.6

0.8

1

number of traces

IMflc

recall; system precision

Figure 8.35: Results of incompleteness experiments (1): recall/log precision
vs increasing numbers of traces. A dashed line denotes reaching perfect fitness
and log precision.

349

8

E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMd

100 101 102 103 104

0.6

0.8

1

IMfd

101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMc

101 102 103 104

0.6

0.8

1

IMcd

100 101 102 103 104

0.6

0.8

1

number of traces

re
ca
ll/
sy
st
em

pr
ec
is
io
n

TM

100 101 102 103 104

0.6

0.8

1

number of traces

FM

recall; system precision

Figure 8.36: Results of incompleteness experiments (1): recall/log precision
vs increasing numbers of traces. A dashed line denotes reaching perfect fitness
and log precision.

350

8
E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

graphs to be complete before rediscovery is achieved. This highlights that these algo-
rithms use less information, i.e. only the directly follows graph, than the algorithms of
the IM framework, and hence have less chance to deal with incompleteness.

In sections 6.3 and 6.6.5, we introduced two algorithms that were focused on handling
incomplete behaviour: IMc and IMcd. The results of this experiment shows both the
strength and the weakness of these algorithms: both IMc and IMcd rediscover systems
even in case of incomplete event logs and require less traces to rediscover all systems
than the other algorithms (1024 vs 2048 traces), thus these algorithms are more robust
to incompleteness. However, these algorithms did not discover models for all event logs.
For instance, for the logs of 512 traces, both IMc and IMcd discovered models for 9
out of the 10 event logs, but could not discover a model for the remaining log in one
month of running time, hence the gap in Figure 8.36 for log size 512. This illustrates
their main weakness: both algorithms are exponential in the number of activities. A
manual inspection revealed that IMc rediscovered the 9 systems, i.e. it might be that
IMc would rediscover all systems at only 512 traces.

In answer of RQ.3, we conclude that all algorithms of the IM framework and IMd
framework seem to provide rediscoverability, even if not all behaviour is present in the
event log. The IMd framework algorithms (except IMcd) require the event log to con-
tain the same directly follows graph as the system, which corresponds to theorems 6.51
and 6.52. The IM framework algorithms (except IMc) use entire event logs and provide
rediscoverability on smaller logs than the algorithms of the IMd framework, which can
only use directly follows graphs. That is, in addition to theorems 6.15 and 6.18, we have
shown experimentally that these algorithms can provide rediscoverability, even if the log
assumption that the log is directly follows complete from these theorems has not been
met.

The algorithms that were introduced to handle incompleteness, i.e. IMc and IMcd,
provide rediscoverability at even smaller event logs: in our experiment, the logs could be
half the size, and presumably a quarter of the size.

8.4.2 Deviating & Infrequent Behaviour

To answer the second part of RQ.3, we investigate how infrequent and deviating be-
haviour, i.e. the presence of little-occurring behaviour and behaviour not according to
the system, influences rediscovery. For the purposes of this experiment, we consider
infrequent and deviating behaviour as one. To this end, we generate a base event log
from each system, add an increasing number of deviating traces, and assess whether the
system was rediscovered.

Set-up

The test procedure is illustrated in Figure 8.37. We reuse the 10 systems of the in-
completeness experiment. To enable a fair comparison, we generate an event log (L146)
having 8192 traces from each of these 10 systems, such that this log is large enough to
enable rediscovery for all algorithms (see the incompleteness experiment in Section 8.4.1).

To ensure that incompleteness does not influence the results of this experiment, we
duplicate L146 by including each of the 8192 traces twice. During the experiment, we
ensure that the used event log retains all information of L146 by only inserting deviations
in the duplicated traces. In Figure 8.37 we would only add deviating behaviour below
the dashed line.

351

8

E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

L146 a

deviating log

system model

generate double

add
deviating
events discover

recall
system precision

Figure 8.37: Set-up of the deviating & infrequent behaviour experiment.

The experiment consists of several rounds, in each of which a number n of deviations
is inserted in each of the 10 base logs. A deviation is introduced by inserting an arbitrary
event in an arbitrary trace at an arbitrary position. To these 10 deviating event logs, the
discovery algorithms are applied and the resulting models are compared to the 10 systems
using the PCC framework: recall and system precision are measured using k � 2.

In the first round, 1 deviation is inserted (n � 1). After each round, n is multiplied
by 2, up to a maximum of 213 � 8192.

Results

Figures 8.38 and 8.39 show the results. Each graph shows the influence of the number
of deviations on the discovered models, for a particular discovery algorithm. Notice that
the graphs have been truncated in the y-scale at 0.55. We could not obtain measures for
most of the logs for the incompleteness handling algorithms (IMc, IMcd), as on some
deviating logs, the run time of these algorithms exceeded a week.

Discussion

The recall of the trace model (TM) shows the behavioural completeness of the generated
event logs, i.e. the base logs contain on average 94% of the behaviour of the systems (as
measured by the PCC framework). Recall of TM is not constant but increases slightly
with the addition of more arbitrary events, as it is not guaranteed that each inserted
event is a deviation. However, the added events have a considerable influence on system
precision, as witnessed by the system precision of TM, i.e. the addition of a deviation
increases behaviour in the discovered trace models, which decreases precision of these
discovered models with respect to the original systems. The flower model (FM) contains
a baseline for system precision and a measure for the restrictions the 10 original systems
pose on the event log, i.e. these systems allow for about 60% of the behaviour (according
to the measure of the PCC framework) of all behaviour.

352

8
E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IM

100 101 102 103 104

0.6

0.8

1

IMf

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMa

100 101 102 103 104

0.6

0.8

1

IMfa

100 101 102 103 104

0.6

0.8

1

number of deviating events

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMlc

100 101 102 103 104

0.6

0.8

1

number of deviating events

IMflc

recall; system precision

Figure 8.38: Results of the deviating behaviour experiment (1): each graph
shows how an algorithm handles deviating events on average over 10 mod-
els/logs.

353

8

E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMd

100 101 102 103 104

0.6

0.8

1

IMfd

100 101 102 103 104

0.6

0.8

1

re
ca
ll/
sy
st
em

pr
ec
is
io
n

IMc

100 101 102 103 104

0.6

0.8

1

IMcd

100 101 102 103 104

0.6

0.8

1

number of deviating events

re
ca
ll/
sy
st
em

pr
ec
is
io
n

TM

100 101 102 103 104

0.6

0.8

1

number of deviating events

FM

recall; system precision

Figure 8.39: Results of the deviating behaviour experiment (2): each graph
shows how an algorithm handles deviating events on average over 10 mod-
els/logs.

354

8
E
va
lu
at
io
n

8.4 Rediscoverability & its Challenges

The graphs of most IM framework algorithms (i.e. IM, IMf, IMa, IMfa, IMlc,
IMflc) are of a similar structure and consist of two phases (see Figure 8.38): in the first
phase system precision drops and recall is high and rather stable, while in the second
phase, system precision increases a bit at the cost of recall for IMf, IMfa, IMd, IMfd
and IMflc. The first phase ends at around 100 - 1000 inserted deviations, which is
substantial compared to the 26,000 events on average in the 10 event logs. In the second
phase, the graphs show that behaviour is being filtered: recall drops below the recall of
TM, so these algorithms are excluding non-deviating behaviour from the models they
discover. Notice that this second phase is almost absent in IM, IMa and IMlc, and
is most pronounced in IMf, IMfa and IMflc. This shows that in these three last
algorithms, the filtering of behaviour works as intended, i.e. to regain system precision,
however at a loss of recall. All six algorithms find false structures and even though
they are trading recall for system precision, it is clear that the deviating events are
overwhelming the algorithms.

The algorithms of the IMd framework perform comparably to the algorithms of
the IM framework in the first phase, i.e. have comparable recall and system precision
levels, but in the second phase, i.e. after 100-1000 inserted deviations, IMfd does not
exhibit the increase in system precision and drop in recall. We believe this is due to
the directly follows graphs’ ability to hide some deviating events, i.e. a deviating event
does not necessarily introduce a deviating edge in a directly follows graph. However, in
the second phase, the directly follows graphs contain too little information to allow for
deviating and infrequent behaviour filtering.

The results show that the basic algorithms IM, IMa, IMd and IMlc are sensitive
to the added deviations: they include all behaviour of the event log and try to generalise
over this behaviour to discover a process tree (corollaries 6.11, 6.33 and 6.39), which
manifests in the results as recall being higher than the recall of TM. However, this comes
at the expense of a quickly dropping system precision, as the models allow for more and
more behaviour. The infrequent and deviation filtering algorithms IMf, IMfa, IMfd
and IMflc perform better: they keep recall at comparable levels, while system precision
is higher than system precision achieved by the basic algorithms.

Of the infrequent behaviour filtering algorithms, IMf, IMflc and IMfa achieve
the highest system precision. These three algorithms score equal on system precision,
however IMfa achieves the highest system precision for 4 and 8 deviations, while IMf
and IMflc achieve the highest system precision for 128 and 256 deviations. In each
model, IMfa discovers on average 1.0 _-node and 0.01 Ø-node, while the systems did
not contain these constructs, while IMf does not discover these constructs. Next, IMfd
follows as the miner with the highest average system precision. IMf and IMflc are
very similar algorithms as the event logs in this experiment do not trigger the life cycle
handling capabilities of IMflc and IMlc (IMclc has not been implemented yet and
thus not been included), which is reflected in the similar recall and system precision
scores for these algorithms.

In answer of RQ.3 and in confirmation of Section 3.3, we conclude that infrequent
and deviating behaviour indeed challenge rediscoverability: even a small number of de-
viations can prevent rediscoverability for all algorithms. Nevertheless, small numbers of
deviations result in models that are close (in recall and system precision) to the systems,
and large numbers of deviations result in models with low recall and system-precision
values. Furthermore, in presence of large numbers of deviations, some algorithms (IMf,
IMa, IMfa, IMflc) seem to tend to not distinguish infrequent and deviating behaviour
and erroneously filter the former. However, by applying filtering techniques in algo-
rithms, models can be discovered that are closer to the original systems than the models

355

8

E
va
lu
at
io
n

8.5 Evaluation of Log-Conformance Checking

discovered by non-filtering algorithms.
In this experiment, we included a single type of deviation, i.e. the addition of extra

events, which, due to the representational bias of process trees in Cb, were deviations from
the system. Other types of deviations that could occur in a system are for instance the
removal of events or the swap of two events. We expect that performing the experiment
described in this section using these deviations would lead to similar conclusions, however
it would be interesting to study the influence of these types of deviations on rediscovery
in more detail for particular algorithms.

Future work 8.2: Identify and analyse types of deviations and perform experiments to
investigate the influence of these deviations on rediscovery.

8.5 Evaluation of Log-Conformance Checking

In the previous sections, we have evaluated several aspects of process discovery algo-
rithms: log-quality measures, scalability, and handling infrequent, deviating and incom-
plete behaviour. In this section, we evaluate the conformance checking techniques intro-
duced in Chapter 7 (RQ.5). That is, we evaluate the scalability of the PCC framework
with respect to other techniques, and consider its results quantitatively. The research
question is: could the PCC framework replace the existing techniques to determine which
of two models has the highest log precision and fitness with respect to an event log?

8.5.1 Set-up
In this experiment, we take a selection of the real-life event logs described in Section 8.3.1:
BP11 for its complexity in activities, RF for its many traces, and BP12 for the complexity
of the models discovered by algorithms (see Section 8.3.3). To be able to perform a quali-
tative analysis between the conformance measures, we also included sublogs of BP12, i.e.
the activities prefixed by A, O and W. To these event logs, we apply the top-performing
discovery algorithms of Section 8.3.2, i.e. IMf and IMfd. Furthermore, we include the
flower model (FM) as a baseline.

On the combinations of event logs and discovered models, we apply the log-conformance
techniques that measure fitness [10] and log precision [20] using alignments (we used the
alignments from ProM 6.6). Furthermore, we apply the PCC framework, using both
k � 2 and k � 3. We record the runtime of the computation and whether the log-
conformance technique returns a result. Notice that for practical reasons (e.g. manually
interfacing with the ProM GUI, non-exclusive use of hardware), the runtime measure is
approximate: the results will show a clear difference nevertheless. The computations had
40GB of RAM available.

In the previous experiments (e.g. Section 8.3.3), we showed that FM could be used as a
baseline for log precision, as FM returns models that allow for any behaviour. Therefore,
in this section, we scale the log-precision measures using this baseline, such that the
scaled log precision denotes the gain in precision compared to the flower model for the
particular log:

scaled log precision � 1�
1� log precision of model

1� log precision of flower model

This scaling is performed for both the log-precision measure of the PCC framework and
the existing alignment-based measure [20].

356

8
E
va
lu
at
io
n

8.5 Evaluation of Log-Conformance Checking

Table 8.4: Log-conformance techniques compared on real-life logs.
existing techniques PCC framework, k � 2 PCC framework, k � 3

fitness log precision [20] time fitness log precision time fitness log precision time
[10] scaled measure scaled scaled

BP11 IMf no measures obtained 0.627 0.764 0.472 25s 0.981 0.731 0.473 53h
IMfd no measures obtained 0.997 0.766 0.477 1m 0.998 0.660 0.333 49h
FM 1.000 0.002 0.000 5h 1.000 0.553 0.000 25s 1.000 0.490 0.000 54h

RF IMf 0.992 0.618 0.463 2.5m 0.991 0.963 0.909 ¤1s 0.986 0.899 0.976 ¤1s
IMfd 0.736 0.482 0.271 10s 0.803 0.918 0.798 ¤1s 0.684 0.822 0.646 ¤1s
FM 1.000 0.289 0.000 ¤5s 1.000 0.594 0.000 ¤1s 1.000 0.497 0.000 ¤1s

WA3 IMf 0.952 - - 5h+ 0.992 0.729 0.203 ¤1s 0.988 0.624 0.166 1m
IMfd no measures obtained 0.999 0.769 0.321 5s 0.996 0.663 0.253 2m
FM 1.000 - - 5h+ 1.000 0.660 0.000 10s 1.000 0.549 0.000 2m

BP12 IMf 0.967 0.364 0.290 20m 0.978 0.668 0.092 ¤1s 0.940 0.541 0.115 ¤1s
IMfd 1.000 0.189 0.095 25m 1.000 0.693 0.161 ¤1s 0.993 0.543 0.119 ¤1s
FM 1.000 0.104 0.000 30m 1.000 0.634 0.000 ¤1s 1.000 0.481 0.000 ¤1s

BP12|A IMf 0.995 0.606 0.940 ¤1s 0.999 0.967 0.931 ¤1s 0.999 0.920 0.856 ¤1s
IMfd 0.816 1.000 1.000 ¤1s 0.700 1.000 1.000 ¤1s 1.000 0.920 0.856 ¤1s
FM 1.000 0.227 0.000 ¤1s 1.000 0.520 0.000 ¤1s 1.000 0.445 0.000 ¤1s

BP12|O IMf 0.991 0.508 0.351 ¤1s 0.981 0.809 0.407 ¤1s 0.987 0.715 0.382 ¤1s
IMfd 0.861 0.384 0.187 ¤1s 0.862 0.794 0.360 ¤1s 0.998 0.626 0.189 ¤1s
FM 1.000 0.242 0.000 ¤1s 1.000 0.678 0.000 ¤1s 1.000 0.539 0.000 ¤1s

BP12|W IMf 0.876 0.690 0.553 ¤1s 0.875 0.836 0.611 ¤1s 0.762 0.793 0.637 ¤1s
IMfd 0.914 0.300 -0.010 ¤1s 0.923 0.823 0.581 ¤1s 0.963 0.699 0.473 ¤1s
FM 1.000 0.307 0.000 ¤1s 1.000 0.578 0.000 ¤1s 1.000 0.429 0.000 ¤1s

8.5.2 Results
Table 8.4 shows the results, extended with running times for the techniques. Figure 8.40
shows the results in a plotted form. Figure 8.41 illustrates the complexity of the logs
and the scalability of the PCC framework. Some numbers are missing because the
alignment-based approach could not handle WA3 and BP11.

8.5.3 Discussion
Fitness scores according to the PCC framework (k � 2) differ from the fitness scores
by [10] by at most 0.05 (except for BP12|A and RF of IMfd). For k � 3, the fitness
measures differ more: some are higher, some are lower than for k � 2. Thus, this
experiment suggests that the new fitness measurement could replace the alignment-based
fitness [10] measure, while being generally faster on both smaller and larger logs, though
additional experiments may be required to verify this hypothesis. More importantly, the
PCC framework could handle logs (BP11, WA3) that the existing approach based on
alignments could not handle.

Comparing the scaled log-precision measures, the PCC framework (k � 2) and the
existing approach agree on the relative order of IMf and IMfd for BP12|A, BP12|O and
RF, disagree on BP12 and are incomparable on BP11 and WA3 (IMfd) as the existing
measure did not produce a result. For BP12|W , IMfd performed worse than the flower
model according to [20] but better according to our measure. This model, shown in
Figure 8.42, is certainly more restrictive than a flower model, which is correctly reflected
by our new log-precision measure. Therefore, likely the approach of [20] encounters an

357

8

E
va
lu
at
io
n

8.5 Evaluation of Log-Conformance Checking

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

PCC framework k � 2

fit
ne
ss

[1
0]

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

PCC framework k � 3

(a) Fitness.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PCC framework k � 2

lo
g
pr
ec
is
io
n
[2
0]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PCC framework k � 3

(b) Log precision.

Figure 8.40: Results of the conformance-checking experiment, showing how
the PCC framework using k � 2 and k � 3 correlates to fitness [10] and log
precision [20]. We scaled the fitness graphs to improve readability.

358

8
E
va
lu
at
io
n

8.5 Evaluation of Log-Conformance Checking

101 102

103

104

105

BP11

RF

WA3

BP12BP12|A,W

BP12|O

activities

tr
ac
es

Figure 8.41: Result of a scalability experiment for the PCC framework
and [19]. The latter could not obtain a result on the logs WA3 and BP11,
which have more activities than the other logs in this experiment.

inaccuracy when computing the precision score. For BP12, precision [20] ranks IMf
higher than IMfd, whereas our precision ranks IMfd higher than IMf. Inspecting the
models, we found that IMf misses one activity from the log while IMfd has all activities.
Apparently, our new measure penalises more for a missing activity, while the alignment-
based existing measure penalises more for a missing structure.

Comparing the log-precision measures by k � 2 and k � 3 of the PCC framework,
k � 2 measured a consistently higher log precision than k � 3. This is to be expected,
as k � 3 takes more information into account and is therefore a ‘stricter’ measure (see
Section 7.3). However, the k � 2 and k � 3 methods measure scaled log precision
differently: in 10 cases, scaled log precision of k � 2 was higher than of k � 3 and 4
times the other way around. The k � 2 and k � 3 variants agree on the ranking of
the discovered models for all logs except BP11. Thus, this experiment seems to suggest
that it might not be necessary to opt for the more computationally expensive k � 3 in
all cases. For the BP11 log, the k � 2 and k � 3 disagreeing could indicate that the
behaviour in the log is too complex to be captured well by projections of size 2 and 3,
thus one might try a higher k.

This experiment does not suggest that our new measure can directly replace the
existing measures in all cases, but log precision seems to be able to provide an intuitive
categorisation, such as a good/bad precision, compared to the flower model. For instance,
IMf(RF) and IMfd(BP12|A) seem to have a rather good log precision, while IMf(BP12)
and IMf(WA3) seem to have a bad log precision.

In answer of RQ.5, we showed that our new fitness and precision metrics are useful to
quickly assess the quality of a discovered model and decide whether to continue analyses

359

8

E
va
lu
at
io
n

8.5 Evaluation of Log-Conformance Checking

s
r

t
v

w
u

Figure 8.42: IMfd applied to BP12|W . The activities have been encoded as
letters for readability reasons: s = W_Beoordelen fraude, r = W_afhandelen
leads, t = W_Completeren aanvraag, w = W_Valideren aanvraag, v =
W_Nabellen offertes and u = W_Nabellen incomplete dossiers.

with it or not, in particular on event logs that are too large or complex for current
techniques. Furthermore, the PCC framework provided measures much faster in this
experiment.

The PCC framework-measured log precision can also be lower than the log precision
of the flower model. The following example illustrates this: let L � txa, byu be a projected
log and M � a a projected model. Then, technically, their conjunction is empty and
hence both precision and recall are 0. This matches intuition, as they have no trace in
common. This sensitivity to missing activities is inherent to language-based measuring
techniques, as no trace is in the languages of both L and M . Hence, any technique to
measure this differently would need a different notion of language.

In addition to simply providing an aggregated fitness and precision value, both ex-
isting and our new technique allow for more fine-grained diagnostics of where in the
model and event log fitness and precision are lost. For instance, by looking at the sub-
sets a1 . . . ak of activities (in which k determines the size of the subset and consequently
sets a trade-off between speed and accuracy; we limited our experiments to k � 2) with
a low fitness or precision score, one can identify the activities that are not accurately
represented by the model, and then refine the analysis of the event log accordingly. Fig-
ure 8.43 gives an impression how the results of both alignments and the PCC framework
can be projected onto a process model, being IMf(BP12|A): results are projected onto
the activities. In Section 7.1.2, this projection notation was formally introduced.

8.5.4 Evaluation Using the PCC framework
In the previous evaluations of this chapter, we have applied the PCC framework to
perform our experiments. As the log-conformance experiment showed, executing these
experiments with existing techniques would have been challenging, as in total over 2500
log-conformance checking computations were performed. Furthermore, we performed

360

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

(a) Alignments (fitness only).

(b) PCC framework (fitness and log precision).

Figure 8.43: Impression of log-conformance projected to a process model
discovered from BP12|A, as produced by the tools.

3000 model-model conformance checking computations, which are not supported. There-
fore, in support of RQ.5, we conclude that the PCC framework allows for detailed anal-
yses of the model quality achieved by discovery algorithms in the presence of incomplete,
infrequent and deviating behaviour, and for repeated measures such as required for cross
validation.

8.6 Non-Atomic Behaviour

In the previous sections, we have evaluated several aspects of process discovery algo-
rithms: log-quality measures, scalability, and handling infrequent, deviating and incom-
plete behaviour. In this section, we address RQ.4, i.e. how discovery algorithm handle
non-atomic behaviour (i.e. life cycle information) in event logs.

In Section 3.4, we introduced several concepts to describe the relation between event
log or system model and a discovered model: fitness, recall, system precision and log
precision. However, these concepts have not been lifted yet to non-atomic behaviour,
and consequently, the PCC framework has not been designed to handle adapted yet
to handle non-atomic event logs and process models, thus we approach this experiment
qualitatively. That is, we consider an artificial and a real-life event log, apply both
atomic and non-atomic behaviour handling algorithms, and assess the discovered models
manually.

The only other non-atomic behaviour handling algorithms known to us are Tα and
the commercial FD and CPM, which are all included in this experiment. Furthermore, we
include the newly introduced algorithms IMlc and IMflc (see sections 6.5.2 and 6.5.3).
The algorithm IMclc (Section 6.5.3) has not been implemented yet. To illustrate the
need for specialised algorithms to handle non-atomic event logs, we include HM, IMf
and IMa as representatives.

361

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

^

	

τc

	

τb

	

τa

(a) IMap ~L148q.

^

cba

(b) IMfp ~L148q

^

Ø

~c~b

~a

(c) IMlcp ~L148q �
IMflcp ~L148q

a

b

c

(d) HMp ~L148q

664 680

648 692

666

353

343

b
2,000

a
2,000

c
2,000

(e) FDp ~L148q

Figure 8.44: Results of the non-atomic artificial-log experiment, considering
event names as activities.

8.6.1 Artificial Log

The artificial log we consider illustrates the distinction of interleaved and concurrent
behaviour. The log, ~L148, consists of 1000 traces generated from the process tree M149 �
^

Ø

~c~b

~a

, which expresses that a can be executed concurrently to all activities, however b

and c cannot overlap in time and are thus interleaved. We chose an event log with 1000
traces to take filtering steps of discovery algorithms out of the equation.

In this experiment, we consider two ways of handling non-atomic logs by transforming
events into activities. The first way is to only consider the event name, e.g. “a”, as the
activity. Consequently, the life-cycle information in the trace is ignored, e.g. the non-
atomic trace xas, acy will be interpreted as the atomic trace xa, ay by discovery techniques
that are not aware of life-cycle information (see Section 6.5.1). This way is used by
default in the algorithms introduced in this thesis. The second way is to consider the
combination of the life-cycle transition and the event name, e.g. “ac”, as the activity.
Consequently, discovery algorithms might produce inconsistent models, e.g. as and ac
might be unrelated in the model. This way is used by default in some other algorithm
implementations, such as HM and α. Other ways to handle atomic event logs include
the filtering of start or completion events, which is outside the scope of this experiment.

362

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

^

Ø

Ñ

cccs

Ñ

bcbs

Ñ

acas

(a) IMapL148q.

^

cccsbcbsÑ

acas

(b) IMfpL148q

a+completea+start b+complete
b+startc+complete

c+start

(c) HMpL148q

Figure 8.45: Results of the non-atomic artificial-log experiment, considering
life-cycle transitions and event names as activities.

We first consider the models discovered by algorithms on p ~L148 using event names
as activities. IMa discovers the model shown in Figure 8.44a. Even though this model
is perfectly fitting, it misses the non-interleaved relation between b and c, thus system
and log precision are lower. Furthermore, as each start event is considered an activ-
ity by these algorithms, the activities are all part of loop constructs. Notice that even
though IMa supports the interleaved operator, the directly follows abstraction used by
these algorithms does not distinguish concurrent from interleaved behaviour in case the
behaviour consists of single activities. The filtering algorithm IMf filters behaviour and
prevent these loops from appearing, however also does not discover the interleaved rela-
tion between b and c (see Figure 8.44b). FD discovers the model shown in Figure 8.44e,
which suffers from overfiltering: a trace in this model can start with a b and end with
a c only, while traces in the log start and end with all activities. Furthermore, c is put
in a loop and it is not possible to execute c directly after b. HM discovers a model
(Figure 8.44d) that is similar to the model discovered by FD, however a and b can be
repeatedly executed. In contrast, the life cycle handling algorithms IMlc and IMflc are
able to distinguish this behaviour and rediscover the process treeM149 (see Figure 8.44c).

Second, we consider the models discovered by algorithms using life-cycle information
and event names as activities. IMa discovers the model shown in Figure 8.45a, which
corresponds to an expanded version of M149 perfectly. However, IMf Figure 8.45b is
unable to discover the interleaved structure and discovers an inconsistent model, as e.g.
bs can be executed after bc. This illustrates that even an algorithm that guarantees
soundness and fitness can be challenged by non-atomic logs and the need for dedicated
algorithms. HM (Figure 8.45c) discovers a model that could be consistent, depending
on the position of the initial marking, e.g. when putting the initial token left of c+start.
However, this model does not capture the concurrency between a and the combination of
b and c, and does not capture the interleaving of b and c. Unfortunately, we were unable
to load this artificial log into ProM 5, and therefore we could not apply Tα.

363

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

8.6.2 Real-Life Log.
The real-life event log we consider is BP12 [56], which contains both atomic and non-
atomic behaviour: the activities prefixed with A and O are atomic, while the activities
prefixed with W are non-atomic. We consider the full log, and the projection onto the
W activities.

Full Log. The activity names have been replaced by letters as follows:

a A_ACCEPTED b A_ACTIVATED
c A_APPROVED d A_CANCELLED
e A_DECLINED f A_FINALIZED
g A_PARTLYSUBMITTED h A_PREACCEPTED
i A_REGISTERED j A_SUBMITTED
k O_ACCEPTED l O_CANCELLED
m O_CREATED n O_DECLINED
o O_SELECTED p O_SENT
q O_SENT_BACK r W_Afhandelen leads
s W_Beoordelen fraude t W_Completeren aanvraag
u W_Nabellen incomplete dossiers v W_Nabellen offertes
w W_Valideren aanvraag x W_Wijzigen contractgegevens

Figure 8.46 shows the result of applying IMf to BP12, while Figure 8.47 shows the
result of IMflc and IMlc, all of these as Petri nets.

A manual inspection revealed the differences between these algorithms: both first
discover a sequential cut between two activities and the remainder of the activities.
When recursing on the remainder, both algorithms use the strictTauLoop fall through,
which splits traces on every occurrence of an end activity followed by a start activity.
Both algorithms split traces, however IMflc splits less traces than IMf, due to the
requirement that the log needs to remain consistent. That is, in several splits performed
by IMf, activity executions (i.e. combinations of corresponding start and completion
events) are split, as start events get separated from their completion events. Furthermore,
besides start and completion events, the event log contains “schedule” events, which are
ignored by IMflc but considered activity executions by IMf, as IMf is not aware of
life-cycle information.

The model discovered by IMa (Figure 8.48) differs from the model returned by IMf
in details.

We also applied HM, whose model is shown in Figure 8.49. This model is weakly
sound, i.e. there is a path to the final marking, but all activities below the red dashed
line cannot be part of any trace, as from this part there is no path to the final marking.
Furthermore, the model contains concurrency splits, but no concurrency joins. Moreover,
below the red dashed line there is no clear end place, thus even though some information
can be derived from this part of the model manually, it is not part of the language of
the model. Similarly, the model discovered by Tα (Figure 8.50) contains many features
that make determining its language difficult: dead parts, token generators, unconnected
places, etc. Furthermore, where all other algorithms discovered that the process always
starts with A_SUBMITTED (j) followed by A_PARTLYSUBMITTED (g), Tα does not
discover this structure and does not restrict execution of A_PARTLYSUBMITTED (g)
at all.

However, without a proper framework to evaluate these models, we can only conclude
that the model discovered by IMf expresses more structure and limits behaviour more
than the model discovered by IMflc, which expresses a flower model, thus presumably
the first has a higher log precision and is preferable.

364

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

To illustrate the drawbacks of using life-cycle information and event names as activ-
ities, we included the result of HM in Figure 8.51. Notice that the letters in this model
differ from the letters in the other models. As this model contains over twice as many
activities and does not discard the ‘schedule’ events, it is much more complex. Further-
more, manual analysis reveals that it is not consistent, which clearly shows the need for
dedicated algorithms.

365

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

j g

e

r

h

s

d
t

u q

w

b

c

i

k x
m

o

f

l

vp

Figure 8.46: IMf(BP12)

j
g

w

b

p
e

c
o

r
t

d

a

q
s

k
f

i

m
u

v

h
l

n

Figure 8.47: IMlc(BP12) = IMflc(BP12)

j g

r

h

s

t
w

e
d

u
k

b

i
c
n

x

a

q

v

l

o

f
m p

Figure 8.48: IMa(BP12)

366

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

w

l

x

m

n

o p

q

r

s

t
a

bc

d

e

f

g

h

i

j

u

v

k

Figure 8.49: HM(BP12)

367

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

w

t

s

r

v

u

j

l

b

k

c

i

q

p

m

f

o

a

h
g

n d
e

x

Figure 8.50: Tα(BP12)

368

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

w

x

y

z

aa

ab

ac

ad

ae

af

k

ag

l

ah

m

ai

aj

n
o

p

q

r

s

t

a

b

c

d

e

f

g

h

i

j u

v

Figure 8.51: HM(BP12) using life-cycle information and event names as ac-
tivities.

369

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

W Activities. In real-life process mining projects, a next step could be to limit the
scope of the analysis. For instance, focus could shift to the W-prefixed activities, as these
appear in the event log as start, completion and schedule events. We filtered the log to
only contain W-prefixed activities (BP12|W).

The activity names have been replaced by letters as follows:

a W_Afhandelen leads b W_Beoordelen fraude
c W_Completeren aanvraag d W_Nabellen incomplete dossiers
e W_Nabellen offertes f W_Valideren aanvraag
g W_Wijzigen contractgegevens

Figures 8.52 to 8.58 show the results.

Conclusion. In answer of RQ.4, we conclude that the non-atomic behaviour handling
algorithms have the potential to discover better models on event logs that contain non-
atomic behaviour, however due to their stricter requirements on the event log, i.e. the
log should be consistent in all iterations, might also overlook information in the event
log that other algorithms can capture. A point of discussion that remains is the lack of
quantitative methods to compare non-atomic event logs and non-atomic process models.
Furthermore, in this experiment we applied process discovery techniques using their
default settings to unfiltered event logs. In a process mining project, one would try
different process discovery parameters and filters to achieve a satisfying model.

370

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

a
c

b

e

d
g

f

Figure 8.52: IMa(BP12|W). The IMa algorithm clearly suffers from ignor-
ing the life-cycle information, as this model expresses just a few constraints
compared to a flower model. Notice that this model looks more complex than
it would in process tree notation: the silent transitions in the left part of the
model denote an inclusive choice split.

a c

b
e f

g

d

Figure 8.53: IMf(BP12|W). The model discovered by IMf clearly suffer
from ignoring the life cycle information, as this model express little more than
a flower model, and even less than the model discovered by IMa.

ab
c

f

e

d

Figure 8.54: IMflc(BP12|W). The model discovered by IMflc is highly
structured and contains a lot of information, e.g. there are no loopbacks at all.

371

8

E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

a

b

c e d

f

Figure 8.55: IMlc(BP12|W). IMlc lacks the filtering of IMflc and its model
poses few constraints on its behaviour, i.e. closely resembles a flower model.

a
b

c d
e f

g

Figure 8.56: HM(BP12|W). If the initial marking of the model discovered by
HM lies somewhere in the loop of a, b and c, the model is likely weakly sound
and exhibits lots of structure.

e

f

c
b

a

d

g

Figure 8.57: Tα(BP12|W). This model discovered by Tα is dead, i.e. from
the initial marking not a single transition can be fired.

372

8
E
va
lu
at
io
n

8.6 Non-Atomic Behaviour

l

m

n
o

p

qr

s

a
b

cd
e

f
g

h
i

j

k

Figure 8.58: HM(BP12|W) using life-cycle information and event names as
activities. HM discovers a model that is close to useless: even though it seems
to exhibit some structure and seems to be weakly sound, it has neither an
initial nor a final marking. Guessing these markings has a large influence on
the language of the model, thus the language of the model is completely unclear.
Notice that the letters do not match the other models of this experiment.

373

8

E
va
lu
at
io
n

8.7 Conclusion

8.7 Conclusion

In this chapter, we evaluated existing and the newly introduced process discovery and
conformance checking techniques.

RQ.1. In answer to RQ.1, i.e. the scalability of discovery techniques, we found
that all algorithms of the IM framework except IMc handled all logs up to a hundred
activities and a million events. Existing techniques handled logs up to 64 activities and
150,000 events. The algorithms of the IMd framework (except IMcd) and FD were able
to handle a thousand activities and hundreds of millions of events, which were the largest
logs we generated in our experiment.

RQ.2. Research question RQ.2 entails whether and how algorithms balance log-
quality criteria, whether these balances are user-influenceable. In our cross validation
experiment, we found that IMd, IMfd, IMa, IM, IMf, IMlc, IMc, IMfa and IMcd
returned pareto optimal models, even though IMfd and IMd use less information than
other algorithms and are much more scalable. All algorithms except ETM achieved a
consistently high fitness, and a less high log precision, and different algorithms traded
different amounts of fitness for log precision. Different trade-offs might be required by
different use cases, as described in Section 3.1. In our qualitative experiments, we found
that on complicated real-life event logs, such as BP12, discovery algorithms struggled to
discover process models that pose many restrictions on the behaviour that is expressed by
the model (the models have a low log precision, even though in this particular experiment
we could not measure this), i.e. models that are useful for human analysis. The event
logs RF and RPW seemed to be easier for discovery algorithms, as more restrictions to
behaviour were visible in the discovered models.

RQ.3. In chapters 5 and 6, we proved rediscoverability, i.e. the ability of discovery
algorithms to rediscover the language of a system, under laboratory conditions: the logs
should be free of infrequent, deviating and incomplete behaviour. RQ.3 entails how close
algorithms get to rediscovery under presence of such behaviour, i.e. what the influence
of increasing levels of these three types of behaviour on the quality of models discovered
by discovery algorithms is. We found that the IM framework algorithms, by their use
of entire event logs, provided rediscoverability on smaller logs than the algorithms of the
IMd framework, which can only use directly follows graphs. Furthermore, the algorithms
that were introduced to handle incompleteness, i.e. IMc and IMcd, provided rediscover-
ability at even smaller event logs, i.e. requiring 1024 (presumably 512) traces instead of
the 2048 by the IM framework and the 8912 by the IMd framework, in correspondence
with the intention of these algorithms.

RQ.4. For non-atomic event logs and process models (RQ.4), we found that the
newly introduced non-atomic behaviour handling algorithms have the potential to dis-
cover better models on event logs that contain non-atomic behaviour, however due to
their stricter requirements on the event log, i.e. the log should be consistent in all itera-
tions, might also overlook information in the event log that other algorithms can capture.

RQ.5. In most of the previous experiments, we used the PCC framework for its abil-
ity to handle large event logs and process models quickly. We quantified this (RQ.5), and
found that the PCC framework works faster and on larger event logs and process models
than existing techniques. Furthermore, the measures of the PCC framework provided in-
tuitive categorisations, such as good/bad precision, compared to the flower model, which
in most cases corresponded to the results provided by the existing techniques, i.e. the
relative order of models was preserved in many cases.

A similar set of experiments was described in [94], in which the PCC framework
was used to assess incompleteness handling of algorithms, as well as the handling of

374

8
E
va
lu
at
io
n

8.7 Conclusion

both structured and random deviations from the model. In this thesis, we improved
our deviation handling testing procedures by doubling the log, thereby assuring that
inserting the deviations would not remove information from the event log. Even though
the method of testing differed in details, similar conclusions were drawn.

A plethora of further experiments could have been performed to gain more insights
into process discovery and conformance checking. For instance, we would welcome the
opportunity to compare the algorithms in this thesis to other soundness guaranteeing
algorithms. Unfortunately, implementations of two out of the three other currently ex-
isting algorithms that have not been published. Furthermore, it would be interesting to
repeat the rediscoverability experiments for other types of process models, outside the
class of Cb. Besides the PCC framework, we compared one fitness and one log-precision
measuring technique. However, many more such techniques exist, as well as model-model
conformance checking techniques. An interesting field of further research would be to
design test procedures for conformance checking techniques.

Another set of experiments that could be performed is the verification of require-
ments DR6, DR7, DR8 and DR9. These requirements all state that process discovery
techniques should provide rediscoverability for particular types of constructs such as silent
transitions, short loops, etc. Even though these constructs are out of the representational
bias of most algorithms evaluated in this chapter, we believe that the experimental setups
of this chapter could be reused for such experiments.

Finally, it would be interesting to investigate the influence of user-provided parame-
ters on discovery algorithms and conformance checking techniques, e.g. what the influence
of f is on the model discovered model by IMf, or what the influence of k in the PCC
framework would be on the measures provided by the framework.

375

376

9Enhancement & Inductive visual Miner

process trees

IM framework

abstractions

rediscoverability framework

discovery algorithms

enhancements

Inductive visual Miner

pcc framework

soundness

language uniqueness

log precision

fitness

rediscoverability

language decisive

guarantees

robustness

Ch.3

Ch.2

Ch.4

Ch.4

Ch.6 Ch.8

Ch.9

Ch.9

Ch.5

Ch.7 Ch.8

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

In Chapter 6, we introduced several new process discovery techniques of the IM frame-
work, and these techniques were evaluated in Chapter 8. We showed that discovery
algorithms offer several guarantees and compare favourably to existing algorithms. How-
ever, different algorithms strike different balances of log-quality criteria (e.g. fitness, log
precision and simplicity) and including or excluding infrequent, deviating and incom-
plete behaviour. As described in Section 3.1, different event logs and use cases might
require different parameter settings and different algorithms, and it might be challenging
to choose an algorithm and its parameter settings for a given event log. Furthermore,
discovered models should be evaluated, and if the model does not suit the use case at
hand, a new model should be discovered using different parameters or a different algo-
rithm. Therefore, typical process mining projects contain an explorative phase, in which
the analyst interactively and repeatedly discovers models and evaluates these models.

For instance, for a case study we performed (Section 3.1, [61]), during the explorative
part, human understanding of the business process was important, so the model param-
eters were chosen to result in a simple model. In later parts of the project, results and
insights were evaluated, to ensure the drawn conclusions were not artifacts of process
discovery.

Commercial process mining software, such as Fluxicon Disco [79] (FD, we used version
1.9.7) and Celonis Process Mining [47] (CPM), make iteration in process mining projects
easy, e.g. discovering a new model is as easy as dragging a slider. Furthermore, such com-
mercial tools typically offer several options to enhance the log and model by visualising
extra data on it. However, even though these tools filter behaviour from their models,
they offer no way to evaluate the discovered models using conformance checking, i.e. to
visualise the behaviour that was excluded. Furthermore, as described in Section 3.3.2,
their discovered models might contain ambiguities, which challenges evaluation.

This chapter serves two purposes: we introduce a process mining tool (the Induc-
tive visual Miner (IvM) that combines process discovery (i.e. the algorithms introduced
in Chapter 6) with conformance checking to provide users with an easy-to-use pack-
age. Second, we use IvM to discuss key challenges and limitations of log and model
enhancement concepts, and how they were implemented in IvM.

In this chapter, we will describe several types of enhancements:

• deviations. To enable users to evaluate discovered models, we apply a confor-
mance checking technique, alignments, whose results are to be visualised on log
and model to provide maximum insight into deviations between the discovered
model and the event log.

• frequency. If the use case of the analysis is to identify the most frequently used
paths through or parts of the model, the model can be enhanced with frequency
information. Furthermore, frequency information enables users to assess log pre-
cision manually: if parts of the model are not or little used in the event log, the
model is not very precise.

• performance. An aim of the analysis might be to improve the process in terms
of time, such as decreasing employee time spent on traces or improving the user
experience of customers by eliminating time spent waiting. In such cases, enhancing
the log and model with performance information provides an overview of the parts
that take the most time.

• animation. Deviations, frequency and performance might vary over time, e.g. the
process might change, or seasonal factors influence measurements. Enhancing the
model with animation, i.e. visually replaying every trace on the model, highlights

378

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

several potential issues: waiting customers, slowly moving cases, little-used parts of
the model, etc. Furthermore, in our experience, animation increases the confidence
of process owners and other stakeholders in the discovered model and increases
understandability of the model.

We start with the introduction of IvM in Section 9.1. We describe the capabilities
of IvM to diagnose deviations in Section 9.2, show its abilities to filter and visualise
frequencies in Section 9.3, discuss how IvM projects performance diagnostics on process
trees in Section 9.4 and show IvM’s animation capabilities in Section 9.5. Section 9.6
concludes the chapter.

9.1 Inductive visual Miner (IvM)

In the previous section, we described several types of enhancements for event logs and
process models. Further on in this chapter, we describe these enhancements in more
detail. However, to ease their explanations, we first introduce the software tool that we
developed to make process mining more accessible to end users. Using the architecture
and notation of this tool, we will explain the enhancement techniques in subsequent
sections.

Inductive visual Miner (IvM) is a process exploration tool: it discovers a process
model, aligns it to the event log and enhances the resulting model [92]. It is a plug-in
(“mine with Inductive visual Miner”) of the ProM framework, and interacts with many
other plug-ins.

To use IvM, load an event log in the full version of ProM and apply the plug-in
“Mine with Inductive visual Miner”. Alternatively, IvM can also visualise a log and an
existing process tree. Use the plug-in “Visualise deviations on process tree” to start IvM
without the mining controls & options, but with alignments, deviations, animation and
highlighting filters.

In the remainder of this section, we first describe the steps that are taken by IvM and
its architecture. Second, we explain the visualisation of the model. Third, we explain the
options and controls, after which we finish the section with a discussion of the extension
points of the IvM.

9.1.1 Steps & Architecture
The IvM performs several steps automatically. The computations steps can be inter-
rupted by the user at any time, and IvM will automatically redo steps on user input.
Figure 9.1 shows these steps and their dependencies. The main steps are:

• Sort events.
Some event logs contain traces in which the timestamps are out of order. For
instance, in the trace xa14:00, b13:00y a happened first according to the order of the
events in the trace, but b occurs first according to the timestamps of the events.
Such anomalies make animation and performance measures unreliable, so IvM
offers the user the choice to either sort the events (in our example, IvM would
continue as if xb13:00, a14:00y was given) or disable the animation and performance
measures.

• Filter log.
Let L be the event log. This step will remove events of which the activities do not
occur enough. See the activities slider and the pre-mining filters in the Controls

379

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

gather
attributes

sort events

make log

filter log

discover
model

layout model align

layout
alignment

scale
animation

highlight
selection

animate

colour traces

compute
histograms

measure
performance

Figure 9.1: The architecture of IvM. The arrows denote constraints: a task
is started as soon as its preceding tasks are finished.

380

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

& Parameters settings for more information. This step is also available (with even
more fine-grained options) as a separate plug-in of ProM (“Filter events”).

• Discover a process model from log L1,
which is done using either the algorithm IMf, IMflc or IMfa (depending on the
miner selector).

• Align the model and the log L.
The alignment is based on work described in [36]. Before aligning, the discovered
model is expanded (as described in Section 5.7), i.e. each activity a is transformed
into a nested process tree Ñpae, as, acq. This expansion is used at all times, i.e.
the alignment always takes enqueue, start and completion events into account.

• Visualise the model and the alignment.

• Animate the alignment.

• Compute performance measures and visualise them.

9.1.2 Model Visualisation
A key aspect of IvM is its visualisation of the discovered process model: on this model,
all further enhancements, which will be described later on this section, will be visualised.
In this section, we discuss our choice for this visualisation.

In Section 8.3.3, we showed several Petri nets that were translated from the process
trees returned by the discovery algorithms introduced in this thesis. Some of these
Petri nets contained many silent transitions. Some of these silent transitions originated
from �pτ, . . .q constructs of the discovered process trees, while others were introduced by
translating _ or Ø constructs. We believe that such silent transitions are confusing and
make models hard to read, and that they therefore best be avoided.

Therefore, IvM shows models in an intuitive formalism that closely resembles Petri
nets, process trees and BPMN models. Figure 9.2 shows the constructs of these models.
In such a model, each trace traverses edges from the source to the sink, thereby executing
each activity on its path. Figure 9.3 shows an example, which corresponds to the process
tree Ñp�pa, bq,^pc, dq,Øpe, fqq. In case of concurrency, the path is “split” in multiple
branches, e.g. in our example c and d are both executed, and these paths are merged
again at a concurrency join. Inclusive choice and interleaving are similar, corresponding
to their process tree semantics, i.e. inclusive choice (_) splits the path into one or more
subsequent branches, while interleaving (Ø) splits the paths but allows only one to be
“active” at the same time.

9.1.3 Controls & Parameters
As described, IvM will perform the steps described in Section 9.1.1, and show inter-
mediate results. It is not necessary to wait for IvM to complete these steps; users can
change parameters any time, and IvM will automatically recompute the necessary steps.
Figure 9.4 shows these parameters, and we will explain them in more detail in this section.

Activities Slider

The activities slider controls the fraction of activities that is included in the event log on
which a discovery algorithm is applied. That is, before discovery, the event log is filtered.
The position of the slider (between 0 and 1) determines how many of the activities remain

381

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

(a) source (b) sink (c) exclusive choice

+
(d) concurrency

Ø

(e) interleaving

O
(f) inclusive choice

Figure 9.2: IvM model constructs.

a

b

c

d

e

f

Figure 9.3: A model in IvM.

in the filtered event log. For instance, the log rxa, b, cy, xa, by, xays, has the frequency table
ra3, b2, cs, and if the activities slider would be set to 0.4, then all events corresponding
to the activities that occur more than 0.4 times the occurrence of the most-occurring
activity would be included. In out example, the filtered event log would be rxa, by2, xays,
and to this filtered event log, the discovery algorithm is applied. Notice that this only
affects the discovery, i.e. all other parts of the IvM including alignments and animation
are not affected by this slider.

Putting this and the paths slider (described next) all the way up to 1.0 and setting
the miner selector to IMf guarantees fitness. However, if the event log contains life-cycle
transitions besides complete, deviations might be shown.

Paths Slider

The paths slider controls the amount of noise filtering applied: if set to 1, then no noise
filtering is applied, while set at 0, maximum noise filtering is applied. Technically, the
slider sets the input for the discovery algorithm to 1 - the value of the slider. Please refer
to Section 6.2 or 6.5 for more information on the mining algorithms. The default is 0.8,
which corresponds to 1� 0.8 � 0.2 noise filtering in IMf, IMflc and IMfa.

Putting both sliders all the way up to 1.0 and setting the miner selector to IMf
guarantees fitness. However, the alignment of IvM always takes life-cycle information
into account, thus deviations might still be present.

Classifier Selector

The classifier selector controls what determines the activities of events: events in XES-
logs can have several data attributes [77], and this selector determines which one of

382

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

activities slider

paths slider

classifier selector

pre-mining filters switch

miner selector

edit model switch

visualisation mode selector

trace colouring switch

highlighting filters switch

trace view switch

model export button

view export button

highlighting filter information

computation/animation status

Figure 9.4: Controls of IvM.

383

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

these data attributes determines the types of activities. As described in Section 6.7, any
combination of event attributes can be chosen.

Pre-Mining Filters Switch

The pre-mining filters switch opens a panel to set pre-mining filters. A pre-mining filter
does not alter the alignment, the performance measures or the animation, but filters the
log that is used to discover a model. To activate a pre-mining filter, check its checkbox.

For instance, the pre-mining filter ’Trace filter’ allows to discover a model using only
the customers who spent more than e10,000.

Miner Selector

The miner selector allows to select which mining algorithm is to be used. Default is
IMf, other included options are the life-cycle algorithm IMflc and the more-operators
algorithm IMfa. We limit the choice to ease the users: these algorithms were shown to
be the most applicable to real-life event logs in Chapter 8.

Edit Model Switch

The edit model switch opens a panel to manually edit the discovered model, as explained
below. This allows users to correct the discovery algorithm if its result is not satisfactory,
and to try the effect of a different, custom, model on the same event log. In this panel, the
currently discovered process tree is displayed in a custom notation, and can be edited.
While typing, the IvM redoes computations automatically. A screenshot is shown in
Figure 9.5.

The notation is as follows: each process tree node should be on its own line. The
white space preceding the node declaration matters, i.e. a child should be more indented
than its parent. Reserved keywords are xor, sequence, concurrent, interleaved, or, loop
and tau. Loops should be given in an unary (paq), binary (pa, bq) or ternary (pa, b, cq)
form, in which the c denotes the loop exit, i.e. 	pa, b, cq � Ñp	pa, bq, cq. This guarantees
compatibility with process trees of the process tree package in ProM, even though this
syntax differs from the process trees introduced in Section 2.2.5. Any other text is
interpreted as an activity name. In case a keyword is used as an activity name, it should
be put in between double quotes (e.g. "sequence").

In case the edited process tree contains a syntactical error, this will be shown at the
bottom of the panel, and an approximate location of the error will be highlighted. The
manual changes are overwritten if the automatic discovery is triggered, however, ctrl z
reverts the edit model view to a previous state.

Visualisation Mode Selector

The visualisation mode selector allows user to choose between several information to be
added to the model. There are four options:

• paths This is the default mode, showing the model; the numbers on the activities
and edges denote the total number of executions of each of them. Figure 9.6a
shows an example: activity b was executed 3952 times, just as the incoming edge
to the left of it. In Section 9.3, we will elaborate on frequencies.

384

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

Figure 9.5: In the edit model panel, the model can be edited.

(a) Edge and activity.

(b) Model move. (c) Log move.

Figure 9.6: IvM visualisation mode concepts.

385

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

• paths and deviations shows the model; the numbers in the activities denote the
total number of executions of each of them. Moreover, red-dashed edges denote the
results of alignments (which were discussed in Section 3.4.1): Figure 9.6b shows a
model move (see Section 3.4.1), indicating that activity d was skipped once in the
event log, while the model said it should have been executed. Figure 9.6c shows a
log move, indicating that 9 times in the event log, after the execution of activity
b, an event happened in the event log while this should not happen according to
the model. In Section 9.2, we will elaborate on deviation enhancements.

• paths and queue lengths shows the model, and denotes each activity with the
queue length in front of it, i.e. the number of cases waiting for this activity to start.
If the event log contains both events with enqueue and start life-cycle information,
this queue length is accurate. Otherwise, it is estimated using the method described
in [150]. This queue size is updated as the animation progresses. In Section 9.4,
we will elaborate on performance enhancements.

• paths and sojourn times shows the model, and denotes each activity with the
average sojourn time for that activity. Sojourn times are computed using com-
pletion events, as described in Section 9. The sojourn times are not estimated,
i.e. if not both necessary completion events are present and have timestamps, the
activity instance is excluded from the average. Performance measures can also
be inspected by putting the mouse cursor on an activity: a pop-up will show the
performance measures and a histogram. In Section 9.4, we will elaborate on per-
formance enhancements. Furthermore, performance measures are updated when
any log filtering is applied.

• paths and service times shows the model, and denotes each activity with the
average service time for that activity. Service times are computed using start and
completion events, as described in Section 9. The service times are not estimated,
i.e. if for an activity instance not both start and completion events are present and
have timestamps, that activity instance is not considered in the average.

Trace Colouring Switch

The IvM can colour traces in the animation and the trace view. Using this colouring,
different categories of traces can be easily distinguished. For instance, Figure 9.7 contains
a screenshot of coloured traces in the animation and the trace view (which we will explain
later). This event log represents an ore mining process, and the traces have been coloured
with the hardness of the rock that is being processed.

The trace colouring switch opens a panel to set up the trace colouring. In this panel,
a trace attribute can be chosen, as well as the derived properties ‘duration’ and ‘number
of events’. IvM supports up to 7 colours, and if the attribute is numeric, the domain
of the numbers is split into 7 even parts automatically. Date and time attributes are
handled similarly. If the attribute is literal and there are more than 7 different values,
the colouring will remain disabled.

To enable quick enabling and disabling of the trace colouring, a checkbox has been
added to the left side of the panel, which should be checked to enable trace colouring.

Highlighting Filters Switch

The highlighting filters switch opens a panel to set highlighting filters. A highlighting
filter does not alter the model or the alignment, but filters the log that is shown in the

386

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

(a) In the animation.

(b) In the trace view. The little blocks on the left denote the category of rock hardness
(in the log, this was decoded with a number).

Figure 9.7: Coloured traces in IvM.

387

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.1 Inductive visual Miner (IvM)

Figure 9.8: Trace view.

animation and the information projected on the activities and edges of the model. If a
highlighting filter is enabled, the highlighting filter information will show this.

A highlighting filter can also be applied to an activity in the model: by clicking on
an activity (i.e. selecting it), the event log is filtered to only contain traces for which this
activity was executed in accordance with the model, i.e. log-moves and model-moves are
excluded. Hold the control-key to select multiple activities; edges can be selected as well.
The highlighting filter information will textually show these click-highlighting filters as
well.

To enable quick enabling and disabling of highlighting filters, a checkbox has been
added to the left side of each filter, which should be checked to enable filtering.

Trace View Switch

To allow inspection of the traces, and to provide insight to the deviations between model
and log on the log-level (Requirement CR5), IvM offers a trace view. The trace view
switch enables or disables the trace view.

Figure 9.8 shows a trace in this trace view: the name of the trace (i.e. the con-
cept:name extension) is displayed to the left of the events, which are the coloured
wedges to the right. Above the wedges, time stamps are displayed in day-month-year
hour:minute:second:millisecond. The wedge itself shows the activity (depending on the
classifier selector) of the event. Below the wedge, the first line shows the life-cycle tran-
sition information (if that is not present, it shows complete). Second, below the wedge
the alignment information is shown: in Figure 9.8, the first event is a synchronous event,
the second is a model move (“only in model”) and the third one is a log move (“only in
log”).

Model Export Button

The model export button allows the current model to be exported as a Petri net or
process tree to the workbench of ProM.

View Export Button

The view export button exports the current image to an image file. Moreover, the
animation can be exported (rendered) as a movie, and some statistics about the activities
can be exported as a comma-separated-value (csv) file.

388

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.2 Deviations

Changing the View

The model can be moved by dragging it, or by using the arrow keys. Zooming in and
out can be done with a scroll wheel, or with the key combination ctrl = or ctrl -. Ctrl 0
(zero) resets the model to its initial position.

Once zoomed in, a navigation image will appear in the upper left corner. A click
on this navigation image will move the model to that position, and scrolling while the
mouse pointer is in the navigation image will zoom the navigation image.

The graph direction, i.e. the position of the green and red start and end places, can
be changed by pressing ctrl d. The distance between activities and edges can be altered
using the key combinations ctrl q and ctrl w.

9.1.4 Adding Extensions
The IvM can be extended in several ways without changing the source code: miners,
pre-mining filters and highlighting filters can be added. A developer should simply add a
class that extends the abstract class VisualMinerWrapper, PreMiningEventFilter, PreM-
iningTraceFilter or HighlightingFilter. ProM will automatically detect these classes once
on the classpath, and they will automatically be added to IvM. For more information,
please refer to the documentation of these classes.

Other extensions to the architecture-chain are possible. Ideally, each step of the chain
should be cancellable and applicable to all process trees.

9.2 Deviations

As described in Chapter 3 and shown in Chapter 8, process discovery algorithms might
leave behaviour that was recorded in the event log out of the discovered model, and
might include behaviour in the model that is not recorded in the event log, as discovery
algorithms try to represent the behaviour of event logs into a certain representational bias.
Therefore, the discovered model should be evaluated before reliable conclusions can be
drawn from such models. Conformance checking techniques, as described in Section 3.4,
enable the evaluation of models on three levels: summarative measures, projections on
models and projections on event logs. Furthermore, the process model can be entered
by hand (using the “edit model” function) to circumvent process discovery and assess
an idealised or normative model. (See also the plug-in “Visualise deviations on process
tree”.)

In this section, we show the output and intermediate computation results of two
conformance checking techniques that can be used to evaluate models. That is, we show
how the intermediate results of the PCC framework (see Chapter 7) can be projected onto
a process model, and we show how alignments ([19], see Section 3.4.1) can be projected
on process models and event logs.

9.2.1 Deviations and the PCC framework
The PCC framework computes fitness and log precision of subsets of activities of the
model and the event log. These fitness and log-precision measures can be averaged over
activities to provide insight into the location of deviations in the process. For screenshots
and an explanation of this visualisation, please refer to Section 7.4. In the future, we
intend to integrate (an extension of) the PCC framework into IvM.

389

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.2 Deviations

Figure 9.9: Visualisation of moves.

9.2.2 Deviations and Alignments
The PCC framework provides insight into deviations on the level of summarised mea-
sures, and on the model. However, currently it does not provide insight on the level of
the event log, i.e. given an event log, it currently cannot determine whether an event
occurred according to the model. As described in Section 3.4.1, alignments can provide
this information, as it considers two types of steps: log moves, i.e. events not represented
in the model, and model moves, i.e. model steps not represented by an event in the log.

A key property of alignments is that they provide a path through the model that is
most similar to the trace in the log. For instance, consider the following alignment of the
trace t � xb, cy and the model M � Ñ

�

cb

a

:

trace b - c
model - a c

This alignment provides several pieces of useful information about deviations:

• According to the model, a should have been executed, however no such event
was found in the trace. This model move can be considered as a ‘skip’ of a.
In Figure 9.9, this concept is visualised on the model as a red-dashed edge that
bypasses a.

• According to the event log, b should have been executed, however the model did not
support this. This log move denotes that the event is considered to be superfluous.
In Figure 9.9, we show this concept being visualised on a model: the red dashed
self-loop indicates this log move.

Notice that these concepts are applicable to a variety of process model notations, such
as BPMN, Petri nets and YAWL.

Pitfalls. Despite the intuitiveness of the visualisations, these concepts should be inter-
preted with care, as they might convey more information than is actually available. For
instance, the alignment shown is not the only ‘optimal’ alignment. There may be other
alignments with the same number of log and model moves. For instance, the following
alignment has the same number of deviations:

390

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.3 Frequency Information

trace - b c
model a b -

In this alignment, c is a log move instead of b.
Another example is the model Ñpa, bq and the trace xa, cy. There two optimal align-

ments:

trace a - c
model a b -

trace a c -
model a - b

Notice the difference in order between log move c and model move b: this order is
arbitrary. Nevertheless, in the visualisation, a choice had to be made to position the log
move before or after activity b.

The current alignment implementations traverse the state space defined by log and
model, and deterministically choose one option in case there are multiple optimal pos-
sibilities. Which possibility is chosen is not always easily determinable by the user, as
it depends on internal ordering and sorting. In this thesis, we do not describe these
computations in more detail. For more details, we refer to [19].

Furthermore, notice that the different alignments discussed here are all ‘optimal’.
However, there is no guarantee that an optimal alignment reflects reality, i.e. a non-
optimal alignment (i.e. with more deviations than an optimal alignment) could also ex-
plain the deviations between event log and model, and might explain this better if domain
knowledge is taken into account. Thus, one should be careful interpreting alignments.

9.3 Frequency Information

Given a control flow model of the process described in the event log, a question could be
what the important paths through the process are, i.e. which paths are used often. This
allows analysts to focus on the main behaviour of the process, or study the little-used
parts that represent the exceptional behaviour in the process. For instance, Figure 9.10
shows a model representing the event log rxa, by290, xa, cy10s, enhanced with frequency
information. That is, activity a was executed 300 times, b 290 times and c 10 times,
which is indicated by the shade of blue of the activities. Furthermore, the edge leaving a
has been used 300 times, the edge arriving at b 290 times and the edge arriving at c 10
times, which is reflected in the thickness of the edges.

The combination of activity colouring and edge thickening makes spotting frequent
parts easy: everything that stands out is frequent. For instance, Figure 9.11 shows
a model that was discovered from a real-life event log (BP12, see Chapter 8). Even
though the scale of the figure makes it difficult to read the activity labels and see the
precise control flow, it is obvious that the most frequent part of the process is the looping
behaviour in the upper right corner. In this case, the looping behaviour indicates that
a more suitable discovery algorithm could have been used, i.e. on closer inspection, the
event log contains start and completion events, thus one could try to apply one of the
non-atomic algorithms, e.g. IMflc (Section 6.5.3).

As the edges of the visualisation are annotated with frequency information, frequen-
cies need not only be computed for activities, but for every node of the process tree.
To compute these frequencies, we chose to let IvM use the computed alignments, as

391

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.4 Projecting Performance Information on Process Trees

a
300

b
290

c
10

300 300
290

10

290

10

300

Figure 9.10: A model enhanced with frequency information.

Figure 9.11: An example of a model, discovered from a real-life event log, and
enhanced with frequency information. The most activities are executed in the
upper right part of the process. The red box contains looping behaviour which
is discovered because the discovery algorithm ignores life-cycle information.

alignments provide a consistent view on the paths that were (likely) taken through the
model. Therefore, IvM counts occurrences of process tree nodes by walking over the
aligned traces, keeping track of which process tree nodes are being used.

9.4 Projecting Performance Information on Pro-
cess Trees

Using an event log, an alignment and a process model, the performance of a process can
be computed, i.e. for each activity, time measures such as service time can be computed.
In this section, we explore these performance measures and how they can be computed.
We first extend the life cycle transitions beyond the start and completion notions that are
present in non-atomic event logs. Second, we introduce the four performance measures
that are considered in this thesis: queueing time, waiting time, service time and sojourn
time. Third, we show that for reliable measures, a process model and alignment should
be taken into account.

In Section 3.5.1, we showed that events in event logs might be annotated with a
life cycle transition, which denotes the life cycle the activity execution enters with the
execution of that event. We introduced the start and completion life cycle transitions,
which denote the start and end of activity executions, thereby making the activity ex-
ecution and event log non-atomic. Many more life cycle transitions have been defined,
e.g. in [77, 4, 150], and the techniques described in this section are mostly agnostic the
the precise life cycle transition model. However, a precise definition of the transitions is

392

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.4 Projecting Performance Information on Process Trees

enqueue start complete

Figure 9.12: The life cycle model used in this thesis.

(enabled) enqueue start complete

queueing time

waiting time

service time
sojourn time

Figure 9.13: Performance measures.

essential for reliable performance measures. For instance, if an activity execution can be
started twice, e.g. xas, as, acy, then it should be clear what this means both behaviourally
and in terms of performance.

To illustrate the possibility of adding more life cycle transitions to the model, we
introduce a third life cycle transition: enqueue, which happens before start and denotes
that the activity is ready to be executed, but for some reason is delayed (see Figure 9.12).
For instance, consider a call center receiving calls from customers. After an initial com-
puter voice menu, a customer enters a queue. After a while the customer is connected
to an agent, who services the customer, until the connection is terminated. The events
of this execution of ’service customer’ are enqueue, start and completion [150]. Another
example is the flow of patients through a hospital, specifically for a visit to a doctor.
The patient arrives, reports at a desk and waits until a doctor is available for treatment.
At the desk queueing starts, upon entering the treatment room service starts, and upon
leaving the treatment room service completes.

Using the life cycle model, we define several performance measures, as shown in
Figure 9.13. The measure queueing time denotes how long the activity execution was
queued, and service time denotes how long execution of the activity took. The remaining
measures, waiting and sojourn time, express how long it took before the activity was
respectively started and completed. These measures are taken from the moment the
activity could have started until it started or completed.

The computation of the above times depends on the time that an activity execution
could have started, in which obviously control flow restrictions, captured in the process
model, play a major role.

We illustrate the importance of process models to compute precise performance mea-
sures using an example. Consider the trace t � xa11: 25

s , a11: 26
c , b11: 30

e , b11: 34
s , b11: 36

c ,
c11: 40
s , c11: 50

c y, in which the events are annotated with time stamps. In this trace, we
consider the sojourn and waiting time of c, which both ended at 11: 50. We show that

393

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.5 Animation

two process models lead to two different values for these measures. That is, in the pro-
cess tree M150 � Ñ

cba

, c could have been executed at 11: 36, i.e. immediately after bc.

Thus, for this process tree M150 the sojourn time of c is 11: 50� 11: 36 � 0: 14 and the
waiting time of c is 11: 40� 11: 36 � 0: 04. However, in the process tree M151 � Ñ

^

cb

a

,

c could have been executed at 11: 26, i.e. immediately after ac, as b and c are concurrent
and can hence start independently of each other. For this process tree M151, the sojourn
time of c is 11: 50� 11: 26 � 0: 24 and the waiting time of c is 11: 40� 11: 26 � 0: 14,
which are both more than the 0: 14 and 0: 04 for M150. Hence, whenever sojourn time
and waiting time are measured, a process model should be taken into account. Queueing
time is not affected by the process model.

The first moment an event could have been executed corresponds with an event
of another activity execution. In order to link events to the execution of activities in a
process model, an alignment is used. In case the event log and process model deviate from
one another, we argue that the measures should not be taken. For instance, consider our
example treeM150 and the trace xa11:25

s , a11:26
c , c11:40

s , c11:50
c y. For this trace, an alignment

computation will deduct that b is not executed while it should according to the model.
We argue that as it is unknown when c could have started, c has neither a sojourn time
nor a waiting time (or they are unknown). Similarly, if the enabling event is present but
has no time stamp, we argue that no sojourn or waiting time exists.

This procedure is repeated for all executions of the activity (i.e. leaf in the process
tree) and all results, in which all necessary time stamps and events are present in the
log, are averaged. That is, log moves, model moves and events without time stamps are
excluded. This yields performance measures for each activity, and these measures can
be visualised using colouring in the model or using histograms. Furthermore, besides
performance measures, using the enqueue events, queue properties can be computed and
visualised. In [150], queue properties, e.g. the number of cases in the queue at any given
moment, is estimated in absence of enqueue events by considering throughput, however
discussing these estimations in detail is outside the scope of this thesis.

Many more performance measures could be useful to identify bottlenecks in busi-
ness processes, such as cost and resource utilisation performance measures [142]. Such
measures rely on other information from the event log and it would be interesting to
investigate these measures further, eventually standardising such information in event
logs and adding these measures to process mining tools such as IvM.

Future work 9.1: Explore cost, resource utilisation and other performance measures.

9.5 Animation

In the previous section, we introduced several performance measures. However, activities,
bottlenecks, busy periods, waiting times and other performance measures might vary over
time and influence each other. Animation might be suitable to visualise the interplay
of these concepts. Animation represents the control-flow state of each trace with one or
multiple tokens, by letting tokens flow along the arcs/through activities as events occur
for the trace.

394

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.5 Animation

(a) Early in the event log. (b) Later in the event log.

Figure 9.14: Concept drift shown by animation in Fluxicon Disco: the right
part of the process is only used later in the time span of the event log.

Furthermore, animation might highlight changes in the process (concept drift). For
instance, Figure 9.14 contains two screenshots of an event log animated over a process
map, each represent a different time of the event log. The animation shows that the
rightmost part of the process was not used in the first part of the event log, but only
in the second part, which indicates that the process changed. An analyst could try to
explain this change and e.g. filter the log to zoom in on the process before or after the
change.

Figure 9.15 contains the principles of animation on an activity (notice that this con-
cept is applicable to a variety of process model notations, such as BPMN, Petri nets
and YAWL). In this figure, activity a is represented by a rectangle, and the flows to and
from the activity are represented by edges. Each trace is represented by tokens (a thick
circle) that move over the edges to and from activities. The execution of an activity is
represented by a token being inside the rectangle of the activity. Before the token reaches
an activity, it is waiting to be executed, and this gives a clear visual indication that the
activity might be a bottleneck (notice that the difference between queueing and waiting
is not visualised, see Figure 9.12). Once the start event of the execution occurs, the token
flows into the box of the activity, and execution starts. During execution (service) of the
activity, the token moves over the activity, such that the speed with which tokens move
over an activity is an indication for the service times. Once the completion event of the
execution of the activity occurs, the token reaches the end of the activity, and moves
towards (i.e. waits for) the next activity.

For splits and joins, there’s not much information to be conveyed, as typically, splits
and joins have no associated time stamp information in the event log, thus all token
movement must be interpolated. Nevertheless, to make the animation smooth, easily
interpretable and to convey the message of control flow, token flow over splits and joins
should be smooth. The animation strategy depends on whether the split or join entails

395

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.5 Animation

a

completionstart
waiting

time
service
time

Figure 9.15: Animation principles on activities.

slower

faster

Figure 9.16: Animation principles for splits and joins: tokens split and join
from and into single tokens. Therefore, tokens should arrive at the same time
and might depart the split and arrive at the join at different speeds.

concurrency. If the split or join is exclusive, then the token takes its intended outgoing
or incoming edge and continues. However, if the split or join is non-exclusive, e.g. in
a concurrent split or join, then the tokens should split up or merge, as illustrated in
Figure 9.16: the split on the left shows a token just before splitting up. Then, the
token splits up and the two tokens leave the split in different directions as shown in the
figure. At the corresponding join, both tokens arrive at the merge point simultaneously,
such that they smoothly merge and move on. This implies that the tokens might move
at different speeds to arrive at the same time, due to different execution times of the
previous activities, or the length of the path from that activity to the join.

In case of missing information, for the performance measures, we argued that per-
formance measures should not be interpolated if time stamps are missing or behaviour
in event log and process model does not match. Instead, such cases should be ignored
to guarantee reliability of the measures. For animation, this is clearly undesirable, as
it makes tokens appearing and disappearing seemingly random, which makes it hard to
track cases. Therefore, we argue that intuitiveness and clarity of the visual appearance of
the token flow should have priority over a 100% accurate visualisation of the underlying
data in situations of incomplete event data, and thus the tokens should flow smoothly
through the process. However, we make an exception for missing start events, i.e. if the
activity execution is atomic, then we choose to reflect this by making the time in the
activity zero, i.e. the token jumps from the left to the right of the activity instantly.

In case of tools that provide animations on top of process maps, e.g. in the Fuzzy
Miner (FM) [78] and in commercial tools such as Fluxicon Disco (FD) [79] and Celonis

396

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.6 Conclusion

Process Mining (CPM), a challenge is that some edges are filtered out. That is, tokens
ideally flow from activity to activity via an edge, however this edge might have been
removed by filtering. To solve this, in FD, tokens appear at the start of an edge and
disappear again at the end of the edge, and do not flow over activities. Therefore, waiting
time and bottlenecks are visualised by tokens on incoming edges of activities, but service
times cannot be visualised by the tokens, and tokens have to ‘jump’ over the missing
edges. Instead, in FD, activity executions are summarised by the activity changing
colour if it is being executed. This approach shows that the activity is executing, but not
how many cases are being executed or how long a particular execution takes if multiple
executions are being performed at the same time. In CPM, this is not an issue, as traces
are filtered instead of edges, which ensures that if a trace is to be animated, all the edges
on its flow path are present.

9.6 Conclusion

In this chapter, we showed several ways in which extra information in event logs can be
used to enhance event logs and corresponding process models. That is, we showed how
highlighting frequencies helps to reveal the busy parts of the process, we showed how
deviations highlight where model and log deviate, we showed how performance quantifies
busy parts of the process, and we showed how animation conveys concept drift and the
interplay of activities, bottlenecks, queue sizes and throughput.

We introduced the Inductive visual Miner (IvM), of which a screenshot is shown in
Figure 9.17. With the IvM, we aim to offer as reliable visualisations as possible, such
that even if information is missing from the event log, conclusions can still be drawn
reliably. For instance, if an event in the log lacks a time stamp, we disregards that event
in performance computations and histograms. In contrast, to keep animation smooth, we
interpolate missing time stamps and users should be aware of this and validate conclusions
drawn from animations in IvM.

Even though the provided filters of IvM are not as extensive as in commercial tools
such as Fluxicon Disco and Celonis Process Mining, new and even custom filters can
be added without much effort. IvM supports log filtering at two stages: before discov-
ering a model, and after the alignment. Regardless of filter settings, the alignment is
always computed over the entire unfiltered event log, and deviations can be visualised
(taking the limitations of alignments as described in Section 9.2 into account). This is
an improvement over commercial tools such as FD and CPM, as these simply leave out
filtered behaviour, such that users might have to choose between a readable model and
visualising all behaviour, while IvM, log-model quality can be assessed in depth.

Concurrency, interleaving, milestones and other advanced workflow patterns (see [12]
for more details) are essential for process mining: without these constructs, only the
most simple processes can be described. Existing commercial tools such as Fluxicon
Disco and Celonis Process Mining are limited to directly follows relations, and do not
support these constructs. IvM is not limited to a particular discovery algorithm: other
discovery techniques can be added without much effort, as long as these algorithms return
process trees. Nevertheless, the algorithms introduced in Chapter 6 return sound process
models fast, such that IvM can be used in interactive and iterative ways. The use of
process trees limits the workflow patterns that can be supported by IvM, however enable
to not consider unsound models or models with deadlocks, and process trees make the
models easy to read.

Due to the automation and interactivity of steps, and the guarantees provided by

397

9

E
n
h
an

ce
m
en
t
&

In
d
u
ct
iv
e
vi
su
al

M
in
er

9.6 Conclusion

Figure 9.17: A screenshot of the Inductive visual Miner.

the steps of IvM, extensions are easier to implement and to use. For instance, queue
estimations, performance computations and histograms were added as subsequent steps
to IvM. However, even though the steps are executed concurrently by IvM as much
as possible, they are not independent. That is, each step has to be aware of and work
with every other step in IvM to work properly, and thus adding features becomes more
complex with the addition of more features.

398

10Conclusion

10

C
on

cl
u
si
on

10.1 Process Discovery

Process mining aims to extract information from event logs, which are recorded from
running business processes. Process mining projects may go through multiple phases
in which different process mining techniques are used: process discovery, conformance
checking and model enhancement, to all of which we contributed concepts and techniques.
In this chapter, we summarise the thesis and reflect on how well these techniques address
the challenges of process mining identified in 3, and point out open problems and future
work.

10.1 Process Discovery

After an event log is obtained, a first step in a typical process mining project is to
discover a process model from the event log by applying a process discovery algorithm.
In Chapter 3, we discussed several properties discovery algorithms need to possess: (1)
the returned model needs to be free of deadlocks and other anomalies, i.e. be sound,
(2) the algorithm needs to be able to balance fitness, log precision and simplicity (how
these are best balanced might depend on the use case), and (3) the algorithm needs
to be able to rediscover the entire language of the underlying real-life system (possess
rediscoverability), even if the log contains only a small subset of the possible behaviour.
Many existing process discovery techniques do not guarantee soundness, do not allow
users to adjust the balance of fitness, log precision and simplicity, or do not possess
rediscoverability. As some of the identified requirements involve contradicting trade-offs
and different use cases might require different discovery algorithms, we conjecture that
no single discovery strategy can satisfy all identified requirements.

Use cases might require several different process discovery techniques, but these tech-
niques might offer similar guarantees that can be proven using similar proofs. Therefore,
in Chapter 4, we introduced the Inductive Miner framework (IM framework), which aids
algorithms in providing several guarantees and enables algorithm designers to consider
only the most important behaviour in an event log, instead of all behaviour. The IM
framework searches for the most important behaviour in an event log. That is, the
framework searches for the combination of the root process tree operator and a proper
division of the activities in the event log (a cut). If such a cut can be found, the event log
is split into several sublogs and the IM framework is applied to it recursively until a base
case (e.g. an event log containing only a single activity) is encountered. If no such cut
can be found, a fall through (e.g. a model allowing for a superset of the behaviour in the
event log) is returned. The guarantees aided by the IM framework are soundness, which
is guaranteed for any algorithm by the use of process trees, and fitness, log-precision and
rediscoverability, for which proof obligations have been expressed as properties that are
local in the IM framework.

In order to ease generalising over the behaviour in an event log, many process discov-
ery algorithms use an abstraction of the behaviour in the event log, e.g. a directly follows
graph. We used these abstractions to establish proof obligations for rediscoverability, i.e.
we expressed a set of requirements on such abstractions that guarantee rediscoverabil-
ity. Furthermore, we expressed these requirements in the parameter functions of the IM
framework (Theorem 4.11).

In Chapter 5, we performed a systematic study towards these abstractions: we an-
alysed what classes of languages have equivalent abstractions, and therefore cannot be
distinguished reliably by algorithms that use these abstractions (and hence cannot be
uniquely discovered). For several abstractions, we identified classes of languages such

400

10

C
on

cl
u
si
on

10.1 Process Discovery

Table 10.1: The family of discovery algorithms that implement the IM frame-
work, and their guarantees and purposes. Due to the frameworks, all algorithms
guarantee soundness, termination and rediscoverability. The algorithms will be
introduced in Chapter 6.

us
e
ca
se
s

fr
am

ew
or
k

fit
ne
ss

gu
ar
an
te
ed

in
fr
eq
ue
nt

&
de
vi
at
in
g

be
ha
vi
ou

r

in
co
m
pl
et
e

be
ha
vi
ou

r

IM framework IM IMf IMc
discover more behaviour IM framework IMa IMfa -1

handle non-atomic event logs IM framework IMlc IMflc IMclc
handle larger logs IMd framework IMd2 IMfd IMcd

that no two models of a class with different languages have the same abstraction. Fur-
thermore, we addressed the mismatch between semantics and syntax of process trees:
there can be many process trees with the same language, and we are not interested in
the difference between two process models if they have the same language. Therefore,
we introduced a set of reduction rules for process trees, such that applying these rules
exhaustively yields a normal form. Ideally, these normal forms have one-to-one mappings
to languages, i.e. for each language there is precisely one process tree in normal form and
vice versa. We proved this property for several classes of process trees using abstractions,
i.e. we proved that two process trees in normal form have different abstractions. This
establishes the close relation between the syntax of process trees in normal form, the
abstraction under consideration and the semantics (i.e. the language) of process trees
(as the abstractions are language based, obviously two different abstractions represent
different languages). Studying these abstractions gives a better understanding of how
these abstractions influence process discovery and conformance checking, enables the
comparison of these techniques and sketches the formal boundaries of process discovery
techniques.

Using the IM framework and the studied abstractions, we introduced several dis-
covery algorithms in Chapter 6, which are summarised in Table 10.1: we introduced a
fitness-guaranteeing basic algorithm IM, a deviating- and infrequent-behaviour handling
algorithm IMf and an incomplete-behaviour handling algorithm IMc. Furthermore, we
introduced algorithms to handle more process tree constructs: a fitness guaranteeing IMa
and a deviating- and infrequent-behaviour handling IMfa. These algorithms highlight
the flexibility of the IM framework: one can take an existing algorithm and improve
it locally with little-impacting changes, and likely rediscoverability and perhaps fitness
guarantees will be preserved.

For all these algorithms, we proved rediscoverability, using the proof obligations iden-
tified in Chapter 4. Furthermore, we evaluated these algorithms in Chapter 8 and found
that they handle deviating, incomplete and infrequent behaviour well: in our experiment
of 9 real-life logs, the IMd algorithm was pareto optimal for all event logs, and IMfd

1Future work.
2We chose not to guarantee fitness for IMd (see Section 6.6.6).

401

10

C
on

cl
u
si
on

10.2 Conformance Checking

and IMa were pareto optimal for 8 logs. Existing techniques achieving pareto optimality
were the Evolutionary Tree Miner [36] (8 times pareto optimal, however many activities
were left out of the models) and the Structured Miner [24] (2 times).

Some event logs contain non-atomic executions of activities, i.e. activities take time,
which is denoted by the presence of events denoting the start and end of executions. To
handle such event logs, we introduced a family of algorithms that constructs a non-atomic
directly follows graph as a first step, but further resembles algorithms mentioned earlier: a
fitness-guaranteeing basic IMlc, a deviating and infrequent behaviour handling IMflc
and an incomplete behaviour handling IMclc. Also for these algorithms, we proved
rediscoverability.

Most of the algorithms mentioned have a run time that is polynomial in the number
of activities and run quick on real-life event logs, and, as shown in Chapter 8, can be
applied on normal (2GB RAM) hardware to event logs containing millions of events and
hundreds of activities. However, the IM framework requires the event log to be copied for
every recursion, thus even larger event logs might be problematic. To handle larger event
logs, i.e. containing tens of millions of events and thousands of activities, we adapted the
IM framework to recurse on a directly follows abstraction instead of on event logs, such
that in each recursion, only a directly follows relation needs to be copied instead of an
event log. We introduced three algorithms that use the adapted framework: the basic
IMd, the infrequent and deviating behaviour handling IMfd and the incompleteness
handling IMcd. In our evaluation (Chapter 8), we found that the algorithms of the IMd
framework handle event logs of tens of millions of events and thousands of activities, while
sacrificing little fitness, log-precision and simplicity over (and sometimes even surpassing)
the IM framework algorithms.

Even though the algorithms presented in this chapter apply different strategies, in-
stead of searching for the entire behaviour while worrying about soundness, the IM
framework allowed us to focus on strategies to find the most important behaviour in an
event log (i.e. the root operator and root activity partition) and have soundness guar-
anteed. By using the IM framework in different settings and for different algorithms,
we have shown that it, and the proofs for guarantees, can be reused. Therefore, the
IM framework can be seen as a starting point for more algorithms that leverage the
algorithms and proofs we provided. That is, in future work, many advanced techniques
might be designed to handle specific events and use cases. All of these techniques might
benefit from the ideas of the IM framework.

10.2 Conformance Checking

While discovering a model, process discovery algorithms might need to exclude behaviour
of the event log from the model, or include behaviour that is not in the event log into
the model, in order to obtain a model with the “right” balance. Therefore, discovered
models should be evaluated before further usage, for which a conformance checking tech-
nique could be used. Two types of conformance checking techniques were addressed in
this thesis: log-conformance checking, which compares a process model to an event log
and advises on their differences, and model-conformance checking, which compares two
process models. For instance, the discovered model and another model representing a
reference implementation, representing a different geographical area or representing a
different time period could be compared. We identified three levels on which confor-
mance checking techniques provide information about the correspondence between logs
and models: a summarised measure (e.g. a fitness or precision number), information on

402

10

C
on

cl
u
si
on

10.3 Enhancement & Tool Support

the model level, and information on the log level (see Chapter 3). Many existing con-
formance checking techniques are either unable to deal with the complexity of real-life
event logs and the models discovered from these logs, do not support all features of such
discovered models, or use an abstraction that is too coarse to capture the behaviour of
logs and models well.

In Chapter 7, we presented our approach to conformance checking: the PCC frame-
work. This framework is applicable to compare event logs to models and models to
models, and checks for conformance by constructing the language of these logs and mod-
els explicitly in DFAs and compares their behaviour to measure fitness and precision.
Thus, the PCC framework supports all regular languages, regardless of the model for-
malism used. To avoid constructing the entire state space and consequently take a lot of
time, the PCC framework constructs DFAs of all subsets of activities of a user-specified
length in the logs and the model. This allows the PCC framework to consider behaviour
on a scale from fine-grained to very coarse, depending on the size of the subsets. These
partial measures provide insight in the locations of deviations between the logs and mod-
els, i.e. average fitness and precision can be computed for each activity and this can be
visualised on the model. Furthermore, the partial measures can be averaged over all
subsets of activities to provide a summarised fitness and precision measure.

We evaluated the PCC framework on real-life event logs and discovered models in
Chapter 8, and found that it is applicable to the large event logs that cannot be handled by
current conformance checking techniques. Furthermore, we found that in many cases, the
measures of the PCC framework rank process models discovered by discovery techniques
similar to existing alignment-based techniques.

10.3 Enhancement & Tool Support

Given a discovered process model and the result of a log-conformance checking tech-
nique, a process model and an event log can be enhanced with additional information.
In Chapter 9, we described four types of information to enhance models and event logs:
deviations, frequency, performance and animation. Performance information, e.g. the
sojourn, waiting, queueing or service time, enables analysts to discover time-consuming
activities in the process. For log animation, the event log is visually replayed on the
model: each case can be visually tracked as it traverses the process, which enables the
detection of changes in the process (concept drift) and bottlenecks. Queues might de-
termine the majority of waiting times in a business process, so analysing queues might
reveal bottlenecks. Deviations between log and model, i.e. log moves and model moves,
are essential to evaluate a model and should be considered before drawing conclusions
about a process using a model.

In this thesis, we described a software tool, the Inductive visual Miner (IvM), which
performs several steps, all fully automated. First, Inductive visual Miner discovers a
process model using several of the algorithms described in Chapter 6. Second, it per-
forms conformance checking, i.e. computes an alignment, between the event log and the
discovered model. Third, it enhances the model based on this alignment (we described
how the IvM supports the four types of information). Options for enhancement include
performance information on the model and the event log, animation on the model, and
deviations projected on both event log and model.

The Inductive visual Miner combines the strong points of commercial products with
strong points of academic software. For instance, commercial products offer ease-of-use
and practical applicability, while academic software provides reliability and semantic re-

403

10

C
on

cl
u
si
on

10.4 Remaining Challenges

sults that allow an analyst to validate any gained insights. Using Inductive visual Miner,
analysts can explore the event log by repeatedly discovering a model (which is guaran-
teed sound, and potentially is fitting and language equivalent to the system), evaluate
this model to ensure its validity, filter the event log and enhance it with performance
information. Inductive visual Miner shows that it is possible to use powerful techniques
with formal guarantees in a user-friendly package. We hope that the Inductive visual
Miner will inspire commercial vendors to consider models with executable semantics and
support deviation analysis.

10.4 Remaining Challenges

In this section, we elaborate on remaining challenges and future work. We first reiterate
detailed identified areas of future work that are close to the scope of this thesis. Second,
we elaborate on future challenges that lie beyond the scope of this thesis.

10.4.1 Detailed
In the discussions contained in this thesis, several detailed areas of future research have
been identified. We reiterate these areas:
3.1 Investigate semantics for arbitrary life cycle models. 77
3.2 Use other information next to event logs in process discovery and confor-

mance checking, and apply ideas of PCC framework to similarity measures
stronger than language-equivalence. 94

3.3 Investigate whether it’s possible to extend the PCC framework to provide
information on the log level (Requirement CR5). 94

3.4 Obtain and visualise deviations and performance measures without align-
ments. 94

3.5 Study what enqueue events can contribute to process discovery. 94
5.3 Extend reduction rules to reduce trees with τ leafs as non-first children and

duplicate activities. 117
5.8 Extend Cb with non-arbitrarily nestable trees. 125
5.19 Study the influence of τ , Ø and _ on activity relations. 135
5.35 Find or disprove a footprint LC-property of üü-graphs to distinguish all

trees of Cm. 148
5.55 Identify requirements such that nested _ and ^ can be handled without

coo abstractions, and identify an abstraction to identify nested Ø. 169
6.10 Explore other techniques as fall throughs. 198
6.16 Research more elegant locally log-precision preserving IM framework func-

tions. 201
6.17 Consider other deviation-filtering techniques to distinguish concurrency and

deviating/infrequent behaviour. 204
6.19 Prove rediscoverability of IMf for logs with deviating and infrequent be-

haviour. 213
6.20 Consider other deviation-filtering techniques to distinguish concurrency and

deviating/infrequent behaviour. 213
6.38 Extend IMfa to apply deviation filtering to the detection of ^ and _. . . . 244
6.44 Implement and evaluate IMclc. 256
6.45 Combine life cycle handling capabilities with the minimum self-distance

relation üü. 256

404

10

C
on

cl
u
si
on

6.46 Include support for Ø in IMlc and IMflc. 256
6.53 Develop cut detection, log splitting, base case detection and fall through

techniques further. 277
6.54 Engineer a do-it-yourself graphical user interface to compose an algorithm

in the IM framework. 279
7.5 Investigate properties of the PCC framework on models outside of Ci. . . . 306
8.1 Perform experiment to investigate the influence of parameter settings on

discovery algorithms. 345
8.2 Identify and analyse types of deviations and perform experiments to inves-

tigate the influence of these deviations on rediscovery. 356
9.1 Explore cost, resource utilisation and other performance measures. 394

10.4.2 Future Work
Beyond the scope of this thesis, we identified several areas of future research: (1) consider-
ing stronger notions than language equivalence, (2) rediscoverability on more constructs,
(3) guaranteeing soundness without the use of process trees, (4) distinguishing infrequent
and deviating behaviour and (5) performing usability experiments on IvM.

Beyond Languages

In the lion’s share of this thesis, we assumed that event logs contain only the order of
activities. Therefore, we limited ourselves to languages, i.e. we focused on process dis-
covery techniques being able to rediscover the language of an underlying real-life system
and conformance checking techniques that verify whether the language of a model corre-
sponds to an event log. However, event logs might contain more information that enables
techniques to consider stronger equivalence notions.

For instance, the life cycle transition might reveal the moment of choice. Consider
the event log rxbe, a, bs, bcy, xce, a, cs, ccys. Figure 10.1a shows a model that would be
returned by e.g. IMlc, which ignores the enqueue event of b and c. For this event log,
one could argue that the choice between b and c is made before the execution of a, as the
enqueue events happen before a happens. Therefore, even though the language of this
model corresponds to the event log, the moment of choice is captured incorrectly, as the
model puts this choice after a. In contrast, the model of Figure 10.1b puts this choice
before a. Therefore, this model is “closer” to the event log in the sense of bisimilarity, or
even bisimilar to it. Further research needs to be performed how process discovery and
conformance techniques can incorporate bisimilarity by using extra data from the event
log.

Extended Rediscoverability

In this thesis, we have proved rediscoverability for arbitrarily nestable process tree oper-
ators �, Ñ, ^, 	, _, and, with certain nesting restrictions, Ø and τ constructs. Even
though Ø and _ are translated to Petri nets using some non-free-choice elements, we
did not cover general non-free-choice constructs, duplicate activities, long-distance de-
pendencies (Requirement DR6), milestones, parallel interleaved routing, arbitrary cycles
(Requirement DR9) and many more workflow patterns [12].

Some of these constructs can be incorporated incrementally in the IM framework,
such as duplicate activities (see [33] and the discussion on Heuristic Miner in Sec-
tion 3.3.2). Other constructs would be discoverable by introducing new process tree

405

10

C
on

cl
u
si
on

a

b

c

(a) A model in which the choice for b or
c is made after a.

a

a

b

c

(b) A model in which the choice for b
or c is made before a.

Figure 10.1: Two language-equivalent but not (weakly) bisimilar models.

operators, such as certain types of milestones and parallel interleaved routings. These
constructs might require post-processing steps outside the IM framework. Finally, cer-
tain constructs might be challenging to represent in the process tree formalism, such as
general non-free-choice constructs, long-distance dependencies and arbitrary cycles.

A solution to represent these constructs could be the use of hybrid models, in which
some of the nodes in a process tree are Declare models, which in turn might contain
activities that represent process trees. Thus, Declare and process trees form a hierar-
chy [151]. The process tree parts of such models might for instance be discovered by using
the IM framework until a fall through would be necessary. Then, instead of choosing a
fall through, patterns of a few activities could be identified (e.g. one could detect that
two activities are sequential), and continue the recursion bottom-up instead of top-down.
The final “glue” between the top-down and the bottom-up part could then be expressed
using Declare.

Two major challenges of process discovery that arise with the addition of such pow-
erful constructs are (1) the potential lack of generalisation and the risk of overfitting,
as for each log there might be a perfectly fitting and perfectly log-precise construct,
and (2) proving rediscoverability might require infeasibly strict log completeness require-
ments (see Corollary 5.65). Nevertheless, future research might explore the boundaries
of discovering such constructs.

Soundness

In Section 3.2.1, we showed that process discovery algorithms should guarantee to return
sound models at all times. In this thesis, we guaranteed soundness by the use of process
trees, which, by their block structure, are inherently sound. In essence, we use the
representational bias of the discovery algorithms to guarantee soundness. However, this
representational bias of process trees inherently brings some challenges and restrictions.

There might be other approaches to guarantee soundness. That is, other algorithms
have been proposed that guarantee soundness without using process trees, such as Max-
imal Pattern Mining ([99], see Section 3.3), which iteratively adjusts block-structured
Petri nets to guarantee sound models. Furthermore, quick soundness checks, e.g. [69],
might be used to steer genetic algorithms to sound models. Future research could reveal
further approaches to guarantee soundness in process discovery.

406

10

C
on

cl
u
si
on

Infrequent and Deviating Behaviour

In Section 2, we discussed infrequent and deviating behaviour. Infrequent behaviour
is behaviour according to the system that occurs little, while deviating behaviour is
in violation of the system. That is, both types of behaviour typically occur rarely,
however we do not fully understand the difference between deviating and infrequent
behaviour yet. Further study might reveal ways to distinguish these types of behaviour
and, consequently, process discovery algorithms might be improved.

Usability Experiments

In our evaluation section, we evaluated the introduced discovery algorithms and confor-
mance checking techniques. However, we did not evaluate the Inductive visual Miner
(IvM). Such an evaluation would entail the usability of IvM, which would be best eval-
uated using systematic usability tests with real-life users. However, such tests would
require a different scientific approach than being performed in this thesis. Therefore, we
suggest such an experiment to be performed in the future.

407

408

Bibliography

Bibliography

[1] Proceedings of the IEEE Symposium on Computational Intelligence and Data Min-
ing, CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence
2011, April 11-15, 2011, Paris, France. IEEE (2011), http://ieeexplore.ieee.or
g/xpl/mostRecentIssue.jsp?punumber=5937059 (page 420, 425)

[2] van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) Application and Theory of Petri Nets 1997, 18th International Conference,
ICATPN ’97, Toulouse, France, June 23-27, 1997, Proceedings. Lecture Notes in
Computer Science, vol. 1248, pp. 407–426. Springer (1997), http://dx.doi.org
/10.1007/3-540-63139-9_48 (page 287)

[3] van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998), http://dx.doi
.org/10.1142/S0218126698000043 (page 25)

[4] van der Aalst, W.M.P.: Process mining - discovery, conformance and en-
hancement of business processes. Springer (2011), http://dx.doi.org/10.1007/
978-3-642-19345-3 (page 2, 4, 5, 6, 7, 9, 10, 12, 20, 21, 24, 26, 28, 43, 48, 56, 60,
61, 72, 77, 79, 106, 122, 307, 312, 392)

[5] van der Aalst, W.M.P.: Decomposing process mining problems using pas-
sages. In: Haddad and Pomello [81], pp. 72–91, http://dx.doi.org/10.1007/
978-3-642-31131-4_5 (page 70, 90)

[6] van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4), 471–507 (2013), http://dx.d
oi.org/10.1007/s10619-013-7127-5 (page 70, 90)

[7] van der Aalst, W.M.P.: Mediating between modeled and observed behavior: The
quest for the "right" process: Keynote. In: Wieringa, R., Nurcan, S., Rolland, C.,
Cavarero, J. (eds.) IEEE 7th International Conference on Research Challenges in
Information Science, RCIS 2013, Paris, France, May 29-31, 2013. pp. 1–12. IEEE
(2013), http://dx.doi.org/10.1109/RCIS.2013.6577675 (page 54)

[8] van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016) (page 5)

[9] van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Causal nets: A
modeling language tailored towards process discovery. In: Katoen, J., König,
B. (eds.) CONCUR 2011 - Concurrency Theory - 22nd International Confer-
ence, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 6901, pp. 28–42. Springer (2011), http:
//dx.doi.org/10.1007/978-3-642-23217-6_3 (page 62)

[10] van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2), 182–192 (2012),
http://dx.doi.org/10.1002/widm.1045 (page 72, 356, 357, 358)

[11] van der Aalst, W.M.P., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier,
T., Blickle, T., Bose, R.P.J.C., van den Brand, P., Brandtjen, R., Buijs, J.C.A.M.,
Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N.,

410

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5937059
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5937059
http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/978-3-642-31131-4_5
http://dx.doi.org/10.1007/978-3-642-31131-4_5
http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1109/RCIS.2013.6577675
http://dx.doi.org/10.1007/978-3-642-23217-6_3
http://dx.doi.org/10.1007/978-3-642-23217-6_3
http://dx.doi.org/10.1002/widm.1045

Bibliography

Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F., Dumas, M.,
Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S.,
Günther, C.W., Guzzo, A., Harmon, P., ter Hofstede, A.H.M., Hoogland, J., Ing-
valdsen, J.E., Kato, K., Kuhn, R., Kumar, A., Rosa, M.L., Maggi, F.M., Malerba,
D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali, M.,
Nezhad, H.R.M., zur Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Roz-
inat, A., Pérez, H.S., Pérez, R.S., Sepúlveda, M., Sinur, J., Soffer, P., Song, M.,
Sperduti, A., Stilo, G., Stoel, C., Swenson, K.D., Talamo, M., Tan, W., Turner, C.,
Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., We-
ber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.T.: Pro-
cess mining manifesto. In: Business Process Management Workshops - BPM 2011
International Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Se-
lected Papers, Part I. Lecture Notes in Business Information Processing, vol. 99, pp.
169–194. Springer (2011), http://dx.doi.org/10.1007/978-3-642-28108-2_19
(page 4, 56)

[12] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003), http:
//dx.doi.org/10.1023/A:1022883727209 (page 27, 33, 65, 397, 405)

[13] van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: Comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) Business Process Management, 4th Interna-
tional Conference, BPM 2006, Vienna, Austria, September 5-7, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4102, pp. 129–144. Springer (2006),
http://dx.doi.org/10.1007/11841760_10 (page 75)

[14] van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between
underfitting and overfitting. Software and System Modeling 9(1), 87–111 (2010),
http://dx.doi.org/10.1007/s10270-008-0106-z (page 64, 68)

[15] van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series, MIT Press (2011),
http://mitpress.mit.edu/books/modeling-business-processes (page 306)

[16] van der Aalst, W.M.P., Verbeek, H.M.W.: Process discovery and conformance
checking using passages. Fundam. Inform. 131(1), 103–138 (2014), http://dx.doi
.org/10.3233/FI-2014-1006 (page 66, 70)

[17] van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004) (page 24, 104, 106, 132)

[18] Abramowicz, W. (ed.): Business Information Systems - 18th International Con-
ference, BIS 2015, Poznań, Poland, June 24-26, 2015, Proceedings, Lecture Notes
in Business Information Processing, vol. 208. Springer (2015), http://dx.doi.org
/10.1007/978-3-319-19027-3 (page 421, 422)

[19] Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eind-
hoven University of Technology (2014) (page 11, 14, 20, 21, 47, 69, 70, 72, 73, 78,
91, 171, 290, 292, 307, 359, 389, 391)

411

http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1007/11841760_10
http://dx.doi.org/10.1007/s10270-008-0106-z
http://mitpress.mit.edu/books/modeling-business-processes
http://dx.doi.org/10.3233/FI-2014-1006
http://dx.doi.org/10.3233/FI-2014-1006
http://dx.doi.org/10.1007/978-3-319-19027-3
http://dx.doi.org/10.1007/978-3-319-19027-3

Bibliography

[20] Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: Rosa and Soffer [140], pp. 137–
149, http://dx.doi.org/10.1007/978-3-642-36285-9_15 (page 72, 356, 357,
358, 359)

[21] Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Business Man-
agement 13(1), 37–67 (2015), http://dx.doi.org/10.1007/s10257-014-0234-7
(page 72)

[22] Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for comput-
ing the tree edit distance between unordered trees. Theor. Comput. Sci. 412(4-5),
352–364 (2011), http://dx.doi.org/10.1016/j.tcs.2010.10.002 (page 74)

[23] Armas-Cervantes, A., Dumas, M., Rosa, M.L.: Discovering local concurrency re-
lations in business process event logs (July 2016), http://eprints.qut.edu.au
/97615/ (page 67)

[24] Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discov-
ery of structured process models: Discover structured vs. discover and structure.
In: Comyn-Wattiau, I., Tanaka, K., Song, I., Yamamoto, S., Saeki, M. (eds.) Con-
ceptual Modeling - 35th International Conference, ER 2016, Gifu, Japan, Novem-
ber 14-17, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9974, pp.
313–329 (2016), http://dx.doi.org/10.1007/978-3-319-46397-1_25 (page 6,
63, 312, 330, 402)

[25] Badouel, E.: On the α-reconstructibility of workflow nets. In: Haddad and Pomello
[81], pp. 128–147, http://dx.doi.org/10.1007/978-3-642-31131-4_8 (page 7,
61, 104, 106)

[26] Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series, Springer (2015), http://dx.doi.o
rg/10.1007/978-3-662-47967-4 (page 8)

[27] Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G.
(eds.) Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes
are based on the Advanced Course on Petri Nets, held in Dagstuhl, September
1996. Lecture Notes in Computer Science, vol. 1491, pp. 529–586. Springer (1996),
http://dx.doi.org/10.1007/3-540-65306-6_22 (page 107)

[28] Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010), ht
tp://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf (page 275)

[29] Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337(1-3), 217–239 (2005), http://dx.doi.org/10.1016/j.tcs.2004.12.030
(page 73)

[30] Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theor. Comput.
Sci. 163(1&2), 55–98 (1996) (page 31)

[31] Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.W.,
Leymann, F. (eds.) Business Process Management Workshops, BPM 2009 Inter-
national Workshops, Ulm, Germany, September 7, 2009. Revised Papers. Lecture

412

http://dx.doi.org/10.1007/978-3-642-36285-9_15
http://dx.doi.org/10.1007/s10257-014-0234-7
http://dx.doi.org/10.1016/j.tcs.2010.10.002
http://eprints.qut.edu.au/97615/
http://eprints.qut.edu.au/97615/
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-642-31131-4_8
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/3-540-65306-6_22
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
http://dx.doi.org/10.1016/j.tcs.2004.12.030

Bibliography

Notes in Business Information Processing, vol. 43, pp. 170–181. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-12186-9_16 (page 198)

[32] Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing
with concept drifts in process mining. IEEE Transactions on Neural Networks
and Learning Systems 25(1), 154–171 (2014), http://dx.doi.org/10.1109/TNNL
S.2013.2278313 (page 73)

[33] vanden Broucke, S.K.L.M.: Advances in Process Mining: Artificial Negative Events
and Other Techniques. Ph.D. thesis, KU Leuven (2014) (page 6, 63, 312, 405)

[34] vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014), http://dx.doi.org/10.
1109/TKDE.2013.130 (page 73)

[35] Bubenko, Jr., J.A., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg,
A. (eds.): Seminal Contributions to Information Systems Engineering, 25 Years
of CAiSE. Springer (2013), http://dx.doi.org/10.1007/978-3-642-36926-1
(page 414, 415)

[36] Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. thesis, Eindhoven University of Technology (2014) (page 13, 34, 49,
58, 72, 198, 318, 381, 402)

[37] Buijs, J.: Receipt phase of an environmental permit application pro-
cess (ŚWABOŠ), CoSeLoG project (2014), http://dx.doi.org/10.4121/uuid:
a07386a5-7be3-4367-9535-70bc9e77dbe6 (page 318)

[38] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Towards cross-
organizational process mining in collections of process models and their execu-
tions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business Process Manage-
ment Workshops - BPM 2011 International Workshops, Clermont-Ferrand, France,
August 29, 2011, Revised Selected Papers, Part II. Lecture Notes in Business In-
formation Processing, vol. 100, pp. 2–13. Springer (2011), http://dx.doi.org/10.
1007/978-3-642-28115-0_2 (page 5)

[39] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for
discovering process trees. In: Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2012, Brisbane, Australia, June 10-15, 2012. pp. 1–8. IEEE
(2012), http://dx.doi.org/10.1109/CEC.2012.6256458 (page 58, 312, 322)

[40] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
Panetto, H., Dillon, T.S., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S.,
Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) On the Move to Meaningful Internet
Systems: OTM 2012, Confederated International Conferences: CoopIS, DOA-SVI,
and ODBASE 2012, Rome, Italy, September 10-14, 2012. Proceedings, Part I.
Lecture Notes in Computer Science, vol. 7565, pp. 305–322. Springer (2012), http:
//dx.doi.org/10.1007/978-3-642-33606-5_19 (page 7, 51, 322)

[41] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable
process models from collections of event logs. In: Daniel, F., Wang, J., Weber,

413

http://dx.doi.org/10.1007/978-3-642-12186-9_16
http://dx.doi.org/10.1109/TNNLS.2013.2278313
http://dx.doi.org/10.1109/TNNLS.2013.2278313
http://dx.doi.org/10.1109/TKDE.2013.130
http://dx.doi.org/10.1109/TKDE.2013.130
http://dx.doi.org/10.1007/978-3-642-36926-1
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.1007/978-3-642-28115-0_2
http://dx.doi.org/10.1007/978-3-642-28115-0_2
http://dx.doi.org/10.1109/CEC.2012.6256458
http://dx.doi.org/10.1007/978-3-642-33606-5_19
http://dx.doi.org/10.1007/978-3-642-33606-5_19

Bibliography

B. (eds.) Business Process Management - 11th International Conference, BPM
2013, Beijing, China, August 26-30, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 8094, pp. 33–48. Springer (2013), http://dx.doi.org/10.1007/
978-3-642-40176-3_5 (page 59)

[42] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions
in process discovery: The importance of fitness, precision, generalization and sim-
plicity. Int. J. Cooperative Inf. Syst. 23(1) (2014), http://dx.doi.org/10.1142/
S0218843014400012 (page 49, 51, 55, 57)

[43] Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2014, Beijing, China, July 6-11, 2014. pp. 2420–2427. IEEE (2014),
http://dx.doi.org/10.1109/CEC.2014.6900341 (page 316)

[44] Carmona, J.: Projection approaches to process mining using region-based tech-
niques. Data Min. Knowl. Discov. 24(1), 218–246 (2012), http://dx.doi.org/10.
1007/s10618-011-0226-x (page 64)

[45] Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for
process mining. In: Dayal et al. [50], pp. 327–343, http://dx.doi.org/10.1007/
978-3-642-03848-8_22 (page 64, 66, 87)

[46] Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded petri nets. IEEE Trans. Computers 59(3), 371–384 (2010), http:
//dx.doi.org/10.1109/TC.2009.131 (page 64)

[47] Celonis. https://www.celonis.com/, accessed: 06-01-2017 (page 80, 83, 312, 378)

[48] Cook, J.E., Wolf, A.L.: Software process validation: Quantitatively measuring the
correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol. 8(2),
147–176 (1999), http://doi.acm.org/10.1145/304399.304401 (page 74)

[49] Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets
for finite transition systems. IEEE Trans. Computers 47(8), 859–882 (1998), http:
//dx.doi.org/10.1109/12.707587 (page 64)

[50] Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.): Business Process Manage-
ment, 7th International Conference, BPM 2009, Ulm, Germany, September 8-10,
2009. Proceedings, Lecture Notes in Computer Science, vol. 5701. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-03848-8 (page 414)

[51] Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched
declare constraints. Inf. Syst. 56, 258–283 (2016), http://dx.doi.org/10.1016/j.
is.2015.06.009 (page 66)

[52] Dijkman, R.M., van Dongen, B.F., Dumas, M., García-Bañuelos, L., Kunze, M.,
Leopold, H., Mendling, J., Uba, R., Weidlich, M., Weske, M., Yan, Z.: A short
survey on process model similarity. In: Bubenko et al. [35], pp. 421–427, http:
//dx.doi.org/10.1007/978-3-642-36926-1_34 (page 75)

[53] Dijkman, R.M., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal et al. [50], pp. 48–63, http:
//dx.doi.org/10.1007/978-3-642-03848-8_5 (page 74)

414

http://dx.doi.org/10.1007/978-3-642-40176-3_5
http://dx.doi.org/10.1007/978-3-642-40176-3_5
http://dx.doi.org/10.1142/S0218843014400012
http://dx.doi.org/10.1142/S0218843014400012
http://dx.doi.org/10.1109/CEC.2014.6900341
http://dx.doi.org/10.1007/s10618-011-0226-x
http://dx.doi.org/10.1007/s10618-011-0226-x
http://dx.doi.org/10.1007/978-3-642-03848-8_22
http://dx.doi.org/10.1007/978-3-642-03848-8_22
http://dx.doi.org/10.1109/TC.2009.131
http://dx.doi.org/10.1109/TC.2009.131
https://www.celonis.com/
http://doi.acm.org/10.1145/304399.304401
http://dx.doi.org/10.1109/12.707587
http://dx.doi.org/10.1109/12.707587
http://dx.doi.org/10.1007/978-3-642-03848-8
http://dx.doi.org/10.1016/j.is.2015.06.009
http://dx.doi.org/10.1016/j.is.2015.06.009
http://dx.doi.org/10.1007/978-3-642-36926-1_34
http://dx.doi.org/10.1007/978-3-642-36926-1_34
http://dx.doi.org/10.1007/978-3-642-03848-8_5
http://dx.doi.org/10.1007/978-3-642-03848-8_5

Bibliography

[54] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business
process models in BPMN. Information & Software Technology 50(12), 1281–1294
(2008), http://dx.doi.org/10.1016/j.infsof.2008.02.006 (page 28)

[55] van Dongen, B.: BPI challenge 2011 dataset (2011), http://dx.doi.org/10.4121/
uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (page 303, 313, 317)

[56] van Dongen, B.: BPI challenge 2012 dataset (2012), http://dx.doi.org/10.4121/
uuid:3926db30-f712-4394-aebc-75976070e91f (page 9, 10, 35, 36, 86, 317, 364)

[57] van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between
business process models. In: Bubenko et al. [35], pp. 405–419, http://dx.doi.org
/10.1007/978-3-642-36926-1_33 (page 6, 11, 73, 75)

[58] van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The prom framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) Applications and Theory of Petri
Nets 2005, 26th International Conference, ICATPN 2005, Miami, USA, June 20-
25, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3536, pp. 444–454.
Springer (2005), http://dx.doi.org/10.1007/11494744_25 (page 9, 256)

[59] Dumas, M., Großkopf, A., Hettel, T., Wynn, M.T.: Semantics of standard process
models with or-joins. In: Meersman and Tari [114], pp. 41–58, http://dx.doi.o
rg/10.1007/978-3-540-76848-7_5 (page 27, 33)

[60] van Eck, M.L., Buijs, J.C.A.M., van Dongen, B.F.: Genetic process mining:
Alignment-based process model mutation. In: Fournier and Mendling [70], pp.
291–303, http://dx.doi.org/10.1007/978-3-319-15895-2_25 (page 59)

[61] van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PMˆ2 : A process
mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) Advanced Information Systems Engineering - 27th International Conference,
CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings. Lecture Notes in
Computer Science, vol. 9097, pp. 297–313. Springer (2015), http://dx.doi.org
/10.1007/978-3-319-19069-3_19 (page 5, 14, 41, 42, 378)

[62] Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part I: basic notions
and the representation problem. Acta Inf. 27(4), 315–342 (1990), http://dx.doi
.org/10.1007/BF00264611 (page 64)

[63] Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part II: state spaces
of concurrent systems. Acta Inf. 27(4), 343–368 (1990), http://dx.doi.org/10.
1007/BF00264612 (page 64)

[64] Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Roddick, J.F., Hinze, A. (eds.) Conceptual Mod-
elling 2007, Proceedings of the Fourth Asia-Pacific Conference on Conceptual
Modelling (APCCM2007), Ballarat, Victoria, Australia, January 30 - February
2, 2007, Proceedings. CRPIT, vol. 67, pp. 71–80. Australian Computer Society
(2007), http://crpit.com/abstracts/CRPITV67Ehrig.html (page 73, 74, 75, 76)

[65] Esparza, J., Hoffmann, P.: Reduction rules for colored workflow nets. In: Stevens,
P., Wasowski, A. (eds.) Fundamental Approaches to Software Engineering - 19th In-
ternational Conference, FASE 2016, Held as Part of the European Joint Conferences

415

http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.1007/978-3-642-36926-1_33
http://dx.doi.org/10.1007/978-3-642-36926-1_33
http://dx.doi.org/10.1007/11494744_25
http://dx.doi.org/10.1007/978-3-540-76848-7_5
http://dx.doi.org/10.1007/978-3-540-76848-7_5
http://dx.doi.org/10.1007/978-3-319-15895-2_25
http://dx.doi.org/10.1007/978-3-319-19069-3_19
http://dx.doi.org/10.1007/978-3-319-19069-3_19
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264612
http://dx.doi.org/10.1007/BF00264612
http://crpit.com/abstracts/CRPITV67Ehrig.html

Bibliography

on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9633, pp.
342–358. Springer (2016), http://dx.doi.org/10.1007/978-3-662-49665-7_20
(page 287)

[66] Esparza, J., Nielsen, M.: Decidability issues for Petri nets - A survey. Bulletin of
the EATCS 52, 244–262 (1994) (page 51, 287)

[67] Esparza, J., Silva, M.: On the analysis and synthesis of free choice systems. In:
Rozenberg, G. (ed.) Advances in Petri Nets 1990. 10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings.
Lecture Notes in Computer Science, vol. 483, pp. 243–286. Springer (1989), http:
//dx.doi.org/10.1007/3-540-53863-1_28 (page 25, 26)

[68] Evermann, J.: Scalable process discovery using map-reduce. IEEE Transactions
on Services Computing 9(3), 469–481 (2016), http://dx.doi.org/10.1109/TSC.
2014.2367525 (page 316)

[69] Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowledge Engineering 70(5), 448–466 (2011), http://dx.doi.org/10.1016/
j.datak.2011.01.004 (page 318, 406)

[70] Fournier, F., Mendling, J. (eds.): Business Process Management Workshops -
BPM 2014 International Workshops, Eindhoven, The Netherlands, September 7-8,
2014, Revised Papers, Lecture Notes in Business Information Processing, vol. 202.
Springer (2015), http://dx.doi.org/10.1007/978-3-319-15895-2 (page 415,
417, 418, 419)

[71] Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010), http://dx.doi.org/10.1007/s10044-008-0141-y
(page 74)

[72] Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci. 411(31-33), 2987–2998 (2010), http://dx.doi.org
/10.1016/j.tcs.2010.04.036 (page 286)

[73] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996), http://doi.acm.org/10.1145/
233551.233556 (page 48)

[74] Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. Journal of Machine Learning Research 10, 1305–1340
(2009), http://doi.acm.org/10.1145/1577069.1577113 (page 66, 73)

[75] Gold, E.M.: Language identification in the limit. Information and Con-
trol 10(5), 447–474 (1967), http://dx.doi.org/10.1016/S0019-9958(67)91165-5
(page 180)

[76] Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006),
http://dx.doi.org/10.1109/TKDE.2006.123 (page 72)

416

http://dx.doi.org/10.1007/978-3-662-49665-7_20
http://dx.doi.org/10.1007/3-540-53863-1_28
http://dx.doi.org/10.1007/3-540-53863-1_28
http://dx.doi.org/10.1109/TSC.2014.2367525
http://dx.doi.org/10.1109/TSC.2014.2367525
http://dx.doi.org/10.1016/j.datak.2011.01.004
http://dx.doi.org/10.1016/j.datak.2011.01.004
http://dx.doi.org/10.1007/978-3-319-15895-2
http://dx.doi.org/10.1007/s10044-008-0141-y
http://dx.doi.org/10.1016/j.tcs.2010.04.036
http://dx.doi.org/10.1016/j.tcs.2010.04.036
http://doi.acm.org/10.1145/233551.233556
http://doi.acm.org/10.1145/233551.233556
http://doi.acm.org/10.1145/1577069.1577113
http://dx.doi.org/10.1016/S0019-9958(67)91165-5
http://dx.doi.org/10.1109/TKDE.2006.123

Bibliography

[77] Günther, C., Verbeek, H.: XES v2.0 (2014), http://www.xes-standard.org/
(page 35, 36, 77, 79, 171, 273, 382, 392)

[78] Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) Business Process Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4714, pp. 328–343. Springer (2007), http://dx.doi.org/10.
1007/978-3-540-75183-0_24 (page 65, 396)

[79] Günther, C.W., Rozinat, A.: Disco: Discover your processes. In: Lohmann, N.,
Moser, S. (eds.) Proceedings of the Demonstration Track of the 10th Interna-
tional Conference on Business Process Management (BPM 2012), Tallinn, Estonia,
September 4, 2012. CEUR Workshop Proceedings, vol. 940, pp. 40–44. CEUR-
WS.org (2012), http://ceur-ws.org/Vol-940/paper8.pdf (page 44, 65, 80, 121,
312, 378, 396)

[80] Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-
choice constructs. In: Motahari-Nezhad et al. [121], pp. 109–125, http://dx.doi
.org/10.1007/978-3-319-23063-4_7 (page 20, 21, 24, 62)

[81] Haddad, S., Pomello, L. (eds.): Application and Theory of Petri Nets - 33rd
International Conference, PETRI NETS 2012, Hamburg, Germany, June 25-29,
2012. Proceedings, Lecture Notes in Computer Science, vol. 7347. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-31131-4 (page 410, 412, 424)

[82] ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Mod-
ern Business Process Automation - YAWL and its Support Environment. Springer
(2010), http://www.yawlbook.com/home/ (page 27, 172)

[83] Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.:
Formalising and analysing the control software of the compact muon solenoid ex-
periment at the large hadron collider. Sci. Comput. Program. 78(12), 2435–2452
(2013), http://dx.doi.org/10.1016/j.scico.2012.11.009 (page 8, 313)

[84] Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., Zheng, Z.: Kdd-cup 2000 or-
ganizers’ report: Peeling the onion. SIGKDD Explorations 2(2), 86–98 (2000),
http://doi.acm.org/10.1145/380995.381033 (page 313)

[85] Kunze, M., Weidlich, M., Weske, M.: Querying process models by behavior inclu-
sion. Software and System Modeling 14(3), 1105–1125 (2015), http://dx.doi.org
/10.1007/s10270-013-0389-6 (page 6, 11, 75)

[86] Leemans, M., van der Aalst, W.M.P.: Process mining in software systems: Discov-
ering real-life business transactions and process models from distributed systems.
In: Lethbridge, T., Cabot, J., Egyed, A. (eds.) 18th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MoDELS 2015,
Ottawa, ON, Canada, September 30 - October 2, 2015. pp. 44–53. IEEE (2015),
http://dx.doi.org/10.1109/MODELS.2015.7338234 (page 313)

[87] Leemans, S.J.J.: Process discovery and exploration. In: Fournier and Mendling
[70], pp. 582–585, http://dx.doi.org/10.1007/978-3-319-15895-2_52 (page 4)

417

http://www.xes-standard.org/
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://ceur-ws.org/Vol-940/paper8.pdf
http://dx.doi.org/10.1007/978-3-319-23063-4_7
http://dx.doi.org/10.1007/978-3-319-23063-4_7
http://dx.doi.org/10.1007/978-3-642-31131-4
http://www.yawlbook.com/home/
http://dx.doi.org/10.1016/j.scico.2012.11.009
http://doi.acm.org/10.1145/380995.381033
http://dx.doi.org/10.1007/s10270-013-0389-6
http://dx.doi.org/10.1007/s10270-013-0389-6
http://dx.doi.org/10.1109/MODELS.2015.7338234
http://dx.doi.org/10.1007/978-3-319-15895-2_52

Bibliography

[88] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.M., Desel,
J. (eds.) Application and Theory of Petri Nets and Concurrency - 34th Interna-
tional Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7927, pp. 311–329. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-38697-8_17 (page 7, 106, 131)

[89] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) Business Process Management Workshops - BPM 2013
International Workshops, Beijing, China, August 26, 2013, Revised Papers. Lecture
Notes in Business Information Processing, vol. 171, pp. 66–78. Springer (2013),
http://dx.doi.org/10.1007/978-3-319-06257-0_6 (page 14, 72, 317, 322)

[90] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) Ap-
plication and Theory of Petri Nets and Concurrency - 35th International Con-
ference, PETRI NETS 2014, Tunis, Tunisia, June 23-27, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8489, pp. 91–110. Springer (2014), http:
//dx.doi.org/10.1007/978-3-319-07734-5_6 (page 7, 322)

[91] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and
deviations. In: Fournier and Mendling [70], pp. 304–316, http://dx.doi.org/10.
1007/978-3-319-15895-2_26 (page 5, 14, 79)

[92] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation
exploration with Inductive visual Miner. In: Limonad and Weber [100], p. 46,
http://ceur-ws.org/Vol-1295/paper19.pdf (page 379)

[93] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information
in process discovery. In: Reichert and Reijers [136], pp. 204–217, http://dx.doi
.org/10.1007/978-3-319-42887-1_17 (page 77, 78, 235)

[94] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Software & Systems Modeling special issue, 1–33 (2016),
http://dx.doi.org/10.1007/s10270-016-0545-x (page 5, 50, 51, 70, 73, 311,
313, 316, 317, 374)

[95] de Leoni, M., van der Aalst, W.: Data-aware process mining: discovering decisions
in processes using alignments. In: SAC. pp. 1454–1461. ACM (2013) (page 79)

[96] de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015), http:
//dx.doi.org/10.1007/s00607-015-0441-1 (page 276, 317)

[97] Leontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad et al. [121], pp. 297–313, http://dx.doi.org/10.
1007/978-3-319-23063-4_21 (page 317)

[98] Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity
based on high-level change operations. In: Li, Q., Spaccapietra, S., Yu, E.S.K.,
Olivé, A. (eds.) Conceptual Modeling - ER 2008, 27th International Conference
on Conceptual Modeling, Barcelona, Spain, October 20-24, 2008. Proceedings.

418

http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-319-06257-0_6
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-319-15895-2_26
http://dx.doi.org/10.1007/978-3-319-15895-2_26
http://ceur-ws.org/Vol-1295/paper19.pdf
http://dx.doi.org/10.1007/978-3-319-42887-1_17
http://dx.doi.org/10.1007/978-3-319-42887-1_17
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1007/s00607-015-0441-1
http://dx.doi.org/10.1007/s00607-015-0441-1
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-319-23063-4_21

Bibliography

Lecture Notes in Computer Science, vol. 5231, pp. 248–264. Springer (2008),
http://dx.doi.org/10.1007/978-3-540-87877-3_19 (page 74)

[99] Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery
using maximal pattern mining. In: Motahari-Nezhad et al. [121], pp. 441–456,
http://dx.doi.org/10.1007/978-3-319-23063-4_29 (page 60, 72, 322, 406)

[100] Limonad, L., Weber, B. (eds.): Proceedings of the BPM Demo Sessions 2014 Co-
located with the 12th International Conference on Business Process Management
(BPM 2014), Eindhoven, The Netherlands, September 10, 2014, CEUR Workshop
Proceedings, vol. 1295. CEUR-WS.org (2014), http://ceur-ws.org/Vol-1295
(page 418, 422)

[101] Linz, P.: An introduction to formal languages and automata (4. ed.). Jones and
Bartlett Publishers (2006) (page 20, 22, 172, 283, 285, 286, 289)

[102] Lu, C.L., Su, Z., Tang, C.Y.: A new measure of edit distance between labeled
trees. In: Wang, J. (ed.) Computing and Combinatorics, 7th Annual Interna-
tional Conference, COCOON 2001, Guilin, China, August 20-23, 2001, Proceed-
ings. Lecture Notes in Computer Science, vol. 2108, pp. 338–348. Springer (2001),
http://dx.doi.org/10.1007/3-540-44679-6_37 (page 73, 74)

[103] Lu, R., Sadiq, S.W.: On the discovery of preferred work practice through busi-
ness process variants. In: Parent, C., Schewe, K., Storey, V.C., Thalheim, B.
(eds.) Conceptual Modeling - ER 2007, 26th International Conference on Con-
ceptual Modeling, Auckland, New Zealand, November 5-9, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4801, pp. 165–180. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-75563-0_13 (page 6, 74)

[104] Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on
partially ordered event data. In: Fournier and Mendling [70], pp. 75–88, http:
//dx.doi.org/10.1007/978-3-319-15895-2_7 (page 177)

[105] Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling
duplicated tasks in process discovery by refining event labels. In: Rosa et al. [139],
pp. 90–107, http://dx.doi.org/10.1007/978-3-319-45348-4_6 (page 67)

[106] Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework
for workflow model management. Data Knowl. Eng. 50(1), 87–115 (2004), http:
//dx.doi.org/10.1016/j.datak.2004.01.005 (page 74)

[107] Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discov-
ery to detect concept drifts in ltl-based declarative process models. In: Meers-
man, R., Panetto, H., Dillon, T.S., Eder, J., Bellahsene, Z., Ritter, N., Leen-
heer, P.D., Dou, D. (eds.) On the Move to Meaningful Internet Systems: OTM
2013 Conferences - Confederated International Conferences: CoopIS, DOA-Trusted
Cloud, and ODBASE 2013, Graz, Austria, September 9-13, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8185, pp. 94–111. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-41030-7_7 (page 22, 317)

[108] Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining, CIDM 2011, part of the IEEE Symposium Series on

419

http://dx.doi.org/10.1007/978-3-540-87877-3_19
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://ceur-ws.org/Vol-1295
http://dx.doi.org/10.1007/3-540-44679-6_37
http://dx.doi.org/10.1007/978-3-540-75563-0_13
http://dx.doi.org/10.1007/978-3-319-15895-2_7
http://dx.doi.org/10.1007/978-3-319-15895-2_7
http://dx.doi.org/10.1007/978-3-319-45348-4_6
http://dx.doi.org/10.1016/j.datak.2004.01.005
http://dx.doi.org/10.1016/j.datak.2004.01.005
http://dx.doi.org/10.1007/978-3-642-41030-7_7

Bibliography

Computational Intelligence 2011, April 11-15, 2011, Paris, France [1], pp. 192–199,
http://dx.doi.org/10.1109/CIDM.2011.5949297 (page 66)

[109] Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid
processes. In: Sadiq et al. [145], pp. 392–399, http://dx.doi.org/10.1007/
978-3-319-10172-9_27 (page 198, 277)

[110] Mannhardt, F.: Managing large XES event logs in ProM. BPM Center Report
BPM-16-04, BPMcenter.org (2016) (page 311)

[111] de Medeiros, A.K.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters,
A.J.M.M.: Process mining for ubiquitous mobile systems: An overview and a
concrete algorithm. In: Baresi, L., Dustdar, S., Gall, H.C., Matera, M. (eds.)
Ubiquitous Mobile Information and Collaboration Systems, Second CAiSE Work-
shop, UMICS 2004, Riga, Latvia, June 7-8, 2004, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 3272, pp. 151–165. Springer (2004), http:
//dx.doi.org/10.1007/978-3-540-30188-2_12 (page 61)

[112] de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007), http://dx.doi.org/10.1007/s10618-006-0061-7 (page 73)

[113] de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P., Weijters,
A.J.M.M., van Dongen, B.F., Saccà, D.: Process mining based on clustering: A
quest for precision. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H. (eds.) Busi-
ness Process Management Workshops, BPM 2007 International Workshops, BPI,
BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane, Australia, September
24, 2007, Revised Selected Papers. Lecture Notes in Computer Science, vol. 4928,
pp. 17–29. Springer (2007), http://dx.doi.org/10.1007/978-3-540-78238-4_4
(page 66, 87)

[114] Meersman, R., Tari, Z. (eds.): On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated International Confer-
ences CoopIS, DOA, ODBASE, GADA, and IS 2007, Vilamoura, Portugal, Novem-
ber 25-30, 2007, Proceedings, Part I, Lecture Notes in Computer Science, vol. 4803.
Springer (2007) (page 415, 420)

[115] Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
Ph.D. thesis, Vienna University of Economics and Business Administration (2007)
(page 55)

[116] Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: Meersman and Tari [114], pp.
113–130, http://dx.doi.org/10.1007/978-3-540-76848-7_9 (page 55)

[117] Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based
similarity assessment for agile workflows. In: Weber, R., Richter, M.M. (eds.)
Case-Based Reasoning Research and Development, 7th International Conference
on Case-Based Reasoning, ICCBR 2007, Belfast, Northern Ireland, UK, August 13-
16, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4626, pp. 224–238.
Springer (2007), http://dx.doi.org/10.1007/978-3-540-74141-1_16 (page 6,
74)

420

http://dx.doi.org/10.1109/CIDM.2011.5949297
http://dx.doi.org/10.1007/978-3-319-10172-9_27
http://dx.doi.org/10.1007/978-3-319-10172-9_27
http://dx.doi.org/10.1007/978-3-540-30188-2_12
http://dx.doi.org/10.1007/978-3-540-30188-2_12
http://dx.doi.org/10.1007/s10618-006-0061-7
http://dx.doi.org/10.1007/978-3-540-78238-4_4
http://dx.doi.org/10.1007/978-3-540-76848-7_9
http://dx.doi.org/10.1007/978-3-540-74141-1_16

Bibliography

[118] Molka, T., Gilani, W., Zeng, X.: Dotted chart and control-flow analysis for a loan
application process. In: Rosa and Soffer [140], pp. 223–224, http://dx.doi.org
/10.1007/978-3-642-36285-9_26 (page 317)

[119] Molka, T., Redlich, D., Gilani, W., Zeng, X., Drobek, M.: Evolutionary computa-
tion based discovery of hierarchical business process models. In: Abramowicz [18],
pp. 191–204, http://dx.doi.org/10.1007/978-3-319-19027-3_16 (page 58)

[120] Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for
Java (2010), http://www.brics.dk/automaton/ (page 303)

[121] Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.): Business Process Manage-
ment - 13th International Conference, BPM 2015, Innsbruck, Austria, August 31 -
September 3, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9253.
Springer (2015), http://dx.doi.org/10.1007/978-3-319-23063-4 (page 417,
418, 419, 426)

[122] Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) Business Process Management - 8th
International Conference, BPM 2010, Hoboken, NJ, USA, September 13-16, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6336, pp. 211–226. Springer
(2010), http://dx.doi.org/10.1007/978-3-642-15618-2_16 (page 72)

[123] Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014), http://dx.doi
.org/10.1016/j.is.2014.04.003 (page 70, 90)

[124] Murata, T., Shenker, B., Shatz, S.M.: Detection of ada static deadlocks using Petri
net invariants. IEEE Trans. Software Eng. 15(3), 314–326 (1989), http://dx.doi
.org/10.1109/32.21759 (page 287, 318)

[125] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. pp.
54–64. IEEE Computer Society (2007), http://dx.doi.org/10.1109/ICSE.2007.
50 (page 75)

[126] Newman, M.H.A.: On theories with a combinatorial definition of “equivalence".
Annals of mathematics 43(2), 223–243 (1942) (page 117, 119)

[127] Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977), http://do
i.acm.org/10.1145/356698.356702 (page 6, 26)

[128] Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the ex-
pressive power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016),
http://dx.doi.org/10.1007/s00165-016-0372-4 (page 50)

[129] Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Syst. 37(6), 518–538 (2012), http://dx.doi.org/10.1016/j.is.2011.10.
005 (page 63)

[130] Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: ASE 2009. pp. 371–382. IEEE Computer Society (2009),
http://dx.doi.org/10.1109/ASE.2009.60 (page 313)

421

http://dx.doi.org/10.1007/978-3-642-36285-9_26
http://dx.doi.org/10.1007/978-3-642-36285-9_26
http://dx.doi.org/10.1007/978-3-319-19027-3_16
http://dx.doi.org/10.1007/978-3-319-23063-4
http://dx.doi.org/10.1007/978-3-642-15618-2_16
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1109/32.21759
http://dx.doi.org/10.1109/32.21759
http://dx.doi.org/10.1109/ICSE.2007.50
http://dx.doi.org/10.1109/ICSE.2007.50
http://doi.acm.org/10.1145/356698.356702
http://doi.acm.org/10.1145/356698.356702
http://dx.doi.org/10.1007/s00165-016-0372-4
http://dx.doi.org/10.1016/j.is.2011.10.005
http://dx.doi.org/10.1016/j.is.2011.10.005
http://dx.doi.org/10.1109/ASE.2009.60

Bibliography

[131] Ramezani, E., Fahland, D., van der Aalst, W.: Where did I misbehave? Diagnostic
information in compliance checking. In: BPM. Lecture Notes in Computer Science,
vol. 7481, pp. 262–278. Springer (2012) (page 7)

[132] Ramezani, E.: Understanding non-compliance. Ph.D. thesis, Eindhoven University
of Technology (2017) (page 5)

[133] Redlich, D., Galushka, M., Molka, T., Gilani, W., Blair, G.S., Rashid,
A.: Evaluation of the dynamic construct competition miner for an ehealth
system. In: Abramowicz [18], pp. 115–126, http://dx.doi.org/10.1007/
978-3-319-19027-3_10 (page 59)

[134] Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Constructs competition
miner: Process control-flow discovery of bp-domain constructs. In: Sadiq et al.
[145], pp. 134–150, http://dx.doi.org/10.1007/978-3-319-10172-9_9 (page 59,
121, 312, 322)

[135] Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic
business process discovery with the constructs competition miner. In: Accorsi, R.,
Ceravolo, P., Russo, B. (eds.) Proceedings of the 4th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2014), Milan, Italy, Novem-
ber 19-21, 2014. CEUR Workshop Proceedings, vol. 1293, pp. 91–107. CEUR-
WS.org (2014), http://ceur-ws.org/Vol-1293/paper7.pdf (page 316)

[136] Reichert, M., Reijers, H.A. (eds.): Business Process Management Workshops -
BPM 2015, 13th International Workshops, Innsbruck, Austria, August 31 - Septem-
ber 3, 2015, Revised Papers, Lecture Notes in Business Information Process-
ing, vol. 256. Springer (2016), http://dx.doi.org/10.1007/978-3-319-42887-1
(page 418, 423)

[137] Reisig, W.: A primer in Petri net design. Springer Compass International, Springer
(1992) (page 2, 4, 22)

[138] Ribeiro, J., Carmona, J.: RS4PD: A tool for recommending control-flow algo-
rithms. In: Limonad and Weber [100], p. 66, http://ceur-ws.org/Vol-1295/pa
per14.pdf (page 277)

[139] Rosa, M.L., Loos, P., Pastor, O. (eds.): Business Process Management - 14th
International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22,
2016. Proceedings, Lecture Notes in Computer Science, vol. 9850. Springer (2016),
http://dx.doi.org/10.1007/978-3-319-45348-4 (page 419, 423)

[140] Rosa, M.L., Soffer, P. (eds.): Business Process Management Workshops - BPM 2012
International Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers,
Lecture Notes in Business Information Processing, vol. 132. Springer (2013), http:
//dx.doi.org/10.1007/978-3-642-36285-9 (page 412, 421)

[141] Rozinat, A., Veloso, M., van der Aalst, W.: Using hidden markov models to eval-
uate the quality of discovered process models. BPM Center Report BPM-08-10,
BPMcenter.org (2008) (page 73)

[142] Rozinat, A.: Process Mining: Conformance and Extension. Ph.D. thesis, Eindhoven
University of Technology (2010) (page 47, 65, 394)

422

http://dx.doi.org/10.1007/978-3-319-19027-3_10
http://dx.doi.org/10.1007/978-3-319-19027-3_10
http://dx.doi.org/10.1007/978-3-319-10172-9_9
http://ceur-ws.org/Vol-1293/paper7.pdf
http://dx.doi.org/10.1007/978-3-319-42887-1
http://ceur-ws.org/Vol-1295/paper14.pdf
http://ceur-ws.org/Vol-1295/paper14.pdf
http://dx.doi.org/10.1007/978-3-319-45348-4
http://dx.doi.org/10.1007/978-3-642-36285-9
http://dx.doi.org/10.1007/978-3-642-36285-9

Bibliography

[143] Rozinat, A., van der Aalst, W.M.P.: Conformance testing: Measuring the fit and
appropriateness of event logs and process models. In: Bussler, C., Haller, A. (eds.)
Business Process Management Workshops, BPM 2005 International Workshops,
BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005,
Revised Selected Papers. vol. 3812, pp. 163–176 (2005), http://dx.doi.org/10.
1007/11678564_15 (page 20, 21, 73)

[144] Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008), http://dx.doi.org/10.
1016/j.is.2007.07.001 (page 6, 72, 78, 292)

[145] Sadiq, S.W., Soffer, P., Völzer, H. (eds.): Business Process Management - 12th
International Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Pro-
ceedings, Lecture Notes in Computer Science, vol. 8659. Springer (2014), http:
//dx.doi.org/10.1007/978-3-319-10172-9 (page 420, 422)

[146] Salomaa, A.: Jewels of formal language theory. Computer Science Press,
Oelgeschlager (1981) (page 66)

[147] de San Pedro, J., Cortadella, J.: Discovering duplicate tasks in transition systems
for the simplification of process models. In: Rosa et al. [139], pp. 108–124, http:
//dx.doi.org/10.1007/978-3-319-45348-4_7 (page 287)

[148] Schimm, G.: Generic linear business process modeling. In: ER (Workshops). LNCS,
vol. 1921, pp. 31–39. Springer (2000) (page 34)

[149] Schimm, G.: Mining exact models of concurrent workflows. Computers in Indus-
try 53(3), 265–281 (2004), http://dx.doi.org/10.1016/j.compind.2003.10.003
(page 60)

[150] Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A., van der
Aalst, W.M.P.: Discovering queues from event logs with varying levels of informa-
tion. In: Reichert and Reijers [136], pp. 154–166, http://dx.doi.org/10.1007/
978-3-319-42887-1_13 (page 386, 392, 393, 394)

[151] Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: Debruyne, C., Panetto, H., Meersman, R., Dillon,
T.S., eva Kühn, O’Sullivan, D., Ardagna, C.A. (eds.) On the Move to Meaningful
Internet Systems: OTM 2016 Conferences - Confederated International Confer-
ences: CoopIS, C&TC, and ODBASE 2016, Rhodes, Greece, October 24-28, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 10033, pp. 531–551 (2016),
http://dx.doi.org/10.1007/978-3-319-48472-3_32 (page 277, 406)

[152] Solé, M., Carmona, J.: A high-level strategy for c-net discovery. In: Brandt, J.,
Heljanko, K. (eds.) 12th International Conference on Application of Concurrency
to System Design, ACSD 2012, Hamburg, Germany, June 27-29, 2012. pp. 102–
111. IEEE Computer Society (2012), http://dx.doi.org/10.1109/ACSD.2012.20
(page 63, 64)

[153] Solé, M., Carmona, J.: Incremental process discovery. Trans. Petri Nets and
Other Models of Concurrency 5, 221–242 (2012), http://dx.doi.org/10.1007/
978-3-642-29072-5_10 (page 64)

423

http://dx.doi.org/10.1007/11678564_15
http://dx.doi.org/10.1007/11678564_15
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1007/978-3-319-10172-9
http://dx.doi.org/10.1007/978-3-319-10172-9
http://dx.doi.org/10.1007/978-3-319-45348-4_7
http://dx.doi.org/10.1007/978-3-319-45348-4_7
http://dx.doi.org/10.1016/j.compind.2003.10.003
http://dx.doi.org/10.1007/978-3-319-42887-1_13
http://dx.doi.org/10.1007/978-3-319-42887-1_13
http://dx.doi.org/10.1007/978-3-319-48472-3_32
http://dx.doi.org/10.1109/ACSD.2012.20
http://dx.doi.org/10.1007/978-3-642-29072-5_10
http://dx.doi.org/10.1007/978-3-642-29072-5_10

Bibliography

[154] Solé, M., Carmona, J.: An smt-based discovery algorithm for c-nets. In: Haddad
and Pomello [81], pp. 51–71, http://dx.doi.org/10.1007/978-3-642-31131-4_4
(page 63)

[155] Tapia-Flores, T., López-Mellado, E., Estrada-Vargas, A.P., Lesage, J.: Petri net
discovery of discrete event processes by computing t-invariants. In: Grau, A.,
Martínez, H. (eds.) Proceedings of the 2014 IEEE Emerging Technology and Fac-
tory Automation, ETFA 2014, Barcelona, Spain, September 16-19, 2014. pp. 1–8.
IEEE (2014), http://dx.doi.org/10.1109/ETFA.2014.7005080 (page 22, 24, 307)

[156] Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) Information Sys-
tems Evolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Se-
lected Extended Papers. Lecture Notes in Business Information Processing, vol. 72,
pp. 60–75. Springer (2010), http://dx.doi.org/10.1007/978-3-642-17722-4_5
(page 275)

[157] Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Information Theory 13(2), 260–269 (1967), http:
//dx.doi.org/10.1109/TIT.1967.1054010 (page 73)

[158] Wang, J., He, T., Wen, L., Wu, N., ter Hofstede, A.H.M., Su, J.: A behavioral sim-
ilarity measure between labeled Petri nets based on principal transition sequences
- (short paper). In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) On the Move to
Meaningful Internet Systems: OTM 2010 - Confederated International Conferences:
CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, October 25-29, 2010,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 6426, pp. 394–401.
Springer (2010), http://dx.doi.org/10.1007/978-3-642-16934-2_27 (page 74,
75)

[159] Wasserman, S., Faust, K.: Social network analysis: Methods and applications,
vol. 8. Cambridge university press (1994) (page 79)

[160] Watson, H.J., Wixom, B.: The current state of business intelligence. IEEE Com-
puter 40(9), 96–99 (2007), http://dx.doi.org/10.1109/MC.2007.331 (page 83)

[161] Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012), http://dx.doi.org/10.1016/j.is
.2012.02.004 (page 73)

[162] Weidlich, M., Dijkman, R.M., Weske, M.: Behaviour equivalence and compatibility
of business process models with complex correspondences. Comput. J. 55(11), 1398–
1418 (2012), http://dx.doi.org/10.1093/comjnl/bxs014 (page 73)

[163] Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of
causal behavioural profiles using structural decomposition. In: Lilius, J., Penczek,
W. (eds.) Applications and Theory of Petri Nets, 31st International Conference,
PETRI NETS 2010, Braga, Portugal, June 21-25, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6128, pp. 63–83. Springer (2010), http://dx.doi.org
/10.1007/978-3-642-13675-7_6 (page 74, 89)

424

http://dx.doi.org/10.1007/978-3-642-31131-4_4
http://dx.doi.org/10.1109/ETFA.2014.7005080
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1109/TIT.1967.1054010
http://dx.doi.org/10.1109/TIT.1967.1054010
http://dx.doi.org/10.1007/978-3-642-16934-2_27
http://dx.doi.org/10.1109/MC.2007.331
http://dx.doi.org/10.1016/j.is.2012.02.004
http://dx.doi.org/10.1016/j.is.2012.02.004
http://dx.doi.org/10.1093/comjnl/bxs014
http://dx.doi.org/10.1007/978-3-642-13675-7_6
http://dx.doi.org/10.1007/978-3-642-13675-7_6

Bibliography

[164] Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Inform. 113(3-4),
399–435 (2011) (page 6, 11, 75)

[165] Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuris-
tics miner-algorithm. BETA Working Paper series 166, Eindhoven University of
Technology (2006) (page 73)

[166] Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integrated Computer-Aided Engineering 10(2),
151–162 (2003), http://content.iospress.com/articles/integrated-compute
r-aided-engineering/ica00143 (page 63)

[167] Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence
2011, April 11-15, 2011, Paris, France [1], pp. 310–317, http://dx.doi.org/10.
1109/CIDM.2011.5949453 (page 5, 6, 63, 121, 204, 312)

[168] Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007), http:
//dx.doi.org/10.1007/s10618-007-0065-y (page 61)

[169] Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel approach
for process mining based on event types. J. Intell. Inf. Syst. 32(2), 163–190 (2009),
http://dx.doi.org/10.1007/s10844-007-0052-1 (page 62, 312)

[170] Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process
models with prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010),
http://dx.doi.org/10.1016/j.datak.2010.06.001 (page 62)

[171] Wen, L., Wang, J., Sun, J.: Detecting implicit dependencies between tasks from
event logs. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.)
Frontiers of WWW Research and Development - APWeb 2006, 8th Asia-Pacific
Web Conference, Harbin, China, January 16-18, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 3841, pp. 591–603. Springer (2006), http://dx.doi.org
/10.1007/11610113_52 (page 61)

[172] Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong,
G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) Advances in Data and Web
Management, Joint 9th Asia-Pacific Web Conference, APWeb 2007, and 8th
International Conference, on Web-Age Information Management, WAIM 2007,
Huang Shan, China, June 16-18, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4505, pp. 358–365. Springer (2007), http://dx.doi.org/10.1007/
978-3-540-72524-4_38 (page 62)

[173] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. Fundam. Inform. 94(3-4), 387–412
(2009), http://dx.doi.org/10.3233/FI-2009-136 (page 6, 7, 20, 21, 24, 64, 65,
307, 312)

[174] Westergaard, M., Maggi, F.M.: Declare: A tool suite for declarative workflow
modeling and enactment. In: Ludwig, H., Reijers, H.A. (eds.) Proceedings of the

425

http://content.iospress.com/articles/integrated-computer-aided-engineering/ica00143
http://content.iospress.com/articles/integrated-computer-aided-engineering/ica00143
http://dx.doi.org/10.1109/CIDM.2011.5949453
http://dx.doi.org/10.1109/CIDM.2011.5949453
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1007/s10844-007-0052-1
http://dx.doi.org/10.1016/j.datak.2010.06.001
http://dx.doi.org/10.1007/11610113_52
http://dx.doi.org/10.1007/11610113_52
http://dx.doi.org/10.1007/978-3-540-72524-4_38
http://dx.doi.org/10.1007/978-3-540-72524-4_38
http://dx.doi.org/10.3233/FI-2009-136

Bibliography

Demo Track of the Nineth Conference on Business Process Management 2011,
Clermont-Ferrand, France, August 31st, 2011. CEUR Workshop Proceedings, vol.
820. CEUR-WS.org (2011), http://ceur-ws.org/Vol-820/Demo3.pdf (page 66)

[175] Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.)
Petri Nets and Other Models of Concurrency - ICATPN 2007, 28th Interna-
tional Conference on Applications and Theory of Petri Nets and Other Mod-
els of Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007, Proceed-
ings. Lecture Notes in Computer Science, vol. 4546, pp. 29–42. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-73094-1_5 (page 318)

[176] Wolper, P.: Temporal logic can be more expressive. Information and Con-
trol 56(1/2), 72–99 (1983), http://dx.doi.org/10.1016/S0019-9958(83)80051-5
(page 66)

[177] Wombacher, A.: Evaluation of technical measures for workflow similarity based
on a pilot study. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated
International Conferences, CoopIS, DOA, GADA, and ODBASE 2006, Montpellier,
France, October 29 - November 3, 2006. Proceedings, Part I. Lecture Notes in
Computer Science, vol. 4275, pp. 255–272. Springer (2006), http://dx.doi.org
/10.1007/11914853_16 (page 75, 89)

[178] van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting
in ILP-based process discovery. In: Motahari-Nezhad et al. [121], pp. 163–171,
http://dx.doi.org/10.1007/978-3-319-23063-4_10 (page 65)

[179] Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Computers in Industry 61(5), 463–471
(2010), http://dx.doi.org/10.1016/j.compind.2010.01.001 (page 6, 11, 75)

426

http://ceur-ws.org/Vol-820/Demo3.pdf
http://dx.doi.org/10.1007/978-3-540-73094-1_5
http://dx.doi.org/10.1016/S0019-9958(83)80051-5
http://dx.doi.org/10.1007/11914853_16
http://dx.doi.org/10.1007/11914853_16
http://dx.doi.org/10.1007/978-3-319-23063-4_10
http://dx.doi.org/10.1016/j.compind.2010.01.001

Summary

Summary

Organisations store a lot of data from their business processes nowadays. This execution
data is often stored in an event log. In many cases, the inner workings of the process
are not known to management, or only vaguely resemble their three-year old PowerPoint
design. Gaining insights into the process as it is executed using only an event log is the
aim of process mining. In this thesis, we address three aspects of process mining: process
discovery, conformance checking and enhancement.

Process Discovery. Given an event log, process discovery is often the first step of a
process mining project. Process discovery aims to automatically discover a process model
from the event log, such that this model describes the underlying (unknown) process well.
As we do not want to assume that all possible behaviour is included in the event log,
process discovery algorithms inherently make a trade-off between several quality criteria.
For instance, fitness denotes the fraction of the event log is described in the model, and
log precision denotes the fraction of the model is described in the event log. Simplicity
denotes whether the model needs few and simple constructs to express its behaviour. For
some event logs, process models that score well on fitness, log precision and simplicity
might not exist in the representational bias of the algorithm. Other quality criteria
of algorithms include how well a discovered model resembles the running process that
underlies the event log. Even though the process is typically unknown, studying under
which conditions a discovery algorithm rediscovers the process allows us to compare
discovery algorithms.

In this thesis, we argue that process discovery algorithms should provide several guar-
antees, such as that the discovered models are free of deadlocks and other anomalies,
that fitness is perfect, and that the processes underlying the event logs are rediscov-
ered. We conducted a systematic study of abstractions of logs and models to determine
which classes of models can be rediscovered, such that the language of a discovered
model is equivalent to the language of the process underlying the event log. We proved
this property for several abstractions, such as the directly-follows relation (which activ-
ity follows which directly), the minimum self-distance relation (which activities may be
executed between two as-close-as-possible-occurrences of another activity), the activity
relations (which characteristic determines the relation between two activities), and the
co-occurrence relation.

These relations were used in several new algorithms that are proposed in this thesis:
a basic algorithm, an algorithm that handles deviating and infrequent behaviour, and
another that handles incompleteness. Deviating behaviour should not be possible in the
process but appears in the event log, while infrequent behaviour denotes little-used parts
of the process. Such behaviour needs to be filtered to avoid complex models. An event
log that does not fully witness a language abstraction is incomplete, and this challenges
discovery algorithms. However, we show that in some cases guarantees can still be given.

We introduce a process discovery framework that provides several guarantees, such as
deadlock freedom. Using the framework, we introduce a family of discovery algorithms
to handle the mentioned challenges, as well as non-atomic event logs (i.e. in which
activity executions take time), large event logs and complex event logs. We evaluated
the algorithms and found that they perform well on real-life event logs, and that they
are robust to logs with deviations, logs with little-used parts and incomplete logs.

Conformance Checking. Due to the trade-offs involved in process discovery, dis-
covery algorithms might leave out certain behaviour from an event log, or include be-
haviour that was not recorded in the event log. Therefore, a discovered model should be

428

Summary

evaluated, for instance using a conformance checking technique, before conclusions can
be drawn on the absence or presence of behaviour. A conformance checking technique
compares a model to either an event log or another model and provides information on
their differences. Existing conformance checking techniques often take exponential time
in the length of traces in the event log. We propose a conformance checking framework
to address this by using the language abstractions, thereby reducing the problem size
while keeping certain guarantees, for instance that perfect fitness is reported if and only
if a log and a model are perfectly fitting.

Enhancement & Tool Support. More insights can be gained from a discovered
process model by projecting additional information on the model. In this thesis, we
studied four types of enhancements: frequency information, performance information,
deviations of log and model, and animation. For instance, to measure time spent waiting
for activities reliably, we showed that it is important that concurrency is taken into
account, because if two activities are concurrent, their waiting time is independent of
one another. Therefore, such measures should be based on a process model.

Finally, we introduced a software tool that combines the benefits of commercial and
academic tools: given an event log, the Inductive visual Miner discovers a process model,
applies a conformance checking technique and enhances the process model with the four
types of information. By zooming in and out of the process and the event log by changing
parameters of the techniques, users can iteratively explore the event log. The Inductive
visual Miner combines the ease-of-use of commercial tools with the reliability and robust-
ness of academic tools, and is being used in several process mining projects.

429

430

Acknowledgements

Acknowledgements

All PhDs are divided into three parts, one of which is the blood, the sweat another, that
what among scholars is called the procrastination, among us the tears, the third. In my
four-year journey, all three parts were plentiful, though with the help and effort of many,
it proved an enjoyable journey. I would like to express my sincere gratitude to some of
these people.

First and foremost, I would like to thank my promotor Wil van der Aalst: after a
company withdrew from the first PhD project in which I was to be involved, an alternative
source of funding was found which, in hindsight, proved to be an even better fit. Wil:
thank you for your guidance and support for bending the rules a little bit at times,
for instance when using GraphViz in ProM. Second, I wish to thank Dirk Fahland for
the daily supervision, the discussions about formalisations and the refinement of my
presentation skills. It has been a pleasure and I hope that we can keep collaborating in
the future. Both Wil and Dirk saw value in even my weirdest ideas and often it was you
who convinced me of their value.

Next to my supervisors, I would like to thank the members of my committee: Josep,
Javier, Jan Friso, Uzay and Wim, for their time to read the thesis and, where applicable,
the effort required to travel to Eindhoven.

During my time at TU/e, I shared the office with the best office mates a procrastinating
PhD could wish for: Meng Dou, Murat Firat, Shengnan Guo, Rafal Kocielnik, Cong Liu,
Felix Mannhardt, Richard Müller, Marcella Rovani and Alifah Syamsiyah, engaging with
me in endless enlightening discussions, such as: “Look what I made.” “Cool, but does it
work?” “Of course not, I wrote it”. With Rafal, Felix and Richard, the ‘office of the good
music’ easily beat the “cool office”.

Next, I would like to thank all colleagues of TU/e and QUT. In particular, I would like
to thank Ine van der Ligt and Riet van Buul, whose support and fighting spirit in benefit
of the IS group was indispensable. Furthermore, I’d like to thank Eric Verbeek for his
support on technical matters. I had the pleasure to work with/argue with/have lunch
with/get stopped by police together with/visit Christmas markets with/visit steam trains
with the following colleagues: Han van der Aa, Arya Adriansyah, Nour Assy, Alfredo Bolt,
JC Bose, Paul de Bra, Rémi Brochenin, Joos Buijs, Toon Calders, Marcus Dees, Alok
Dixit, Boudewijn van Dongen, Maikel van Eck, George Fletcher, Eduardo Gonzáles Lopéz
de Murillas, Dennis Schunselaar, Christian Günther, Kees van Hee, Farideh Heidari,
Bart Hompes, Julia Kiseleva, Maikel Leemans, Massimiliano de Leoni, Guangming Li,
Xixi Lu, Fabrizio Maggi, Joyce Nakatumba, Mykola Pechenizkiy, Elham Ramezani, Hajo
Reijers, Anne Rozinat, Natalia Sidorova, Christian Stahl, Natasha Stash, Niek Tax, Jan
Martijn van der Werf, Michael Westergaard and Bas van Zelst. Futhermore, I had the
pleasure of meeting several visitors: Claudio Di Ciccio, Laura Genga, Anna Kalenkova,
Jan Mendling, Jorge Muñoz-Gama, David Redlich, Andreas Solti, Tonatiuh Tapia-Flores
and Matthias Weidlich for several inspiring discussions and collaborations.

I got the opportunity to be involved in teaching during the four years of my PhD. I
would like to thank the master student that I supervised: Robin Wolffensperger, thanks
for the discussions and considerably sharpening my view on animation and the visual-
isation of deviations. Furthermore, I thank the brilliant students I supervised in the
honours programme, either for the Hilti data mining competition or on the study trip to
København: Hilde, Jef, Julian, Kay, Koen, Loes, Monique, Niels, Paul, Roy, Simin and
Stephan. However, in particular I would like to thank the people who helped me obtain-
ing a University Teaching Qualification: Kees Huizing, Rik Kaasschieter and Marloes
van Lierop.

During my PhD, I had the opportunity to visit and collaborate with the group of

432

Acknowledgements

Avishai Mandelbaum at the Technion in Haifa, Israel. During my visit, increasing tem-
peratures kept me inside, but this yielded a boost in productivity. Avishai, Avigdor Gal,
Shahar Harel and Arik Senderovich: it was a pleasure to work with you on discover-
ing queues from event logs. Pnina Soffer: thanks for inviting me to give a talk at the
University of Haifa during my stay.

At the Queensland University of Technology, I was first welcomed for a collaboration
visit and second as a new colleague. I’d like to thank Robert Andrews, Kevin Burrage,
Abel Armas Cervantes, Raffaele Conforti, Arthur ter Hofstede, Wei Lai, Alireza Ostovar,
Chun Ouyang, Artem Polyvyanyy, Erik Poppe, Marcello La Rosa, Suriadi Suriadi, Ilya
Verenich, Moe Wynn and Jingxin Xu for welcoming me to this sunny side of the world.

Of course, all others that I met abroad or in Eindhoven but forgot to mention: all of
you contributed to this thesis in one way or another.

Finally, I’d like to thank my family: Ilse (guess which discovery technique is named
after her?), Lida, Martie and especially Shiva, who had to carry the burden of both
handling me and, by transitivity, me writing this thesis.

433

434

Curriculum Vitae

Curriculum Vitae

Sander Leemans was born in Boxtel, the Netherlands, on August 1st, 1988. He attended
secondary school at the Maurick College in Vught, the Netherlands, from 2000 to 2006.

After secondary school, he studied Computer Science and Engineering at the Eind-
hoven University of Technology (TU/e) from 2006 to 2012, receiving his Master degree cum
laude with the completion of the thesis “Validation of CERN’s Finite State Machines”, for
which the research was performed at the Conseil Européen pour la Recherche Nucléaire
(CERN) in Geneva, Switzerland, under supervision of dr. ir. Tim A.C. Willemse and
ir. Jeroen J.A. Keiren of the Formal Systems Analysis group of the TU/e, and Frank
Glege and Robert G.R. Garrido of the CMS-DAQ group of CERN.

Furthermore, he graduated from the Master Science Education and Communication
at the TU/e with the completion of the thesis “Image of Computer Science Education in/on
Secondary Schools”. This thesis was written in collaboration with Dennis Haverkamp,
Elisa van Hout and Bas Luksenburg under supervision of dr. Jacob C. Perrenet.

From 2012 to 2016 he worked as a PhD employee in the Architecture of Information
Systems group at the TU/e under supervision of prof. dr. ir. Wil M.P. van der Aalst and
dr. Dirk Fahland on the project “Don’t Search for the Undesirable! Avoiding "Blind Al-
leys" in Process Mining”, in which automatic methods were developed to discover models
of business processes, when given only recorded event logs of these processes. Sander
completed his PhD in 2017 with the thesis “Robust Process Mining with Guarantees”.

In 2016, Sander started working at the Queensland University of Technology in Bris-
bane, Australia as a research fellow.

436

SIKS dissertations

SIKS dissertations

1998
1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database of Autonomous Objects
1998-2 Floris Wiesman (UM)

Information Retrieval by Graphically Browsing Meta-Information
1998-3 Ans Steuten (TUD)

A Contribution to the Linguistic Analysis of Business Conversations within the Language/Action Perspective
1998-4 Dennis Breuker (UM)

Memory versus Search in Games
1998-5 E.W.Oskamp (RUL)

Computerondersteuning bij Straftoemeting
1999
1999-1 Mark Sloof (VU)

Physiology of Quality Change Modelling; Automated modelling of Quality Change of Agricultural Products
1999-2 Rob Potharst (EUR)

Classification using decision trees and neural nets
1999-3 Don Beal (UM)

The Nature of Minimax Search
1999-4 Jacques Penders (UM)

The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB)

Empowering Communities: A Method for the Legitimate User-Driven Specification of Network Information
Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete Reallocation.

2000
2000-1 Frank Niessink (VU)

Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE)

Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UVA)

Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering en actorperspectief.
2000-4 Geert de Haan (VU)

ETAG, A Formal Model of Competence Knowledge for User Interface Design
2000-5 Ruud van der Pol (UM)

Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk (UU)

Programming Languages for Agent Communication
2000-7 Niels Peek (UU)

Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coup (EUR)

Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI)

Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI)

Image Database Management System Design Considerations, Algorithms and Architecture
2000-11 Jonas Karlsson (CWI)

Scalable Distributed Data Structures for Database Management
2001
2001-1 Silja Renooij (UU)

Qualitative Approaches to Quantifying Probabilistic Networks
2001-2 Koen Hindriks (UU)

Agent Programming Languages: Programming with Mental Models
2001-3 Maarten van Someren (UvA)

Learning as problem solving
2001-4 Evgueni Smirnov (UM)

Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets
2001-5 Jacco van Ossenbruggen (VU)

Processing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU)

Task-based User Interface Design
2001-7 Bastiaan Schonhage (VU)

Diva: Architectural Perspectives on Information Visualization
2001-8 Pascal van Eck (VU)

A Compositional Semantic Structure for Multi-Agent Systems Dynamics.
2001-9 Pieter Jan ’t Hoen (RUL)

Towards Distributed Development of Large Object-Oriented Models, Views of Packages as Classes
2001-10 Maarten Sierhuis (UvA)

Modeling and Simulating Work Practice; BRAHMS: a multiagent modeling and simulation language for work
practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models in Business Systems Design

2002
2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT)

Modelling and searching web-based document collections
2002-03 Henk Ernst Blok (UT)

Database Optimization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU)

The Discrete Acyclic Digraph Markov Model in Data Mining
2002-05 Radu Serban (VU)

The Private Cyberspace Modeling Electronic Environments inhabited by Privacy-concerned Agents
2002-06 Laurens Mommers (UL)

Applied legal epistemology; Building a knowledge-based ontology of the legal domain

438

SIKS dissertations

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003
2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in Weakly Structured Environments
2003-02 Jan Broersen (VU)

Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD)

Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy
2003-04 Milan Petkovic (UT)

Content-Based Video Retrieval Supported by Database Technology
2003-05 Jos Lehmann (UVA)

Causation in Artificial Intelligence and Law - A modelling approach
2003-06 Boris van Schooten (UT)

Development and specification of virtual environments
2003-07 Machiel Jansen (UvA)

Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM)

Repair Based Scheduling
2003-09 Rens Kortmann (UM)

The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT)

Electronic Business Negotiation: Some experimental studies on the interaction between medium, innovation
context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004
2004-01 Virginia Dignum (UU)

A Model for Organizational Interaction: Based on Agents, Founded in Logic
2004-02 Lai Xu (UvT)

Monitoring Multi-party Contracts for E-business
2004-03 Perry Groot (VU)

A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving
2004-04 Chris van Aart (UVA)

Organizational Principles for Multi-Agent Architectures
2004-05 Viara Popova (EUR)

Knowledge discovery and monotonicity
2004-06 Bart-Jan Hommes (TUD)

The Evaluation of Business Process Modeling Techniques
2004-07 Elise Boltjes (UM)

Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract denken, vooral voor meisjes
2004-08 Joop Verbeek(UM)

Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiële gegevensuitwisseling en digi-
tale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)

439

SIKS dissertations

Multi-Relational Data Mining
2004-16 Federico Divina (VU)

Hybrid Genetic Relational Search for Inductive Learning
2004-17 Mark Winands (UM)

Informed Search in Complex Games
2004-18 Vania Bessa Machado (UvA)

Supporting the Construction of Qualitative Knowledge Models
2004-19 Thijs Westerveld (UT)

Using generative probabilistic models for multimedia retrieval
2004-20 Madelon Evers (Nyenrode)

Learning from Design: facilitating multidisciplinary design teams
2005
2005-01 Floor Verdenius (UVA)

Methodological Aspects of Designing Induction-Based Applications
2005-02 Erik van der Werf (UM))

AI techniques for the game of Go
2005-03 Franc Grootjen (RUN)

A Pragmatic Approach to the Conceptualisation of Language
2005-04 Nirvana Meratnia (UT)

Towards Database Support for Moving Object data
2005-05 Gabriel Infante-Lopez (UVA)

Two-Level Probabilistic Grammars for Natural Language Parsing
2005-06 Pieter Spronck (UM)

Adaptive Game AI
2005-07 Flavius Frasincar (TUE)

Hypermedia Presentation Generation for Semantic Web Information Systems
2005-08 Richard Vdovjak (TUE)

A Model-driven Approach for Building Distributed Ontology-based Web Applications
2005-09 Jeen Broekstra (VU)

Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA)

Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments
2005-11 Elth Ogston (VU)

Agent Based Matchmaking and Clustering - A Decentralized Approach to Search
2005-12 Csaba Boer (EUR)

Distributed Simulation in Industry
2005-13 Fred Hamburg (UL)

Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
2005-14 Borys Omelayenko (VU)

Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics
2005-15 Tibor Bosse (VU)

Analysis of the Dynamics of Cognitive Processes
2005-16 Joris Graaumans (UU)

Usability of XML Query Languages
2005-17 Boris Shishkov (TUD)

Software Specification Based on Re-usable Business Components
2005-18 Danielle Sent (UU)

Test-selection strategies for probabilistic networks
2005-19 Michel van Dartel (UM)

Situated Representation
2005-20 Cristina Coteanu (UL)

Cyber Consumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT)

Improving Concurrency and Recovery in Database Systems by Exploiting Application Semantics
2006
2006-01 Samuil Angelov (TUE)

Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU)

Contextual issues in the design and use of information technology in organizations
2006-03 Noor Christoph (UVA)

The role of metacognitive skills in learning to solve problems
2006-04 Marta Sabou (VU)

Building Web Service Ontologies
2006-05 Cees Pierik (UU)

Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU)

Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service Modeling
2006-07 Marko Smiljanic (UT)

XML schema matching – balancing efficiency and effectiveness by means of clustering
2006-08 Eelco Herder (UT)

Forward, Back and Home Again - Analyzing User Behavior on the Web
2006-09 Mohamed Wahdan (UM)

Automatic Formulation of the Auditor’s Opinion
2006-10 Ronny Siebes (VU)

Semantic Routing in Peer-to-Peer Systems
2006-11 Joeri van Ruth (UT)

Flattening Queries over Nested Data Types
2006-12 Bert Bongers (VU)

Interactivation - Towards an e-cology of people, our technological environment, and the arts
2006-13 Henk-Jan Lebbink (UU)

Dialogue and Decision Games for Information Exchanging Agents
2006-14 Johan Hoorn (VU)

Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements Change
2006-15 Rainer Malik (UU)

CONAN: Text Mining in the Biomedical Domain
2006-16 Carsten Riggelsen (UU)

Approximation Methods for Efficient Learning of Bayesian Networks
2006-17 Stacey Nagata (UU)

User Assistance for Multitasking with Interruptions on a Mobile Device
2006-18 Valentin Zhizhkun (UVA)

Graph transformation for Natural Language Processing

440

SIKS dissertations

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic̀ (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

2007
2007-01 Kees Leune (UvT)

Access Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG)

Reconciling Information Exchange and Confidentiality: A Formal Approach
2007-03 Peter Mika (VU)

Social Networks and the Semantic Web
2007-04 Jurriaan van Diggelen (UU)

Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach
2007-05 Bart Schermer (UL)

Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for Agent-enabled Surveil-
lance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic Decision-Making under
Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for Multi-agent Sys-
tems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and usage of broadband internet in
the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina RamÃŋrez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement 2008

2008-01 Katalin Boer-SorbÃąn (EUR)
Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

441

SIKS dissertations

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the Markov Decision Process
Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van elektronisch berichten-
verkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009
2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence Models
2009-02 Willem Robert van Hage (VU)

Evaluating Ontology-Alignment Techniques
2009-03 Hans Stol (UvT)

A Framework for Evidence-based Policy Making Using IT
2009-04 Josephine Nabukenya (RUN)

Improving the Quality of Organisational Policy Making using Collaboration Engineering
2009-05 Sietse Overbeek (RUN)

Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge, Cognition, and Quality
2009-06 Muhammad Subianto (UU)

Understanding Classification
2009-07 Ronald Poppe (UT)

Discriminative Vision-Based Recovery and Recognition of Human Motion
2009-08 Volker Nannen (VU)

Evolutionary Agent-Based Policy Analysis in Dynamic Environments
2009-09 Benjamin Kanagwa (RUN)

Design, Discovery and Construction of Service-oriented Systems
2009-10 Jan Wielemaker (UVA)

Logic programming for knowledge-intensive interactive applications
2009-11 Alexander Boer (UVA)

Legal Theory, Sources of Law & the Semantic Web
2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)

perating Guidelines for Services
2009-13 Steven de Jong (UM)

Fairness in Multi-Agent Systems
2009-14 Maksym Korotkiy (VU)

From ontology-enabled services to service-enabled ontologies (making ontologies work in e-science with
ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)

442

SIKS dissertations

Feature Extraction from Visual Data
2009-18 Fabian Groffen (CWI)

Armada, An Evolving Database System
2009-19 Valentin Robu (CWI)

Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets
2009-20 Bob van der Vecht (UU)

Adjustable Autonomy: Controling Influences on Decision Making
2009-21 Stijn Vanderlooy (UM)

Ranking and Reliable Classification
2009-22 Pavel Serdyukov (UT)

Search For Expertise: Going beyond direct evidence
2009-23 Peter Hofgesang (VU)

Modelling Web Usage in a Changing Environment
2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations
2009-25 Alex van Ballegooij (CWI)

"RAM: Array Database Management through Relational Mapping"
2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intelligent Mobile Services
2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflection on the Web
2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models
2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-Oriented Applications
2009-30 Marcin Zukowski (CWI)

Balancing vectorized query execution with bandwidth-optimized storage
2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text
2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)

Architectural Knowledge Management: Supporting Architects and Auditors
2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In Speech?
2009-34 Inge van de Weerd (UU)

Advancing in Software Product Management: An Incremental Method Engineering Approach
2009-35 Wouter Koelewijn (UL)

Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling
2009-36 Marco Kalz (OUN)

Placement Support for Learners in Learning Networks
2009-37 Hendrik Drachsler (OUN)

Navigation Support for Learners in Informal Learning Networks
2009-38 Riina Vuorikari (OU)

Tags and self-organisation: a metadata ecology for learning resources in a multilingual context
2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)

Service Substitution – A Behavioral Approach Based on Petri Nets
2009-40 Stephan Raaijmakers (UvT)

Multinomial Language Learning: Investigations into the Geometry of Language
2009-41 Igor Berezhnyy (UvT)

Digital Analysis of Paintings
2009-42 Toine Bogers

Recommender Systems for Social Bookmarking
2009-43 Virginia Nunes Leal Franqueira (UT)

Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients
2009-44 Roberto Santana Tapia (UT)

Assessing Business-IT Alignment in Networked Organizations
2009-45 Jilles Vreeken (UU)

Making Pattern Mining Useful
2009-46 Loredana Afanasiev (UvA)

Querying XML: Benchmarks and Recursion
2010
2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter
2010-02 Ingo Wassink (UT)

Work flows in Life Science
2010-03 Joost Geurts (CWI)

A Document Engineering Model and Processing Framework for Multimedia documents
2010-04 Olga Kulyk (UT)

Do You Know What I Know? Situational Awareness of Co-located Teams in Multidisplay Environments
2010-05 Claudia Hauff (UT)

Predicting the Effectiveness of Queries and Retrieval Systems
2010-06 Sander Bakkes (UvT)

Rapid Adaptation of Video Game AI
2010-07 Wim Fikkert (UT)

Gesture interaction at a Distance
2010-08 Krzysztof Siewicz (UL)

Towards an Improved Regulatory Framework of Free Software. Protecting user freedoms in a world of
software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

443

SIKS dissertations

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning; Facilitating competence development through a learning path speci-
fication

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting - the computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access to Heterogeneous Data Sources, Illustrated
in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams: Exploring the Use of Cognitive Models of Trust and Atten-
tion

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Access

2011
2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian Inference in Latent Gaussian Models
2011-02 Nick Tinnemeier(UU)

Organizing Agent Organizations. Syntax and Operational Semantics of an Organization-Oriented Program-
ming Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning; Formal analysis and empirical evaluation of temporal-difference learning
algorithms

2011-05 Base van der Raadt (VU)

444

SIKS dissertations

Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging Discipline.
2011-06 Yiwen Wang (TUE)

Semantically-Enhanced Recommendations in Cultural Heritage
2011-07 Yujia Cao (UT)

Multimodal Information Presentation for High Load Human Computer Interaction
2011-08 Nieske Vergunst (UU)

BDI-based Generation of Robust Task-Oriented Dialogues
2011-09 Tim de Jong (OU)

Contextualised Mobile Media for Learning
2011-10 Bart Bogaert (UvT)

Cloud Content Contention
2011-11 Dhaval Vyas (UT)

Designing for Awareness: An Experience-focused HCI Perspective
2011-12 Carmen Bratosin (TUE)

Grid Architecture for Distributed Process Mining
2011-13 Xiaoyu Mao (UvT)

Airport under Control. Multiagent Scheduling for Airport Ground Handling
2011-14 Milan Lovric (EUR)

Behavioral Finance and Agent-Based Artificial Markets
2011-15 Marijn Koolen (UvA)

The Meaning of Structure: the Value of Link Evidence for Information Retrieval
2011-16 Maarten Schadd (UM)

Selective Search in Games of Different Complexity
2011-17 Jiyin He (UVA)

Exploring Topic Structure: Coherence, Diversity and Relatedness
2011-18 Mark Ponsen (UM)

Strategic Decision-Making in complex games
2011-19 Ellen Rusman (OU)

The Mind ’ s Eye on Personal Profiles
2011-20 Qing Gu (VU)

Guiding service-oriented software engineering - A view-based approach
2011-21 Linda Terlouw (TUD)

Modularization and Specification of Service-Oriented Systems
2011-22 Junte Zhang (UVA)

System Evaluation of Archival Description and Access
2011-23 Wouter Weerkamp (UVA)

Finding People and their Utterances in Social Media
2011-24 Herwin van Welbergen (UT)

Behavior Generation for Interpersonal Coordination with Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication - Emotion Regulation and Involvement-Distance Trade-Offs in
Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data, Applications for Preference Learning and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery: A Rule-based Architecture for the Domain of Mobile Police
Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent Support of Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49Andreea Niculescu (UT)

445

SIKS dissertations

Conversational interfaces for task-oriented spoken dialogues: design aspects influencing interaction quality
2012
2012-01 Terry Kakeeto (UvT)

Relationship Marketing for SMEs in Uganda
2012-02 Muhammad Umair(VU)

Adaptivity, emotion, and Rationality in Human and Ambient Agent Models
2012-03 Adam Vanya (VU)

Supporting Architecture Evolution by Mining Software Repositories
2012-04 Jurriaan Souer (UU)

Development of Content Management System-based Web Applications
2012-05 Marijn Plomp (UU)

Maturing Interorganisational Information Systems
2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Research Networks
2012-07 Rianne van Lambalgen (VU)

When the Going Gets Tough: Exploring Agent-based Models of Human Performance under Demanding
Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal expressions of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)
Generic Adaptation Framework for Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling of Integrated Internal and Social Dynamics of Cognitive and Affective
Processes

2012-16 Fiemke Both (VU)
Helping people by understanding them - Ambient Agents supporting task execution and depression treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)
What’s Next? Operational Support for Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of Affect during Human Media
Interaction

2012-24 Laurens van der Werff (UT)
Evaluation of Noisy Transcripts for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case Development in Inter-Organizational IT Projects: A Methodology and its
Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)
Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach for Higher Order Cognitive Skills Improvement, Building Capacity
and Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for Enterprise Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Testing in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in self-regulated Learning

446

SIKS dissertations

2012-43 Withdrawn
2012-44 Anna Tordai (VU)

On Combining Alignment Techniques
2012-45 Benedikt Kratz (UvT)

A Model and Language for Business-aware Transactions
2012-46 Simon Carter (UVA)

Exploration and Exploitation of Multilingual Data for Statistical Machine Translation
2012-47 Manos Tsagkias (UVA)

Mining Social Media: Tracking Content and Predicting Behavior
2012-48 Jorn Bakker (TUE)

Handling Abrupt Changes in Evolving Time-series Data
2012-49 Michael Kaisers (UM)

Learning against Learning - Evolutionary dynamics of reinforcement learning algorithms in strategic inter-
actions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise Information Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Sceduling; a practical framework with a case study in elevator dispatching

2013
2013-01 Viorel Milea (EUR)

News Analytics for Financial Decision Support
2013-02 Erietta Liarou (CWI)

MonetDB/DataCell: Leveraging the Column-store Database Technology for Efficient and Scalable Stream
Processing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI)
The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk(VU)
Making enemies: cognitive modeling for opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis: Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT)
A Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable Self-organization in Overlay Services

2013-12 Marian Razavian(VU)
Knowledge-driven Migration to Services

2013-13 Mohammad Safiri(UT)
Service Tailoring: User-centric creation of integrated IT-based homecare services to support independent
living of elderly

2013-14 Jafar Tanha (UVA)
Ensemble Approaches to Semi-Supervised Learning Learning

2013-15 Daniel Hennes (UM)
Multiagent Learning - Dynamic Games and Applications

2013-16 Eric Kok (UU)
Exploring the practical benefits of argumentation in multi-agent deliberation

2013-17 Koen Kok (VU)
The PowerMatcher: Smart Coordination for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)
Outlier Selection and One-Class Classification

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA)
Fast and Reliable Online Learning to Rank for Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by monolingual machine translation

2013-22 Tom Claassen (RUN)
Causal Discovery and Logic

2013-23 Patricio de Alencar Silva(UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement Learning

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new way of representing and implementing clinical guidelines in a
Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Interesting: An Inquiry into the Information eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Management: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for Engineering Cloud Applications

2013-32 Kamakshi Rajagopal (OUN)
Networking For Learning; The role of Networking in a Lifelong Learner’s Professional Development

2013-33 Qi Gao (TUD)
User Modeling and Personalization in the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT)
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA)

447

SIKS dissertations

Minimal Mobile Human Computer Interaction Promotor: Prof. dr. L. Hardman (CWI/UVA)
2013-36 Than Lam Hoang (TUe)

Pattern Mining in Data Streams
2013-37 Dirk Börner (OUN)

Ambient Learning Displays
2013-38 Eelco den Heijer (VU)

Autonomous Evolutionary Art
2013-39 Joop de Jong (TUD)

A Method for Enterprise Ontology based Design of Enterprise Information Systems
2013-40 Pim Nijssen (UM)

Monte-Carlo Tree Search for Multi-Player Games
2013-41 Jochem Liem (UVA)

Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge Engineering Perspective on Qual-
itative Reasoning

2013-42 Léon Planken (TUD)
Algorithms for Simple Temporal Reasoning

2013-43 Marc Bron (UVA)
Exploration and Contextualization through Interaction and Concepts

2014
2014-01 Nicola Barile (UU)

Studies in Learning Monotone Models from Data
2014-02 Fiona Tuliyano (RUN)

Combining System Dynamics with a Domain Modeling Method
2014-03 Sergio Raul Duarte Torres (UT)

Information Retrieval for Children: Search Behavior and Solutions
2014-04 Hanna Jochmann-Mannak (UT)

Websites for children: search strategies and interface design - Three studies on children’s search performance
and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing Dynamic Capability

2014-06 Damian Tamburri (VU)
Supporting Networked Software Development

2014-07 Arya Adriansyah (TUE)
Aligning Observed and Modeled Behavior

2014-08 Samur Araujo (TUD)
Data Integration over Distributed and Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT)
Toward Human-Level Artificial Intelligence: Representation and Computation of Meaning in Natural Lan-
guage

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)
An Empathic Virtual Buddy for Social Support

2014-12 Willem van Willigen (VU)
Look Ma, No Hands: Aspects of Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior Change: Models and Applications in Health and Safety Domains

2014-14 Yangyang Shi (TUD)
Language Models With Meta-information

2014-15 Natalya Mogles (VU)
Agent-Based Analysis and Support of Human Functioning in Complex Socio-Technical Systems: Applications
in Safety and Healthcare

2014-16 Krystyna Milian (VU)
Supporting trial recruitment and design by automatically interpreting eligibility criteria

2014-17 Kathrin Dentler (VU)
Computing healthcare quality indicators automatically: Secondary Use of Patient Data and Semantic Inter-
operability

2014-18 Mattijs Ghijsen (UVA)
Methods and Models for the Design and Study of Dynamic Agent Organizations

2014-19 Vinicius Ramos (TUE)
Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool Support

2014-20 Mena Habib (UT)
Named Entity Extraction and Disambiguation for Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD)
Negotiation and Monitoring in Open Environments

2014-22 Marieke Peeters (UU)
Personalized Educational Games - Developing agent-supported scenario-based training

2014-23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Data Era

2014-24 Davide Ceolin (VU)
Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)
New network models for the analysis of disease interaction

2014-26 Tim Baarslag (TUD)
What to Bid and When to Stop

2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models Integrating Fuzzy and Probabilistic Representations of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)
Variability in Multi-Tenant Enterprise Software

2014-30 Peter de Cock (UvT)
Anticipating Criminal Behaviour

2014-31 Leo van Moergestel (UU)
Agent Technology in Agile Multiparallel Manufacturing and Product Support

2014-32 Naser Ayat (UvA)
On Entity Resolution in Probabilistic Data

2014-33 Tesfa Tegegne (RUN)
Service Discovery in eHealth

2014-34 Christina Manteli(VU)
The Effect of Governance in Global Software Development: Analyzing Transactive Memory Systems.

448

SIKS dissertations

2014-35 Joost van Ooijen (UU)
Cognitive Agents in Virtual Worlds: A Middleware Design Approach

2014-36 Joos Buijs (TUE)
Flexible Evolutionary Algorithms for Mining Structured Process Models

2014-37 Maral Dadvar (UT)
Experts and Machines United Against Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)
Making brain-computer interfaces better: improving usability through post-processing.

2014-39 Jasmina Maric (UvT)
Web Communities, Immigration, and Social Capital

2014-40 Walter Omona (RUN)
A Framework for Knowledge Management Using ICT in Higher Education

2014-41 Frederic Hogenboom (EUR)
Automated Detection of Financial Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)
Contextual Multidimensional Relevance Models

2014-43 Kevin Vlaanderen (UU)
Supporting Process Improvement using Method Increments

2014-44 Paulien Meesters (UvT)
Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN)
Mobile Games for Learning: A Pattern-Based Approach

2014-46 Ke Tao (TUD)
Social Web Data Analytics: Relevance, Redundancy, Diversity

2014-47 Shangsong Liang (UVA)
Fusion and Diversification in Information Retrieval

2015
2015-01 Niels Netten (UvA)

Machine Learning for Relevance of Information in Crisis Response
2015-02 Faiza Bukhsh (UvT)

Smart auditing: Innovative Compliance Checking in Customs Controls
2015-03 Twan van Laarhoven (RUN)

Machine learning for network data
2015-04 Howard Spoelstra (OUN)

Collaborations in Open Learning Environments
2015-05 Christoph Bösch(UT)

Cryptographically Enforced Search Pattern Hiding
2015-06 Farideh Heidari (TUD)

Business Process Quality Computation - Computing Non-Functional Requirements to Improve Business Pro-
cesses

2015-07 Maria-Hendrike Peetz(UvA)
Time-Aware Online Reputation Analysis

2015-08 Jie Jiang (TUD)
Organizational Compliance: An agent-based model for designing and evaluating organizational interactions

2015-09 Randy Klaassen(UT)
HCI Perspectives on Behavior Change Support Systems

2015-10 Henry Hermans (OUN)
OpenU: design of an integrated system to support lifelong learning

2015-11 Yongming Luo(TUE)
Designing algorithms for big graph datasets: A study of computing bisimulation and joins

2015-12 Julie M. Birkholz (VU)
Modi Operandi of Social Network Dynamics: The Effect of Context on Scientific Collaboration Networks

2015-13 Giuseppe Procaccianti(VU)
Energy-Efficient Software

2015-14 Bart van Straalen (UT)
A cognitive approach to modeling bad news conversations

2015-15 Klaas Andries de Graaf (VU)
Ontology-based Software Architecture Documentation

2015-16 Changyun Wei (UT)
Cognitive Coordination for Cooperative Multi-Robot Teamwork

2015-17 André van Cleeff (UT)
Physical and Digital Security Mechanisms: Properties, Combinations and Trade-offs

2015-18 Holger Pirk (CWI)
Waste Not, Want Not! - Managing Relational Data in Asymmetric Memories

2015-19 Bernardo Tabuenca (OUN)
Ubiquitous Technology for Lifelong Learners

2015-20 Loïs Vanhée(UU)
Using Culture and Values to Support Flexible Coordination

2015-21 Sibren Fetter (OUN)
Using Peer-Support to Expand and Stabilize Online Learning

2015-22 Zhemin Zhu(UT)
Co-occurrence Rate Networks

2015-23 Luit Gazendam (VU)
Cataloguer Support in Cultural Heritage

2015-24 Richard Berendsen (UVA)
Finding People, Papers, and Posts: Vertical Search Algorithms and Evaluation

2015-25 Steven Woudenberg (UU)
Bayesian Tools for Early Disease Detection

2015-26 Alexander Hogenboom (EUR)
Sentiment Analysis of Text Guided by Semantics and Structure

2015-27 Sándor Héman (CWI)
Updating compressed colomn stores

2015-28 Janet Bagorogoza(TiU)
KNOWLEDGE MANAGEMENT AND HIGH PERFORMANCE; The Uganda Financial Institutions Model
for HPO

2015-29 Hendrik Baier (UM)
Monte-Carlo Tree Search Enhancements for One-Player and Two-Player Domains

2015-30 Kiavash Bahreini(OU)
Real-time Multimodal Emotion Recognition in E-Learning

2015-31 Yakup Koç (TUD)
On the robustness of Power Grids

449

SIKS dissertations

2015-32 Jerome Gard(UL)
Corporate Venture Management in SMEs

2015-33 Frederik Schadd (TUD)
Ontology Mapping with Auxiliary Resources

2015-34 Victor de Graaf(UT)
Gesocial Recommender Systems

2015-35 Jungxao Xu (TUD)
Affective Body Language of Humanoid Robots: Perception and Effects in Human Robot Interaction

2016
2016-01 Syed Saiden Abbas (RUN)

Recognition of Shapes by Humans and Machines
2016-02 Michiel Christiaan Meulendijk (UU)

Optimizing medication reviews through decision support: prescribing a better pill to swallow
2016-03 Maya Sappelli (RUN)

Knowledge Work in Context: User Centered Knowledge Worker Support
2016-04 Laurens Rietveld (VU)

Publishing and Consuming Linked Data
2016-05 Evgeny Sherkhonov (UVA)

Expanded Acyclic Queries: Containment and an Application in Explaining Missing Answers
2016-06 Michel Wilson (TUD)

Robust scheduling in an uncertain environment
2016-07 Jeroen de Man (VU)

Measuring and modeling negative emotions for virtual training
2016-08 Matje van de Camp (TiU)

A Link to the Past: Constructing Historical Social Networks from Unstructured Data
2016-09 Archana Nottamkandath (VU)

Trusting Crowdsourced Information on Cultural Artefacts
2016-10 George Karafotias (VUA)

Parameter Control for Evolutionary Algorithms
2016-11 Anne Schuth (UVA)

Search Engines that Learn from Their Users
2016-12 Max Knobbout (UU)

Logics for Modelling and Verifying Normative Multi-Agent Systems
2016-13 Nana Baah Gyan (VU)

The Web, Speech Technologies and Rural Development in West Africa - An ICT4D Approach
2016-14 Ravi Khadka (UU)

Revisiting Legacy Software System Modernization
2016-15 Steffen Michels (RUN)

Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and Experiments
2016-16 Guangliang Li (UVA)

Socially Intelligent Autonomous Agents that Learn from Human Reward
2016-17 Berend Weel (VU)

Towards Embodied Evolution of Robot Organisms
2016-18 Albert Meroï£¡o Peï£¡uela (VU)

Refining Statistical Data on the Web
2016-19 Julia Efremova (Tu/e)

Mining Social Structures from Genealogical Data
2016-20 Daan Odijk (UVA)

Context & Semantics in News & Web Search
2016-21 Alejandro Moreno Cï£¡lleri (UT)

From Traditional to Interactive Playspaces: Automatic Analysis of Player Behavior in the Interactive Tag
Playground

2016-22 Grace Lewis (VU)
Software Architecture Strategies for Cyber-Foraging Systems

2016-23 Fei Cai (UVA)
Query Auto Completion in Information Retrieval

2016-24 Brend Wanders (UT)
Repurposing and Probabilistic Integration of Data; An Iterative and data model independent approach

2016-25 Julia Kiseleva (TU/e)
Using Contextual Information to Understand Searching and Browsing Behavior

2016-26 Dilhan Thilakarathne (VU)
In or Out of Control: Exploring Computational Models to Study the Role of Human Awareness and Control
in Behavioural Choices, with Applications in Aviation and Energy Management Domains

2016-27 Wen Li (TUD)
Understanding Geo-spatial Information on Social Media

2016-28 Mingxin Zhang (TUD)
Large-scale Agent-based Social Simulation - A study on epidemic prediction and control

2016-29 Nicolas Hï£¡ning (TUD)
Peak reduction in decentralised electricity systems -Markets and prices for flexible planning

2016-30 Ruud Mattheij (UvT)
The Eyes Have It

2016-31 Mohammad Khelghati (UT)
Deep web content monitoring

2016-32 Eelco Vriezekolk (UT)
Assessing Telecommunication Service Availability Risks for Crisis Organisations

2016-33 Peter Bloem (UVA)
Single Sample Statistics, exercises in learning from just one example

2016-34 Dennis Schunselaar (TUE)
Configurable Process Trees: Elicitation, Analysis, and Enactment

2016-35 Zhaochun Ren (UVA)
Monitoring Social Media: Summarization, Classification and Recommendation

2016-36 Daphne Karreman (UT)
Beyond R2D2: The design of nonverbal interaction behavior optimized for robot-specific morphologies

2016-37 Giovanni Sileno (UvA)
Aligning Law and Action - a conceptual and computational inquiry

2016-38 Andrea Minuto (UT)
MATERIALS THAT MATTER - Smart Materials meet Art & Interaction Design

2016-39 Merijn Bruijnes (UT)
Believable Suspect Agents; Response and Interpersonal Style Selection for an Artificial Suspect

2016-40 Christian Detweiler (TUD)
Accounting for Values in Design

450

SIKS dissertations

2016-41 Thomas King (TUD)
Governing Governance: A Formal Framework for Analysing Institutional Design and Enactment Governance

2016-42 Spyros Martzoukos (UVA)
Combinatorial and Compositional Aspects of Bilingual Aligned Corpora

2016-43 Saskia Koldijk (RUN)
Context-Aware Support for Stress Self-Management: From Theory to Practice

2016-44 Thibault Sellam (UVA)
Automatic Assistants for Database Exploration

2016-45 Bram van de Laar (UT)
Experiencing Brain-Computer Interface Control

2016-46 Jorge Gallego Perez (UT)
Robots to Make you Happy

2016-47 Christina Weber (UL)
Real-time foresight - Preparedness for dynamic innovation networks

2016-48 Tanja Buttler (TUD)
Collecting Lessons Learned

2016-49 Gleb Polevoy (TUD)
Participation and Interaction in Projects. A Game-Theoretic Analysis

2016-50 Yan Wang (UVT)
The Bridge of Dreams: Towards a Method for Operational Performance Alignment in IT-enabled Service
Supply Chains

2017
2017-01 Jan-Jaap Oerlemans (UL)

Investigating Cybercrime
2017-02 Sjoerd Timmer (UU)

Designing and Understanding Forensic Bayesian Networks using Argumentation
2017-03 Daniël Harold Telgen (UU)

Grid Manufacturing; A Cyber-Physical Approach with Autonomous Products and Reconfigurable Manufac-
turing Machines

2017-04 Mrunal Gawade (CWI)
MULTI-CORE PARALLELISM IN A COLUMN-STORE

2017-05 Mahdieh Shadi (UVA)
Collaboration Behavior

2017-06 Damir Vandic (EUR)
Intelligent Information Systems for Web Product Search

2017-07 Roel Bertens (UU)
Insight in Information: from Abstract to Anomaly

2017-08 Rob Konijn (VU)
Detecting Interesting Differences:Data Mining in Health Insurance Data using Outlier Detection and Sub-
group Discovery

2017-09 Dong Nguyen (UT)
Text as Social and Cultural Data: A Computational Perspective on Variation in Text

2017-10 Robby van Delden (UT)
(Steering) Interactive Play Behavior

2017-11 Florian Kunneman (RUN)
Modelling patterns of time and emotion in Twitter #anticipointment

451

452

Index

Index

α (α-algorithm), 60, 311
α-algorithm, 60, 311
� Kleene star (regular expression), 20
l nothing, 98

End end activities (language), 37
Σ activities (process tree), 34
Σ alphabet of activities, 34
Σ alphabet of directly follows relation,

37
Σ^ activity sets of non-coo subtrees,

160
Start start activities (language), 37
^ concurrent (activity relation), 132
Ø interleaved (activity relation), 135
	i loop indirect (activity relation), 132
	s loop single (activity relation), 132
Ñ sequence (activity relation), 132
� exclusive choice (activity relation),

132
? optionality (process tree), 148
� sequence (regular expression), 20
� trace concatenation, 20
^L concurrent join (process tree), 30
^ concurrent operator (process tree),

30
�pLq directly follows relation (log), 37
�pMq directly follows relation (model),

37
� directly follows relation, 37
�� transitive closure of �, 38
ε empty trace, 20
P element of multiset, 20
ØL interleaved join (process tree), 31
Ø interleaved operator (process tree),

31
	L loop join (process tree), 31
	 loop operator (process tree), 31
~L non-atomic event log, 35
~L non-atomic language, 173
~a non-atomic activity, 35
~a non-atomic activity (process tree),

172
L all regular languages, 22
MΣ merge superset of coo subtrees, 162
M unbounded multiset, 20
T all process trees, 34
LΣ activity set language, 161
L language (Petri net), 24
L language (process tree), 29

| choice (regular expression), 20
üüminimum self-distance, 141

�̃ non-atomic directly follows relation,
173

` operator (process tree), 29
`L language-join (process tree), 29
_L inclusive choice join (process tree),

32
_ inclusive choice (process tree), 32
 firing sequence (Petri net), 24
ÑL sequence join (process tree), 30
Ñ sequence operator (process tree), 30
set set of multiset, 20
� shuffle traces, 30
� subset of multiset, 20
τ silent activity (process tree), 29
Y- multiset difference, 20
Z multiset sum, 20
�L exclusive choice join (process tree),

30
� exclusive choice operator (process

tree), 29
a
ÝÑ edge executing a (DFA), 21
e post set of e (Petri net), 23
ac completion event, 35, 171
ae enqueue event, 77
as start event, 35, 171
e pre set of e (Petri net), 23
PCC framework (Projected Confor-

mance Checking framework),
283

so stem (sequence-optional stem), 155
^.1-^.1

concurrency footprint, 175
^.1-^.2

footprint, 126
^Ø.1-^Ø.1

minimum self-distance footprint,
143

Ø.1-Ø.1
footprint, 136

Ø	.1-Ø	.1
concurrency footprint, 175

	.1-	.4
minimum self-distance footprint,

143
	.1-	.4

footprint, 126
Ñ.1-Ñ.1

454

Index

footprint, 125
�.1-�.1

footprint, 125
�pτq.1-�pτq.1

footprint, 149
�pτÑp. . .qq.1-�pτÑp. . .qq.5

footprint, 157
AP.1-AP.6

abstraction preservation, 107
DAP.1-DAP.6

directly follows abstraction preser-
vation, 270

RF.1-RF.5
rediscoverability framework, 104

RQ.1-RQ.5
research question, 310

Cb.1-Cb.5, 121
Ccoo.1-Ccoo.4, 154
Ci.1-Ci.4, 136
80% model, 43

abstraction
preserving, 107, 270
rediscoverability, 105
rediscovery, 105

activities, alphabet of (Σ), 34
activity, 2
activity instance, 77
activity partitions, 127, 138
activity relations, 131, 132

concurrent (^), 132
exclusive choice (�), 132
interleaved (Ø), 135
loop indirect (i), 132
loop single (s), 132
sequence (Ñ), 132

activity set log, 230
alignment, 16, 69

log move, 69
model move, 69
optimal, 70
synchronous move, 69

atomic, 8, 170
atomic event log, 34

behavioural appropriateness, 72
bisimilarity, 48

branching, 48
weak bisimilarity, 48

body end activity, 217

BPMN (Business Process Model and
Notation), 28

Business Process Model and Notation,
28

gateway, 28

canonicity, 112, 117
causal nets, 62
Cb (rediscoverable process trees), 121
CCM (Constructs Competition Miner),

59, 311
Ccoo (rediscoverable process trees), 154
Celonis Process Mining, 83, 311, 396
Ci (rediscoverable process trees), 136
Clc (rediscoverable process trees), 176
Cm (rediscoverable process trees), 142
completeness, 53
completion event (ac), 171
concatenation of traces (�), 20
concept drift, 395
concurrency graph, 174
concurrent-optional-or, 158

abstraction, 162
activity set language (LΣ), 161
activity set trace, 161
merge superset of coo subtrees

(MΣ), 162
non-coo subtrees, 158

activity sets of (Σ^), 160
operators, 158
relations, 148, 162
stem, 158

conditional livelock, 307
confluency

local, 117
conformance checking, 2, 11, 40, 46
connected component, 37
Constructs Competition Miner, 59, 311
coo

see concurrent-optional-or, 158
correct behaviour, 52
correctness, 53
CPM (Celonis Process Mining), 83, 311,

396
cut, 97, 98, 260

concurrent, 126, 175
conforms to process tree, 133
cross a, 133
exclusive choice, 125
interleaved, 136

455

Index

loop, 126
non-trivial, 125
sequence, 125

Declare, 66
deterministic finite automaton, 21, 89

conjunction, 288
edge executing a (aÝÑ), 21
minimal, 22
post set, 290

deviating behaviour, 52
DFA (deterministic finite automaton),

21
directed graph, 37
directly follows graph, 37, 121
directly follows relation

alphabet (Σ), 37
complete, 214
directly follows relation (�), 37
of log (�pLq), 37
of model (�pMq), 37
transitive closure (��), 38

discovery log, 318
dominates, 318
duplicate activities, 59

edge weight, 37
EM (Evolutionary Miner), 58
enactment, 43
enhancement, 2, 5

model enhancement, 41
ETConformance, 72
ETM (Evolutionary Tree Miner), 58,

311
event, 2, 34
event log, 2, 34
eventually follows graph, 59
Evolutionary Miner, 58
Evolutionary Tree Miner, 58, 311

fall through, 98, 194, 260
activity concurrent, 195
activity per trace, 195
flower model, 196
flower model with epsilon, 196
strict tau loop, 195
tau loop, 196
trace model, 196

FD (Fluxicon Disco), 65, 80, 311, 396
fitness, 7, 43, 49, 72, 283
fitting behaviour, 49

Flexible Heuristic Miner, 63, 311
Flower Miner, 311
flower model, 56, 194
Fluxicon Disco, 65, 80, 311, 396
FM (Flower Miner), 311
FM (Fuzzy Miner), 65, 396
FO (Fodina), 63, 113, 121, 311
Fodina, 63, 113, 121, 311
footprint, 125

concurrency graph
concurrent, 175
interleaved, 175
loop, 175

concurrent-optional-or relations
concurrent, 164
inclusive choice, 164

directly follows relation
concurrent, 126
exclusive choice, 125
loop, 126
optionality, 149
sequence, 125, 136
sequence (optionality), 157

minimum self-distance
concurrent, 143
interleaved, 143
loop, 144

footprint matrices, 72
Fuzzy Miner, 65, 396

generalisation, 51, 72
graph, 37

happy flow models, 43
Heuristic Miner, 113, 121
HM (Flexible Heuristic Miner), 63, 311
HM (Heuristic Miner), 113, 121
hybrid process model, 277

ILP (Integer Linear Programming
Miner), 65

ILP (Integer Linear Programming), 311
incomplete, 54
Inductive Miner, 99

- all operators (IMa), 229, 232, 237
- directly follows (IMd), 257, 260
- directly follows based framework

(IMd framework), 257
- incompleteness (IMc), 213, 215,

221, 228

456

Index

- incompleteness - directly follows
(IMcd), 257, 267

- incompleteness - life cycle
(IMclc), 244, 251

- infrequent (IMf), 209
- infrequent - all operators (IMfa),

229, 238, 239
- infrequent - directly follows

(IMfd), 257, 265
- infrequent - life cycle (IMflc),

244, 251
- life cycle (IMlc), 244
(IM), 185, 197
- infrequent (IMf), 204
framework, 8, 96, 98
framework (IM framework), 87

Inductive visual Miner, 14, 91, 378, 379,
407

activities, 381
animation export, 388
change view, 389
classifier, 382
deviations, 384
edit model, 384
filter before discovery, 384
filters after discovery, 386
highlighting filters, 386
image export, 388
mining algorithm, 384
model export, 388
paths, 382, 384
pre-mining filters, 384
queue length, 384
service time, 384
sojourn time, 384
statistics export, 388
trace colouring, 386
trace view, 388

infrequent behaviour, 53
Integer Linear Programming, 311
Integer Linear Programming Miner, 65
IvM (Inductive visual Miner), 14, 91,

378, 379, 407

language, 22
end activities (End), 37
start activities (Start), 37

language complete, 53
language equivalent, 48
language unique, 74, 112, 116, 121

language uniqueness, 104, 184
language-class preserving, 109, 271
LC-property (loop-concurrent-

property), 145
life cycle, 77
life-cycle transition

complete, 77
enqueue, 77
start, 77

Little Thumb, 63
locally fitness preserving, 102
log conformance, 49
log precision, 7, 43, 49, 72, 283

log-precise behaviour, 49
log quality, 52
log-conformance checking, 2, 5, 11, 40
long-distance dependency, 59, 189
loop body, 31
loop redo, 31
loop-concurrent-property (LC-

property), 145
LT (Little Thumb), 63

Maximal Pattern Miner, 60, 311
minimum self-distance, 141

graph, 141
relation (üü), 141

model enhancement, 40
model-conformance checking, 2, 5, 11,

41
model-model comparison, 73
MPM (Maximal Pattern Miner), 60, 311
multiset, 20

corresponding set (set), 20
difference (Y-), 20
element of (P), 20
subset (�), 20
sum (Z), 20
unbounded multiset (M), 20

negative events, 66
Newman’s Lemma, 119
non-atomic, 8, 170

activity (~a), 35, 172
activity (process tree), 171
completion event (ac), 35
consistent trace, 35, 171
directly follows graph, 173
directly follows relation (�̃), 173
end activity, 173

457

Index

end activity instance, 173
enqueue event (ae), 77
event log, 9
event log (~L), 35
expanded (Petri net), 171
language, 35
language (~L), 173
leaf (process tree), 171
process models, 170
process tree, 172
start activity instance, 173
start event (as), 35
transition (Petri net), 171

nothing (l), 98

observed behaviour, 52

pareto optimal, 318
parsing measure, 73
path, 37
PCC framework (Projected Confor-

mance Checking framework),
12, 89

Petri net, 23
expanded, 171
firing sequence (), 24
free choice, 25
inhibitor arc, 26
language (L), 24
non-free choice constructs, 59
post set (e), 23
pre set (e), 23
reset arc, 26
silent transition, 23
unlabelled, 23

pivot, 156
scope, 157

plug-ins
compute projected fitness and pre-

cision, 300
compute projected recall and pre-

cision, 300
convert log to directly follows

graph, 273
expand collapsed process tree, 254
filter events, 381
mine Petri net with Inductive

Miner, 273
mine Petri net with Inductive

Miner - directly follows, 273

mine process tree with Inductive
Miner, 273

mine process tree with Inductive
Miner - directly follows, 273

mine with Inductive visual Miner,
379

visualise deviations on process tree,
379

PM (Process Miner), 60
principal transition sequences, 75
process discovery, 2, 40, 46
Process Miner, 60
process mining, 2
process tree, 29

activities (Σ), 34
all process trees (T), 34
concurrent join (^L), 30
concurrent operator (^), 30
conforms (binary tree), 133
exclusive choice join (�L), 30
exclusive choice operator (�), 29
inclusive choice (_), 32
inclusive choice join (_L), 32
interleaved join (ØL), 31
interleaved operator (Ø), 31
language (L), 29
language-join function (`L), 29
loop join (L), 31
loop operator (), 31
lowest common ancestor, 34
non-atomic, 172
normal form, 114, 119
operator (`), 29
optionality property (?), 148
reduced, 114
sequence join (ÑL), 30
sequence operator (Ñ), 30
silent activity (τ), 29

Projected Conformance Checking
framework, 12, 89, 283

queueing time, 78

recall, 7, 44, 50, 51, 74, 283
rediscoverability, 7, 44, 52, 103, 104
redo start activity, 217
regular expression

choice (|), 20
Kleene star (�), 20
sequence (�), 20

458

Index

regular language, 22
all (L), 22

rewriting rules
system of, 119

sequence-optional stem (so stem), 155
service time, 78
short loops, 61
simplicity, 43, 55
SM (Structured Miner), 63, 311
sociometry, 79
sojourn time, 78
soundness, 24

weak soundness, 47
split point (sequence split), 206
start activity, 173
start event (as), 171
strongly connected component, 37
Structured Miner, 63, 311
system, 2
system conformance, 50
system model, 5
system precision, 7, 44, 51, 74, 283

system-precise behaviour, 50

Tα (Tsinghua-α algorithm), 62, 311
test log, 318

TM (Trace Model Miner), 311
token, 23
token-based replay, 73
trace, 2, 20, 21

concatenation, 20
empty (ε), 20
shuffle (�), 30

trace model, 57, 196
Trace Model Miner, 311
Tsinghua-α algorithm, 62, 311

undirected graph, 37
undirected path, 37

variety, 322

waiting time, 78
workflow net, 24

block structured, 25
workflow patterns, 27

YAWL (Yet Another Workflow Lan-
guage), 26

Yet Another Workflow Language, 26
cancellation region, 27
multiple instance, 27

459

	Introduction
	Abstractions in Process Mining
	Process Discovery
	Conformance Checking
	Enhancement & Tool Support
	Contributions and Structure of this Thesis

	Preliminaries
	Multisets, Traces, Regular Expressions
	Process Models
	Event Logs
	Directly Follows Relation

	Process Mining
	Different Use Cases, Different Process Mining Techniques
	Formal Key Challenges of Process Mining
	Process Discovery
	Conformance Checking
	Enhancement & Tool Support
	Our Approach

	Recursive Process Discovery
	Recursive Process Discovery
	Rediscoverability

	Abstractions
	A Canonical Normal Form for Process Trees
	Language Uniqueness with Directly Follows Graphs
	Language Uniqueness with Activity Relations
	Language Uniqueness with Interleaving
	Language Uniqueness with Minimum Self-Distance
	Language Uniqueness with Optionality & Inclusive Choice
	Language Uniqueness with non-Atomic Process Models
	Classes of Process Trees: Revisited

	Discovery Algorithms
	Inductive Miner (IM)
	Handling Deviating & Infrequent Behaviour
	Handling Incomplete Behaviour
	Handling More Constructs: , `39`42`"613A``45`47`"603A and `39`42`"613A``45`47`"603A
	Handling Non-Atomic Event Logs
	Handling Large Event Logs
	Tool Support
	Summary: Choosing a Miner

	Conformance Checking
	Projected Conformance Checking Framework
	An Example of Non-Conformance and Diagnostic Information
	Guarantees
	Tool Support
	Conclusion
	Ideas to Handle Unbounded & Weakly Unsound Petri Nets

	Evaluation
	Evaluated Process Discovery Algorithms
	Scalability of Discovery Algorithms
	Log-Quality Dimensions
	Rediscoverability & its Challenges
	Evaluation of Log-Conformance Checking
	Non-Atomic Behaviour
	Conclusion

	Enhancement & Inductive visual Miner
	Inductive visual Miner (IvM)
	Deviations
	Frequency Information
	Projecting Performance Information on Process Trees
	Animation
	Conclusion

	Conclusion
	Process Discovery
	Conformance Checking
	Enhancement & Tool Support
	Remaining Challenges

	Bibliography
	Summary
	Acknowledgements
	Curriculum Vitae
	SIKS dissertations
	Index

